Abstract Interpretation
Non-Standard Semantics

Lecture 8-9
ECS 240

ECS 240 Lecture 8-9

The Problem

It is useful to predict program behavior statically
(without running the program)

- For optimizing compilers

- For software engineering tools

The semantics we studied so far give us the precise
semantics

However, precise static predictions are impossible
- The exact semantics is not computable

We must settle for approximate, but correct static
analysis (e.g. VC vs. WP)

ECS 240 Lecture 8-9 2

The Plan

We will introduce abstract interpretation by example

Starting with a miniscule language we will build up to a
fairly realistic application

Along the way we will see most of the ideas and
difficulties that arise in a big class of applications

ECS 240 Lecture 8-9 3

A Tiny Language

+ Consider the following language of arithmetic
ei=nle *e,

The denotational semantics of this language
[n] =n

le: ™ e2] = [eq] x [e]

For this language the precise semantics is computable

ECS 240 Lecture 8-9 4

An Abstraction

Assume that we are interested not in the value of the
expression, but only in its sign:
- positive (+), negative (-), or zero (0)

We can define an abstract semantics that computes
only the sign of the result
o: Exp — {-, 0, +}

o(n) = sign(n) o
o(e; * e,) = o(e;) ® o(e,) 010

o O OO
|

ECS 240 Lecture 8-9 5

Correctness of Sign Abstraction

We can show that the abstraction is correct in the
sense that it correctly predicts the sign

le]
[e] =0 < o(e)=0
le]

>0 < o(e)=+

<0 < o(e)=-

Our semantics is abstract but precise

Proof is by structural induction on expression e
- Each case repeats similar reasoning

ECS 240 Lecture 8-9 6

Another View of Soundness

We associate with each concrete value an abstract
value:

B:Z—{-0,+}
This is called the abstraction function

» Conversely we can also define the concretization
function:

v:{-,0,+} = P(Z)

Y(*)={neZ|n>0}
v(0)={0}
v(-)={neZ|n<0}

ECS 240 Lecture 8-9 7

Another View of Soundness (Cont.)

Soundness can be stated succinctly
Ve € Exp. [e] € y(o(e))

(the true value of the expression is among the concrete values
represented by the abstract value of the expression)

* Let C be the concrete domain (e.g. Z) and A be the
abstract domain (e.g. {-, O, +})

Exp O LA

[] Y

C *P(C)

ECS 240 Lecture 8-9 8

Another View of Soundness (Cont.)

» Consider the generic abstraction of an operator
o(e; op e;) = o(e;) op o (e;)

This is sound iff
Va,¥a,. y(a; op a@,) 2 {n; op n, | n; € v(ay), n, € v(a,)}

E.g.v(a; ® a;) 2 {n; * n, | n; € y(ay), n, € ¥(a,) }

This reduces the proof of correctness to one proof
for each operator

ECS 240 Lecture 8-9 9

Abstract Interpretation

This is our first example of an abstract
interpretation.

We carry out computation in an abstract domain

The abstract semantics is a sound approximation of
the standard semantics

The concretization and abstraction functions
establish the connection between the two domains

ECS 240 Lecture 8-9 10

Adding Unary Minus and Addition

We extend the language toe:i=n|e *e, | -e
We define o(- e) = © o(e)

-0 o+
o+ 0 -

Now we add addition:e:i=n|e;*e, | -e| e +e,
We define o(e; + e,) = o(e;) @ o(e,)

®| - 0 +

O|- 0 +
+ | ?2 +

ECS 240 Lecture 8-9

Adding Addition

The sign values are not closed under addition

What should be the value of “+ & -"?

Start from the soundness condition:
y*+*@®-)2{n+n, [n>0,n,<0}=Z

We don’ t have an abstract value whose concretization

includes Z, so we add one: T

®|- 0 +
- - T
-0 o+
I + +
T 1T T

— + O 1
o4 A A

ECS 240 Lecture 8-9 12

Examples

+ Abstract computation might loose information

[[(1+2)+-3]] =0
o((1+2) +-3)= (o) @ o) @ o(-3)=(+ @) ®-=T

* We loose some precision

* But this will simplify the computation of the abstract
answer in cases when the precise answer is not
computable

ECS 240 Lecture 8-9 13

Adding Division

* Fairly straightforward except for division by O
- We say that there is no answer in that case
- y+20)={n|n=n,/0,n>0}=0
- We introduce L to be the abstraction of the 0
- We also use the same abstraction for non-termination !

+
- 4 o F ofo
+
= A+ A
o

I_
|_
|_

ECS 240 Lecture 8-9

14

The Abstract Domain

Our abstract domain forms a lattice
- A partial order is induced by y
a; <a, iffy(a;) Cv(ay)
- We say that a; is more precise that a, !

