
ECS 240 Lecture 14 1

Type Systems

Lecture 14
ECS 240

ECS 240 Lecture 14 2

Review

•  λ-calculus is as expressive as a Turing machine

•  We can encode a multitude of data types in the
untyped λ-calculus

•  To simplify programming it is useful to add types to
the language

•  We now start the study of type systems in the
context of the typed λ-calculus

ECS 240 Lecture 14 3

Types

•  A program variable can assume a range of values
during the execution of a program

•  An upper bound of such a range is called a type of the
variable
–  A variable of type “bool” should only assume boolean values
–  If x has type “bool” then

•  “not(x)” has a sensible meaning
•  but “1 + x” should not be allowed

ECS 240 Lecture 14 4

Typed and Untyped Languages

•  Untyped languages
–  Do not restrict the range of values for a given variable
–  Operations might be applied to inappropriate arguments. The

behavior in such cases might be unspecified
–  The pure λ-calculus is an extreme case of an untyped language

(however, its behavior is completely specified)

•  Typed languages
–  Variables are assigned (non-trivial) types
–  A type system keeps track of types
–  Types might or might not appear in the program itself
–  Languages can be explicitly typed or implicitly typed

ECS 240 Lecture 14 5

Execution Errors

•  The purpose of types is to prevent certain types of
execution errors

•  Trapped execution errors
–  Cause the computation to stop immediately
–  Well-specified behavior
–  Usually enforced by hardware
–  E.g., Division by zero
–  E.g., Invoking a floating point operation with a NaN
–  E.g., Dereferencing the address 0

ECS 240 Lecture 14 6

Execution Errors (II)

•  Untrapped execution errors
–  Behavior is unspecified (depends on the state of the machine)
–  Accessing past the end of an array
–  Jumping to an address in the data segment

•  A program is considered safe if it does not cause
untrapped errors
–  Languages in which all programs are safe are safe languages

•  For a given language designate a set of forbidden errors
–  A superset of the untrapped errors
–  Includes some trapped errors as well

•  E.g., null pointer dereference
•  To ensure portability across architectures

ECS 240 Lecture 14 7

Preventing Forbidden Errors - Static Checking

•  Forbidden errors can be caught by a combination of
static and run-time checking

•  Static checking
–  Detects errors early, before testing
–  Types provide the necessary static information for static

checking
–  E.g., ML, Modula-3, Java
–  Detecting certain/most errors statically is undecidable in

most languages

ECS 240 Lecture 14 8

Preventing Forbidden Errors - Dynamic Checking

•  Required when static checking is undecidable
–  e.g., array-bounds checking

•  Run-time encoding of types are still used
–  e.g., Scheme, Lisp

•  Should be limited
–  Delays the manifestation of errors

•  Can be done in hardware
–  e.g. null-pointer

ECS 240 Lecture 14 9

Safe Languages

•  There are typed languages that are not safe (weakly
typed languages)

•  All safe languages use types (either statically or
dynamically)

•  We will be concerned mainly with statically typed
languages

Typed Untyped
Static Dynamic

Safe ML, Java, ... Lisp, Scheme λ-calculus
Unsafe C, C++, ... ? Assembly

ECS 240 Lecture 14 10

Why Typed Languages?

•  Development
–  Type checking catches many mistakes early
–  Reduced debugging time
–  Typed signatures are a powerful basis for design
–  Typed signatures enable separate compilation

•  Maintenance
–  Types act as checked specifications
–  Types can enforce abstraction

•  Execution
–  Static checking reduces the need for dynamic checking
–  Safe languages are easier to analyze statically

•  the compiler can generate better code

ECS 240 Lecture 14 11

Why Not Typed Languages?

•  Static type checking imposes constraints on the
programmer
–  Some valid programs might be rejected
–  But often they can be made well-typed easily
–  Hard to step outside the language (e.g. OO programming in a

non-OO language)

•  Dynamic safety checks can be costly
–  50% is a possible cost of bounds-checking in a tight loop

•  In practice, the overall cost is much smaller
–  Memory management must be automatic) need a garbage

collector with the associated run-time costs
–  Some applications are justified to use weakly-typed languages

ECS 240 Lecture 14 12

Properties of Type Systems

•  How do types differ from other program annotations
–  Types are more precise than comments
–  Types are more easily mechanizable than program

specifications

•  Expected properties of type systems:
–  Types should be enforceable
–  Types should be checkable algorithmically
–  Typing rules should be transparent

•  It should be easy to see why a program is not well-typed

ECS 240 Lecture 14 13

Why Formal Type Systems?

