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Review

Operational semantics

- relatively simple
- many flavors

- adequate guide for an implementation of the language

- not compositional

Denotational semantics (didn't cover)

- mathematical
- cahonical
- compositional

Operational < denotational

We would also like a semantics that is appropriate for

arguing program correctness
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Axiomatic Semantics

*  An axiomatic semantics consists of
- A language for stating assertions about programs
- Rules for establishing the truth of assertions

+ Some typical kinds of assertions:
- This program terminates

- If this program terminates, the variables x and y have the
same value throughout the execution of the program,

- The array accesses are within the array bounds

- Some typical languages of assertions
- First-order logic
- Ofther logics (temporal, linear)
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History

* Program verification is almost as old as programming
(e.g., “Checking a Large Routine”, Turing 1949)

* Inthe late 60s, Floyd had rules for flow-charts and
Hoare for structured languages

Since then, there have been axiomatic semantics for
substantial languages, and many applications
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Hoare Said

« “Thus the practice of proving programs would seem to
lead to solution of three of the most pressing
problems in software and programming, namely,
reliability, documentation, and compatibility. However,
program proving, certainly at present, will be difficult
even for programmers of high caliber; and may be
applicable only to quite simple program designs.”

C.A.R Hoare,
“An Axiomatic Basis for

Computer Programming”,
1969
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Dijkstra Said

« “Program testing can be used to show the presence of
bugs, but never to show their absence!”
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Hoare Also Said

« “It has been found a serious problem to define these
languages [ALGOL, FORTRAN, COBOL] with sufficient
rigor to ensure compatibility among all
implementations. ... one way to achieve this would be to
insist that all implementations of the language shall
satisfy the axioms and rules of inference which
underlie proofs of properties of programs expressed
in the language. In effect, this is equivalent to
accepting the axioms and rules of inference as the
ultimately definitive specification of the meaning of
the language.”
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Other Applications of Axiomatic Semantics

The project of defining and proving everything
formally has not succeeded (at least not yet)

Proving has not replaced testing and debugging (and
praying)

Applications of axiomatic semantics:
- Proving the correctness of algorithms (or finding bugs)

- Proving the correctness of hardware descriptions (or finding
bugs)

— “extended static checking” (e.g., checking array bounds)

- Documentation of programs and interfaces
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Assertions for IMP

+ The assertions we make about IMP programs are of
the form:

{A}c{B}
with the meaning that:
- If A holds in state o and <c, o> | O’
- then B holds in ¢’
» A is called precondition and B is called postcondition
For example:

{y<x}zi=xzi=z+1{y<z}

is a valid assertion
* These are called Hoare triple or Hoare assertions
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Assertions for IMP (IT)

{A} c {B }is apartial correctness assertion. It does
not imply termination

[A] c [B ]is atotal correctness assertion meaning that
If A holds in state o
then there exists o' such that <c, o> | ¢’
and B holds in state o’

Now let's be more formal
- Formalize the language of assertions, A and B
- Say when an assertion holds in a state
- Give rules for deriving Hoare triples
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The Assertion Language

We use first-order predicate logic on top of IMP
expressions

A:=true | false | e;=e, | e; > e,
| A,AA, | A VA, | A= A, |YxA | 3xA

Note that we are somewhat sloppy and mix the logical
variables and the program variables

* Implicitly, for us all IMP variables range over integers

All IMP boolean expressions are also assertions
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Semantics of Assertions

We introduced a language of assertions, we need to
assigh meanings to assertions.

Notation o F A to say that an assertion holds in a

given state .

- This is well-defined when o is defined on all variables
occurring in A.

The F judgment is defined inductively on the
structure of assertions.

It relies on the denotational semantics of arithmetic
expressions from IMP

ECS 240 Lecture 10-11 12



Semantics of Assertions

Formal definition:

o E frue always

oFe=e, iff[e]o=]e,]o

ocFe >e, iff[e]o>]e,]o
ocEANA, iffoFAandocFE A,
oEA VA, iffocFEAorockEA,
oFEA; = A, iffoEA;impliescE A,
o E VX.A iff VneZ.o[x:=n] E A

o FE Ix.A iff IncZ.o[x:=n]E A
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Semantics of Assertions

Now we can define formally the meaning of a partial
correctness assertion

F{A}c{B}:
VoeZVo eZ(cEAAN<«co> |0 )=0 EB

.. and the meaning of a total correctness assertion
= [A] c [B]iff
VoeZVo €2 (cEAAN<«co> |0 )=0 EB
A\
VocZoF A= do €2.<c,0> | O
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Deriving Assertions

- Now we have the formal mechanism to decide when

{A}c{B}
- But it is not satisfactory
- Because F {A} c {B } is defined in ferms of the operational
semantics, we practically have to run the program to verify an

assertion
- And also it is impossible to effectively verify the truth of a
Vx. A assertion (by using the definition of validity)