- Every finite subset has a least-upper bound (lub) and a
greatest-lower bound (glb)

T~

ECS 240 Lecture 8-9

15

Lattice Facts

A lattice is complete when all subsets have lub and glb
- Even infinite ones

Every finite lattice is complete

Every complete lattice is a CPO
- Since a chain is a subset

Not every CPO is a complete lattice
- Might not even be a lattice

ECS 240 Lecture 8-9 16

More Lattice Facts

* Early work in denotational semantics used lattices
- But it was latter seen that only chains need to have lub
- And there was no need for T and glb

* Inabstract interpretation we’ll use T to denote “I
don’ t know”
- Corresponds to all values in the concrete domain

ECS 240 Lecture 8-9 17

More Definitions

We can start with the abstraction function
Bp:C — A (maps a concrete value to the best abstract value)
- A must be a lattice

From here we can derive the concretization function
Y A — P(C)
v@)={xeC|p(x)<a}

And the abstraction for sets
a:P(C)— A
o(S)=lub {B(x) | x € S}

ECS 240 Lecture 8-9 18

Example

» Consider our sign lattice

+ ifn>0
B(n) =10 ifn=0
- ifn<O

a(S) = lub { B(x) | x € S}

- Example: (1({1, 2}): |ub{+}:+
o({1,0D=Ilub{+,0}=T
a(@)=lub{}=_L

v@)={n|p(n)<a}

- Example:y (+)={n | p(n) <+}={n|p(n)=+}= {n|n>0}
y(M={n|pn)<T}=7%
y(L)={n|pn)<L}=10

ECS 240 Lecture 8-9 19

Galois Connections

We can show that

- vy and a are monotonic (with the C ordering on P(C))
- a(y(a)=a foralac A

- y(a(S))D S forall S e P(C)

Such a pair of functions is called a Galois connection
- Between lattices A and P(C)

ECS 240 Lecture 8-9 20

Correctness Condition

* Ingeneral, abstract interpretation satisfies the
following diagram

Exp °O L. A

[] Y a (<)

! c !
C > P(C)

ECS 240 Lecture 8-9

Correctness Conditions

Conditions for correct abstract interpretations
1. o« andy are monotonic
2. a andy form a Galois connection

3. Abstraction of operations is correct
a; op a, = a(y(a;) op y(ay))

ECS 240 Lecture 8-9

22

So far

Introduced abstract interpretation

Two mappings form a Galois connection
- An abstraction mapping from concrete to abstract values
- A concretization mapping from abstract to concrete values

Next look a bit more at Galois connections

Then extend these ideas from expressions to
programs

ECS 240 Lecture 8-9 23

Why Galois Connections ?

We have an abstract domain A
- An abstraction functionfp:7Z — A
- Induces a: P(Z) — Aandy: A — P(Z)

We argued that for correctness

v(a; op a,) 2 v(a,) op y(ay)
- We wish for the set on the left to be as small as possible
- To reduce the loss of information through abstraction

For each set S C C, define o(S) as follows:

- Pick S’ the smallest that includes S and is in the image of y
- Define a(S) = y4(S")

- Then we define: q; op a, = a(y(a;) op y(a,))

Then o and y form a Galois connection

ECS 240 Lecture 8-9 24

Abstract Interpretation for Imperative Programs

So far we abstracted the value of expressions

We want now to abstract the state at each point in
the program

First we define the concrete semantics that we are
abstracting
- We use a collecting semantics

ECS 240 Lecture 8-9 25

The Collecting Semantics

Recall
- AstateoeX=Var — Z
- States vary from program point to program point

We introduce a set of program points: Labels

We want to answer questions like:
- Is x always positive at label i ?
- Is x always greater or equal to y at label j ?

To answer these questions it helps to construct

C € Contexts = Labels — P(X)
- For each label, all the states at that label
- This is called the collecting semantics of the program

How can we define the collecting semantics ?

ECS 240 Lecture 8-9

26

Defining the Collecting Semantics

We first define relations between the collecting
semantics at different labels

- We do it for a flowchart program

- It can be done for IMP with careful definition of program
points

Define a label on each edge in the flowchart
For assignment

X:i=e C;={o[x:=n]| oecCAle]o=n}

ECS 240 Lecture 8-9 27

Defining the Collecting Semantics

- For conditionals

false true

Cj:{(TlOECi/\[[b]]O:fC('SZ}
C.={o|oeC Al[b]o=true}

ECS 240 Lecture 8-9

>~

28

Defining the Collecting Semantics

For a join

€= CUC,

Verify that these relations are monotonic
- If we increase a C; all other C; can only increase

ECS 240 Lecture 8-9

29

Collecting Semantics: Example

» Consider the following program (assume x > O initially)