•  Many typed languages have informal descriptions of
the type systems (e.g., in language reference manuals)

•  A fair amount of careful analysis is required to avoid
false claims of type safety

•  A formal presentation of a type system is a precise
specification of the type checker
–  And allows formal proofs of type safety

•  But even informal knowledge of the principles of type
systems help

ECS 240 Lecture 14 14

Formalizing a Type System

A multi-step process
1.  Syntax

•  Of expressions (programs)
•  Of types
•  Issues of binding and scoping

2.  Static semantics (typing rules)
•  Define the typing judgment and its derivation rules

3.  Dynamic semantics (e.g., operational)
•  Define the evaluation judgment and its derivation rules

4.  Type soundness
•  Relates the static and dynamic semantics
•  State and prove the soundness theorem

ECS 240 Lecture 14 15

Typing Judgments

•  Judgments
–  A statement J about certain formal entities
–  Has a truth value ² J
–  Has a derivation ` J

•  A common form of the typing judgment: Γ ` e : τ	

(e is an expression and τ is a type)

•  Γ is a set of type assignments for the free variables
of e
–  Defined by the grammar Γ ::= · | Γ, x : τ
–  Usually viewed as a set of type assignments
–  Type assignments for variables not free in e are not relevant
–  E.g, x : int, y : int ` x + y : int

ECS 240 Lecture 14 16

Typing rules

•  Typing rules are used to derive typing judgments

•  Examples:

ECS 240 Lecture 14 17

Typing Derivations

•  A typing derivation is a derivation of a typing
judgment

•  Example:

•  We say that Γ ` e : τ to denote that there is a
derivation of this typing judgment

•  Type checking: given Γ, e and τ find a derivation
•  Type inference: given Γ and e, find τ and a derivation

ECS 240 Lecture 14 18

Proving Type Soundness

•  A typing judgment has a truth value
•  Define what it means for a value to have a type

 v 2 k τ k
(e.g. 5 2 k int k and true 2 k bool k)

•  Define what it means for an expression to have a type
 e 2 | τ | iff 8v. (e ⇓ v) v 2 k τ k)

•  Prove type soundness
 If · ` e : τ then e 2 | τ |
or equivalently
 If · ` e : τ and e ⇓ v then v 2 k τ k

•  This implies safe execution (since the result of an
unsafe execution is not in k τ k for any τ)

ECS 240 Lecture 14 19

Next

•  We will give formal description of first-order type
systems (no type variables)
–  Function types (simply typed λ-calculus)
–  Simple types (integers and booleans)
–  Structured types (products and sums)
–  Imperative types (references and exceptions)
–  Recursive types

•  The type systems of most common languages are
first-order

•  The we move to second-order type systems
–  Polymorphism and abstract types

ECS 240 Lecture 14 20

First-Order Type Systems

ECS 240 Lecture 14 21

Simply-Typed Lambda Calculus

•  Syntax:
Terms e ::= x | λx:τ. e | e1 e2
 | n | e1 + e2 | iszero e
 | true | false | not e | if e1 then e2 else e3
 Types τ ::= int | bool | τ1 ! τ2

•  τ1 ! τ2 is the function type
•  ! associates to the right
•  Arguments have typing annotations

•  This language is also called F1

ECS 240 Lecture 14 22

Static Semantics of F1

•  The typing judgment
 Γ ` e : τ	

•  The typing rules

ECS 240 Lecture 14 23

Static Semantics of F1 (Cont.)