* So we define a symbolic technique for deriving valid
assertions from other valid assertions
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Derivation Rules for Hoare Triples

We write - {A} ¢ { B} when we can derive the triple
using derivation rules

One derivation rule for each command in the language

Plus, the rule of consequence

A=A F{A}c{B} FB=PR’
F{A"}c{B"}
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Derivation Rules for Hoare Logic

* One rule for each syntactic construct:

- {A} skip {A} - {[e/x]A} x := e {A}

- {A}c;{B} F{B}c,{C}
= {A} ¢y ¢, {C}

~F{AADb}c,{B} F{AA-Db}c,{B}
~ {A} if b then c, else ¢, {B}

- {A A b} c{A}
- {A} while b do c {A A = b}
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Hoare Rules

For some constructs multiple rules are possible:

= {A} x i= e {Ixy.[Xs/X]A A X = [xy/X]e}

(This was the “forward” axiom for assignment)

FAAb=C F{C}c{A} FAA-DbD=1B
- {A} while b do ¢ {B}

Exercise: these rules can be derived from the
previous ones using the consequence rules
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Example: Assignment

Assume that x does not appear in e
Prove {true} x i=e{x=e}
First the assignment rule

F{ez-e}xize{x=¢e}

because [e/x](x=e)=e=[e/xle=e=¢e

+ Then with the consequence rule:

- true = e=-e F{eze}x:ze{x=¢e}

- {true} x := e {x = e}
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The Assignment Axiom (Cont.)

Hoare said: “Assignment is undoubtedly the most
characteristic feature of programming a digital
computer, and one that most clearly distinguishes it
from other branches of mathematics. It is surprising
therefore that the axiom governing our reasoning
about assignment is quite as simple as any to be found
in elementary logic.”

How about aliasing?
- If x and y are aliased then
{true} x:=5{x+y=10}
1S true
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Example: Conditional

D; i F{trueny <0} x:=1{x>0}
D, ik {true Ay >0} x =y {x >0}
- {true} if y <O then x := lelse x i=y {x > O}
D, is obtained by consequence and assignment
F{1>0} x:=1{x>0}
Ftrue Ny <0=1>0
- {true ANy <0} x:=1{x >0}

D, is also obtained by consequence and assignment

F{y>0}x:=y{x>0}
- true Ay>0=1y>0
- {true Ay>0} x:=y {x>0}
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Example: Loop

We want to derive that
-{x < 0O}whilex <b5dox:i=x+1{x=6}
Use the rule for while with invariant x < 6

FX<O6AX<H=x+1<6 F{x+1<6}x:=x+1{x<6}

F{x<6AXx<H}xi=x+1{x<6}

F{x < 6}whilex<bHBdoxi=x+1{x<6Ax>bH}

Then finish-off with consequence

Fx<0=x<6
FXxX<6AX>DH=x =6 - {x < 6} while .. {x <6 AXx>5}

- {x < 0} while ... {x = 6}
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Another Example

Verify that
- {A } while true do c { B}
holds for any A, Band ¢
We must construct a derivation tree

- {true A true} c { true}

- A = frue
- true A false = B {true} while true do c {true A false}

- {A} while true do c { B}

We need an additional lemma:
VAVc.F{ A} c{true}

- How do you prove this one?
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Using Hoare Rules. Notes

* Hoare rules are mostly syntax directed

* There are three wrinkles:
- When to apply the rule of consequence ?
- What invariant to use for while ?
- How do you prove the implications involved in consequence ?

* The last one can rely on theorem proving
- This turns out to be doable
- Loop invariants turn out to be the hardest problem
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Where Do We Stand?

We have a language for asserting properties of
programs

We know when such an assertion is true

We also have a symbolic method for deriving

assertions .
meaning

A /\ GE A

{ A} c {B} soundness = { A} ¢ {B)
stboliC\ J
derivation
completeness

(theorem proving)
- A
- { A} c{B}
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Soundness of Axiomatic Semantics

Formal statement
If-F{A}c{B}thenkE{ A}c{B}
or, equivalently
Forallo,if coF Aand D ::i<c, 0> | O
andH: :F{A}c{B}theno EB

How can we prove this?
- By induction on the structure of c?
* No, problems with while and rule of consequence
- By induction on the structure of D?
* No, problems with rule of consequence
- By induction on the structure of H?
* No, problems with while

- By simultaneous induction on the structure of D and H
ECS 240 Lecture 10-11
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Simultaneous Induction

Consider two structures D and H
- Assume that x <y iff x is a substructure of y

Define the ordering

(d,h)<(d ,h)iff d<d or d=d andh<h’
- Called lexicographic ordering
- Just like the ordering in a dictionary