C;={o | o(x) > 0}
C,= {oly=1]1| o€ C}
U {o[x:=0(x)-1] | 0 € C,}
C;=C,Nn{o| o(x) = 0}
% 1 Cs=C,N{o| o(x) = 0}
= C, = foly=o(y)*o(x) | o € C;)

ECS 240 Lecture 8-9 30

~<
1

D
4—‘—<

The Collecting Semantics

- We have an equation with the unknown C

The equation is defined by a monotonic and continuous
function on the domain Labels — P(X)

+ We can use the least fixed-point theorem

We start with €0 = AL.0
We apply the relations between C; and C; to construct C; from
Cco.

j
We stop when Ck = Ck-1
The problem is that we’ |l go on forever for most programs
But we know the fixed point exists

ECS 240 Lecture 8-9 31

Collecting Semantics: Example

» Consider the following program (assume x > O initially)

C;={o | o(x) > 0}
C,= {oly=1]1| o€ C}

U {o[x:=0(x)-1] | 0 € C,}
C;=C,Nn{o| o(x) = 0}
Cs=C,N{o| o(x) = 0}

C, = foly=o(y)*o(x) | o € C;)

ECS 240 Lecture 8-9 32

Collecting Semantics: Example

» Consider the following program (assume x > O initially)
I 1 {x>0}

C;={o | o(x) > 0}
C,= {oly=1]1| o€ C}

U {o[x:=0(x)-1] | 0 € C,}
C;=C,Nn{o| o(x) = 0}
Cs=C,N{o| o(x) = 0}

C, = foly=o(y)*o(x) | o € C;)

ECS 240 Lecture 8-9 33

Collecting Semantics: Example

» Consider the following program (assume x > O initially)
I 1 {x>0}

C;={o | o(x) > 0}
C,= {oly=1]1| o€ C}

U {o[x:=0(x)-1] | 0 € C,}
C;=C,Nn{o| o(x) = 0}
Cs=C,N{o| o(x) = 0}

C, = foly=o(y)*o(x) | o € C;)

ECS 240 Lecture 8-9 34

Collecting Semantics: Example

» Consider the following program (assume x > O initially)
I 1 {x>0}

C;={o | o(x) > 0}
C,= {oly=1]1| o€ C}

U {o[x:=0(x)-1] | 0 € C,}
C;=C,Nn{o| o(x) = 0}
Cs=C,N{o| o(x) = 0}

C, = foly=o(y)*o(x) | o € C;)

ECS 240 Lecture 8-9 35

Collecting Semantics: Example

» Consider the following program (assume x > O initially)
I 1 {x>0}

C;={o | o(x) > 0}
C,= {oly=1]1| o€ C}

U {o[x:=0(x)-1] | 0 € C,}
C;=C,Nn{o| o(x) = 0}
Cs=C,N{o| o(x) = 0}

C, = foly=o(y)*o(x) | o € C;)

ECS 240 Lecture 8-9 36

Collecting Semantics: Example

» Consider the following program (assume x > O initially)

I 1 {x>0}
{x> 0, y=x+1}
{x>0,y=1}
{x>0,y=1}
3 {
| C; ={o | o(x) > O}
e, WVl ¢z {oly=1]] o € C)
Y-y U {o[x:=0(x)-1] | & € C,}

4 { {(x>0,y=x) C;=C,Nn{o| o(x) = 0}

— C;=C,N{o| o(x) =0}
Xz x -1 C1 = loly=aly)*o(x) | o € C3)

ECS 240 Lecture 8-9 37

Collecting Semantics: Example

» Consider the following program (assume x > O initially)
I 1 {x>0}

(x> 0, y=x+1) Y21
{x>0,y=1vy=x+1}

{x>0,y=1}
3 I—E<<r == 5
gy C1={o|o(x)>0}
Y=y * X 60y=1 ¢, = Coly=1] o € C)
U {o[x:=0(x)-1] | 0 € C,}
4 { {(x>0,y=x) C;=C,Nn{o| o(x) = 0}

— C;=C,N{o| o(x) =0}
Xz x -1 C1 = loly=aly)*o(x) | o € C3)

ECS 240 Lecture 8-9 38

Abstract Interpretation

We pick a complete lattice A (abstractions for P(X))
- Along with a monotonic abstraction o : P(Z) — A

- Altfernatively, pick p: 2 -> A

- This uniquely defines its Galois connection y

We take the relations between C;. and move them to
the abstract domain:

a € Labels — A

Assignment
Concrete: C;={o[x:=n]|oecC A [e]o=n}
Abstract: ;= a{o[x:=n]|ocy(a)A [e]o = n}