•  More typing rules

ECS 240 Lecture 14 24

Typing Derivation in F1

•  Consider the term
 λx : int. λb : bool. if b then f x else x
–  With the initial typing assignment f : int ! int

Where Γ = f : int ! int, x : int, b : bool

ECS 240 Lecture 14 25

Type Checking in F1

•  Type checking is easy because
–  Typing rules are syntax directed
–  Typing rules are compositional
–  All local variables are annotated with types

•  In fact, type inference is also easy for F1

•  Without type annotations an expression does not have
a unique type
 · ` λx. x : int ! int
 · ` λx. x : bool ! bool

ECS 240 Lecture 14 26

Operational Semantics of F1

•  Judgment:
 e ⇓ v

•  Values
 v ::= n | true | false | λx:τ. e

•  The evaluation rules ...

ECS 240 Lecture 14 27

Operational Semantics of F1 (Cont.)

•  Call-by-value evaluation rules (sample)

Evaluation undefined
for ill-typed programs !

ECS 240 Lecture 14 28

Type Soundness for F1

•  Theorem:
If · ` e : τ and e ⇓ v then · ` v : τ	

–  Also called, subject reduction theorem, type preservation

theorem
•  Try to prove by induction on e

–  Won’t work because [v2/x]e’1 in the evaluation of e1 e2
–  Same problem with induction on · ` e : τ

•  Try to prove by induction on τ
–  Won’t work because e1 has a “bigger” type than e1 e2

•  Try to prove by induction on e ⇓ v
–  To address the issue of [v2/x]e’1
–  This is it!

ECS 240 Lecture 14 29

Type Soundness Proof

•  Consider the case

•  From IH on e1 ⇓ … we have ·, x : τ2 ` e1’ : τ	

•  From IH on e2 ⇓ … we have · ` v2 : τ2

•  Need to infer that · ` [v2/x]e1’ : τ and use the IH
–  We need a substitution lemma (by induction on e1’)

ECS 240 Lecture 14 30

Significance of Type Soundness

•  The theorem says that the result of an evaluation has
the same type as the initial expression

•  The theorem does not say that
–  The evaluation never gets stuck (e.g., trying to apply a non-

function, to add non-integers, etc.), nor that
–  The evaluation terminates

•  Even though both of the above facts are true of F1

•  We need a small-step semantics to prove that the
execution never gets stuck

ECS 240 Lecture 14 31

Small-Step Contextual Semantics for F1

•  We define redexes
 r ::= n1 + n2 | if b then e1 else e2 | (λx:τ.e1) v2

•  and contexts
 H ::= H1 + e2 | n1 + H2 | if H then e1 else e2 | H1 e2 | (λx:τ. e1) H2

•  and local reduction rules
 n1 + n2 ! n1 plus n2
 if true then e1 else e2 ! e1
 if false then e1 else e2 ! e2
 (λx:τ. e1) v2 ! [v2/x]e1

•  and one global reduction rule
 H[r] ! H[e] iff r ! e

ECS 240 Lecture 14 32

Contextual Semantics for F1

•  Decomposition lemmas:
1.  If · ` e : τ and e is not a value then there exist (unique) H

and r such that e = H[r]
•  any well typed expression can be decomposed
•  Any well-typed non-value can make progress

2.  Furthermore, there exists τ’ such that · ` r : τ’
–  the redex is closed and well typed

3.  Furthermore, there exists e’ such that r ! e’ and · ` e’ : τ’
–  local reduction is type preserving

4.  Furthermore, for any e’ , · ` e’ : τ’ implies · ` H[e’] : τ
•  the expression preserves its type if we replace the redex with

an expression of same type

ECS 240 Lecture 14 33

Contextual Semantics of F1

•  Type preservation theorem
–  If · ` e : τ and e ! e’ then · ` e’ : τ	

–  Follows from the decomposition lemma

•  Progress theorem
–  If · ` e : τ and e is not a value then there exists e’ such that

e can make progress: e ! e’
•  Progress theorem says that execution can make

progress on a well typed expression
•  Furthermore, due to type preservation we know that

the execution of a well typed expression never gets
stuck
–  this is a common way to state and prove type safety of a

language

ECS 240 Lecture 14 34

Product Types - Static Semantics

•  Extend the syntax with (binary) tuples
 e ::= ... | (e1, e2) | fst e | snd e
 τ ::= ... | τ1 £ τ2