This is a well founded order and leads to simultaneous
induction

If d<d’ then h can actually be larger than h’!
It can even be unrelated to h’ |
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Soundness of the Consequence Rule

+ Case: last ruleused inH :: - { A} c { B} is the
consequence rule:

- A=A H,:: F{A} c{B} - B =B
- {A} c {B}

From soundness of the first-order logic derivations
we have cF A= A’ ,henceo F A’

From IH with H; and D we get that 0" F B’

From soundness of the first-order logic derivations
we have that ¢’ F B' = B, hence ¢’ F B, qg.e.d.
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Soundness of the Assignment Axiom

» Case: the last ruleusedinH::F{ A} c{B}is the
assignment rule

- {[e/x]B} x := e {B}
The last rule used in D :: <x := e, 0> | 0 must be

D;ii<e,0>|n
<X:=e,o> | o[X :=n]

We must prove the substitution lemma:
If o E[e/x]Band<e, o> | nthen o[x :=n]EB
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Soundness of the While Rule

Case: last rule used in H : - { A } c { B} was the while
rule:

H,:: = {A A b} c {A}
- {A} while b do c {A A = b}

There are two possible rules at the root of D.
- We do only the complicated case

D;:i<b,0> | true D,:<c,0>| o D3 <whilebdoc,o >| 0"

<whilebdoc,o>| 0"
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Soundness of the While Rule (Cont.)

Assume that o E A
Toshow that " FA A = b

By property of booleans and D; we get o F b
- HencecF A A D

By IHon H;and D, we get 0" E A
- ByIHonHand D;weget 0" A A —b,q.ed.

- Note that in the last use of IH the derivation H did
not decrease

+ See Winskel, Chapter 6.5 for a soundness proof with
denotational semantics
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Completeness of Axiomatic Semantics
Weakest Preconditions

ECS 240 Lecture 10-11
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Completeness of Axiomatic Semantics

+ Is it true that whenever = {A} c {B} we can also derive
- {A} c{B}?
+ Ifitisn t then it means that there are valid

properties of programs that we cannot verify with
Hoare rules

* Good news: for our language the Hoare triples are
complete

Bad news: only if the underlying logic is complete
(whenever E A we also have - A)
- this is called relative completeness
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Proof Idea

Dijkstra’s idea: To verify that { A} ¢ { B}
a) Find out all predicates A" such that ={ A"} c { B}
+ call this set Pre(c, B)
b) Verify for one A" € Pre(c, B) that A = A’

Assertions can be ordered:

false = true
strong f f weak
weakest

A precondition: WP(c, B)
Thus: compute WP(c, B) and prove A = WP(c, B)
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Proof Idea (Cont.)

Completeness of axiomatic semantics:
IfE{A}c{B}then-{A}c{B}

Assuming that we can compute wp(c, B) with the
following properties:

1. wp is a precondition (according to the Hoare rules)

={wp(c,B)} c{B}
2. wp is the weakest precondition
If E{A}c{B} then E A= wp(c, B)

- A = wp(c, B) = {wp(c, B)} c {B}
~{A} c {B}

We also need that whenever = A thent- A |
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Weakest Preconditions

+ Define wp(c, B) inductively on c, following Hoare rules:

{A} ¢, {C} {C} c, {B}
{A}cyc,{B}
wp(cy ¢,, B) = wp(cy, wp(c,, B))

{[e/x]B} x :=e{B}
wp(x := e, B) = [e/x]B

{A) ¢ {B} {Az} ¢, {B}
{E= A, N—-E= A,}if E thenc, else ¢, {B}

wp(if E then c, else c,, B) = E = wp(c;, B) A = E = wp(c,, B)
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Weakest Preconditions for Loops

We start from the equivalence
while bdo ¢ = if b then c; while b do ¢ else skip
*+ Let w = while b do ¢ and W = wp(w, B)

We have that
W=b=wp(c, W)A-b=B

But this is a recursive equation |
- We know how to solve these using domain theory

We need a domain for assertions
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A Partial-Order for Assertions

* What is the assertion that contains least information?
- true - does not say anything about the state

What is an appropriate information ordering ?
ACA  iff EFA =A
» TIs this partial order complete?
- Takeachain A;C A, C ...

- Let /AA, be the infinite conjunction of A,
o E AA, iff forall i we have that 6 F A,
- Verify that A\A, is the least upper bound

Can N\A, be expressed in our language of assertions?
- In many cases yes, we’ |l assume yes for now
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Weakest Precondition for WHILE

+ Use the fixed-point theorem
F(A)=b = wp(c, A)AN—-b =18
- Verify that F is both monotonic and continuous

* The least-fixed point (i.e. the weakest fixed point) is
wp(w, B) = AFi(true)

* Notice that unlike for denotational semantics of IMP
we are hot working on a flat domain |
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Weakest Preconditions (Cont.)