ECS 240 Lecture 8-9 39

Abstract Interpretation

» Conditional
Concrete: C;={ o | o € C; A [b]o = false} and
C.={o|oeC A[b]o=true}
Abstract: a; = a{ o | o €y(a) A [b]o = false} and
a,=a{o]|oey(a)A [b]o = true)

« Join

Concrete: €, = C; U C;
Abstract: a, = a (v(a;) U v(q;)) = lub {a;, g

ECS 240 Lecture 8-9 40

Least Fixed-Points in the Abstract Domain

Now we have a recursive equation with unknown “a”

- Defined by a monotonic and continuous function on the domain
Labels — A

We can use the least fixed-point theorem:
- Start witha®=AL.L
- Apply the monotonic function to compute ak! from ak
- Stop when ak*! = gk

Exactly the same computation as for the collecting
semantics
- What is new ?

ECS 240 Lecture 8-9 41

Least Fixed Point in Abstract Domain

We have a hope of termination

The classic setup is when A has only uninteresting
chains (finite number of elements in each chain)
- We say that A has finite height (say h)

In this case the computation takes at most O(h * |
Labels|?) steps

- At each step “a” makes progress on at least one label

- We can only make progress h times

- And each time we must compute |Labels| elements

This is a quadratic analysis: good news
ECS 240 Lecture 8-9 42

Abstract Interpretation: Example

» Consider the following program

3 5
y = We want to do

A sign analysis on it
X =

ECS 240 Lecture 8-9 43

The Abstract Domain for Sign Analysis

Consider the complete lattice S={ 1,-,0,+, T}

From it construct the complete lattice A = {x,y} — S
- With point-wise ordering as usual
- The abstract state consists of the sign for x and y

We start with a® = AL Ave{x y}. L

ECS 240 Lecture 8-9 44

Example

Label Iterations —
I | x|+ +
y| T T
2 X | L T T
y|L T
3 | x|L T T
y|L T
4 |x|L + T T
y|L + T T
5 X | L 0 0
y|L + T

ECS 240 Lecture 8-9

45

Notes

* We abstracted the state of each variable
independently
A={x,y}—>{L, -0+ T}
* We lost relationships between variables
- E.g., that at a point x and y are always of the same sign
- In the previous abstraction we get {x := T,y := T} at 2

We can also abstract the state as a whole
A=P{L,-, 0+ T}x{L, -0,+TD}H
- For the previous example we now get the abstraction
{(0,+), (+,+)}at 2

ECS 240 Lecture 8-9

46

Other Abstract Domains

Range analysis
- Lattice of ranges: R ={ L, [n.m], (-oo, m], [n, +o0), T }
- Itis acomplete lattice
- [n.m]U[n .m’]=[min(nh, n")..max(m,m’)]
- [n.m]n[n .m’]=[max(n, n”). min(m, m’)]
- With appropriate care in dealing with oo
- B :Z — Rsuch that p(n) = [n..n]
- o:P(Z) = R such that a(S) = lub {p(n) | n € S} =
[Min(S)..max(S)]
- y:R—= P(Z)such thaty(r)={n|ner}

This lattice has infinite-height chains
- So the abstract interpretation might not terminate !

ECS 240 Lecture 8-9 47

Example of Non-Termination

» Consider this (common) program fragment

We want to do range
analysis for it

ECS 240 Lecture 8-9 48

Example of Non-Termination

» Consider the sequence of abstract states at point 2
- [0..0], [0..1],[O..2], ..

- The analysis never terminates
- Or terminates very late if the loop bound is known statically

+ It is time to approximate even more: widening

We redefine the join (lub) operator of the lattice to
ensure that from [0..0] upon union with [1..1] the
result is [0..+c0) and not [0..1]

Now the sequence of states is

- [0..0], [0, +0), [0, +o0) Done (no more infinite chains)

ECS 240 Lecture 8-9 49

Other Abstract Domains

Linear relationships between variables

- A convex polyhedron is a subset of Z* whose elements satisfy
a number of inequalities: a; x; +a, X , + .. +a, X, > C

- This is a complete lattice. Use linear programming methods
for computing lub

Linear relationships with at most two variables

- Like convex polyhedra but with at most two variables per
constraint

- Octagons: x + y >= ¢ have efficient algorithms

* Modulo constraints
- E.g. even and odd

ECS 240 Lecture 8-9 50

Summary of Abstract Interpretation

AT is a very powerful technique that underlies a large
number of program analyses

AT can also be applied to functional and logic
programming languages

There are a few success stories
- Strictness analysis for lazy functional languages
- PolySpace for linear constraints

In most other cases however AI is still slow

When the lattices have infinite height and widening

heuristics are used the result becomes unpredictable
ECS 240 Lecture 8-9 51