Define a family of wp’s

- wpy(while e do ¢, B) = weakest precondition on which the loop
if it ferminates in k or fewer iterations, it terminates in B

wpy= - E =B
wp; = E = wp(c, wpg) A —E = B

wp(while e do ¢, B) = /A, o wpy = lub {wp, | k > O}

Weakest preconditions are
- Impossible to compute (in general)
- Can we find something easier to compute yet sufficient ?
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Verification Conditions
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Not Quite Weakest Preconditions

Recall what we are trying to do:

false = true
strong f ! weak
weakest
A | precondition: WP(c, B)
verification

condition: VC(c, B)

We shall construct a verification condition: VC(c, B)

- The loops are annotated with loop invariants |

- VC is guaranteed stronger than WP

- But hopefully still weaker than A: A = VC(c, B) = WP(c, B)
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Verification Conditions

Factor out the hard work
- Loop invariants
- Function specifications

Assume programs are annotated with such specs.
- Good software engineering practice anyway

We will assume that the new form of the while
construct includes an invariant:
while; b do ¢

- The invariant formula must hold every time before b is
evaluated
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Verification Condition Generation (1)

Mostly follows the definition of the wp function

VC(skip, B) = B

VC(c,: ¢,, B) = VC(c4q, VC(c,, B))

VC(if b then ¢, else ¢,, B) = b = VC(c,, B) A—b = VC(c,, B)
VC(x :=e, B) =[e/x]B

VC(whilebdoc,B)=7?
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Verification Condition Generation for WHILE

VC(while; e do ¢, B) =
IA(X..X. I=(e=VC(c,I)N—-e=B))
N, \ . J . J
T holds Lis preservedin B holds when the

onentry  anarbitrary iteration  |oop terminates
in an arbitrary iteration

- T is the loop invariant (provided externally)
* X, .., X, are all the variables modified in c

- The V is similar to the V in mathematical induction:
P(0) A Vn € N. P(n) = P(n+1)
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VC and Invariants

Consider the Hoare triple:
{x = 0} while; x <5 do x := x + 1 {x = 6}

The VC for this is:
X=0= I(x) n VX.(I(X)=(x>5=x=6~
X =5 =1I(x+1)))

Requirements on the invariant:

- Holds on entry Vx. x <0 = I(x)
- Preserved by the body Vx. I(x) A x <=5 = I(x+1)
- Useful Vx. I(x)Ax>5=x=6

Check that I(x) = x < 6 satisfies all constraints
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Memory Aliasing
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Hoare Rules: Assignment

* When is the following Hoare triple valid?
{A}*x=5{*x+*y =10}

- Aought tobe “*y=5o0rx=y”"

* The Hoare rule for assignment would give us:

[5/*x](*x + *y = 10)
=5+* =10
=*y =5 (we lost one case)

- How come the rule does not work?

ECS 240 Lecture 10-11

48



Handling Program State

We cannot have side-effects in assertions
- While creating the VC we must remove side-effects |
- But how to do that when lacking precise aliasing information ?

Important technique: Postpone alias analysis

Model the state of memory as a symbolic mapping
from addresses to values:

- If E denotes an address and M a memory state then:

- sel(M,E) denotes the contents of the memory cell

- upd(M,E,V) denotes a new memory state obtained from M by
writing V at address E
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Hoare Rules: Side-Effects

To model writes correctly we use memory expressions
- A memory write changes the value of memory

{ Blupd(u, Ey, E2)/u] } *E, := E; {B}

Important technique: treat memory as a whole

And reason later about memory expressions with
inference rules such as (McCarthy):

EZ |f E1 = E3

sel(upd(M, E1: Ez): E3) = { sel(M, E.) if E,=E
, C3 1 3
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Memory Aliasing

* Consider again: { A} *x =5 { *x+*y =10}
- We obtain:
A = [upd(u, X, 5)/u] (*x + *y = 10)
= [upd(u, x, 5)/u] (sel(u, x) + sel(u, y) = 10)
= sel(upd(u, x, B), x) + sel(upd(u, x, 5),y)=10 (*)
= 5 + sel(upd(u, x, B),y) =10
=if x=ythen5+5 =10 else 5 + sel(u, y) = 10
=x=yor*y=>5
(**)
+ To (*) is theorem generation
* From (*) tfo (**) is theorem proving
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Mutable Records - Two Models

Let r: RECORD f1: T1; f2: T2 END
Records are reference types
Method 1

- One “memory” for each record
- One index constant for each field. We postulate f1 = 2
- r.flissel(r,f1)and r.fl:= Eisr := upd(r,f1,E)

Method 2

- One “memory” for each field
- The record address is the index
- r.flissel(flr)and r.fl:= Eis fl:= upd(fl,rE)
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Next Time

- ESC/Java

ECS 240 Lecture 10-11

53