–  This language is sometimes called F1
£

•  Same typing judgment Γ ` e : τ

ECS 240 Lecture 14 35

Product Types: Dynamic Semantics and Soundness

•  New form of values: v ::= ... | (v1, v2)
•  New (big step) evaluation rules:

•  New contexts: H ::= ... | (H1, e2) | (v1, H2) | fst H | snd H
•  New redexes:

 fst (v1, v2) ! v1
 snd (v1, v2) ! v2

•  Type soundness holds just as before

ECS 240 Lecture 14 36

Records

•  Records are like tuples with labels
•  New form of expressions

 e ::= ... | {L1 = e1, ..., Ln = en} | e.L
•  New form of values

 v ::= {L1 = v1, ..., Ln = vn}
•  New form of types

 τ ::= ... | {L1 : τ1, ..., Ln : τn}
•  ... follows the model of F1

£
–  typing rules
–  derivation rules
–  type soundness

ECS 240 Lecture 14 37

Sum Types

•  We need types of the form
–  either an int or a float
–  either 0 or a pointer
–  either true or false
–  These are called disjoint union types

•  New form of expressions and types
e ::= ... | injl e | injr e |
 case e of injl x ! e1 | injr y ! e2
 τ ::= ... | τ1 + τ2
–  A value of type τ1 + τ2 is either a τ1 or a τ2

–  Like union in C or Pascal, but safe
•  distinguishing between components is under compiler control

–  case is a binding operator: x is bound in e1 and y is bound in e2

ECS 240 Lecture 14 38

Examples with Sum Types

•  Consider the type “unit” with a single element called *
•  The type “optional integer” defined as “unit + int”

–  Useful for optional arguments or return values
•  No argument: injl *
•  Argument is 5: injr 5

–  To use the argument you must test the kind of argument
–  case arg of injl x) “no_arg_case” | injr y) “...y...”
–  injl and injr are tags and case is tag checking

•  Bool is a union type: bool = unit + unit
–  true is injl *
–  false is injr *
–  if e then e1 else e2 is case e of injl x) e1 | injr y) e2
–  Check the equivalence of the static and dynamic semantics

ECS 240 Lecture 14 39

Static Semantics of Sum Types

•  New typing rules

•  Types are not unique anymore
 injl 1 : int + bool
 injl 1 : int + (int ! int)
–  this complicates type checking, but still doable

ECS 240 Lecture 14 40

Dynamic Semantics of Sum Types

•  New values v ::= ... | injl v | injr v
•  New evaluation rules

ECS 240 Lecture 14 41

Type Soundness for F1
+

•  Type soundness still holds

•  No way to use a τ1 + τ2 inappropriately

•  The key is that the only way to use a τ1 + τ2 is with
case, which ensures that you are not using a τ1 as a τ2

•  In C or Pascal checking the tag is the responsibility of
the programmer!
–  Unsafe

ECS 240 Lecture 14 42

Types for Imperative Features

•  We looked at types for pure functional languages

•  Now we look at types for imperative features

•  Such types are used to characterize non-local effects
–  assignments
–  exceptions

•  Contextual semantics is useful here

ECS 240 Lecture 14 43

Reference Types

•  Such types are used for mutable memory cells

•  Syntax (as in ML)
 e ::= ... | ref e : τ | e1 := e2 | ! e
 τ ::= ... | τ ref
–  ref e - evaluates e, allocates a new memory cell, stores the

value of e in it and returns the address of the memory cell
•  like malloc + initialization in C, or new in C++ and Java

–  e1 := e2, evaluates e1 to a memory cell and updates its value
with the value of e2

–  ! e - evaluates e to a memory cell and returns its contents

ECS 240 Lecture 14 44

Global Effects with Reference Cells

•  A reference cell can escape the static scope where it
was created
 (λf:int ! int ref. !(f 5)) (λx:int. ref x : int)

•  The value stored in a reference cell must be visible
from the entire program

•  The “result” of an expression must now include the
changes to the heap that it makes

•  To model reference cells we must extend the
evaluation model

ECS 240 Lecture 14 45

Modeling References

•  A heap is a mapping from addresses to values
 h ::= · | h, a Ã v : τ	

–  a 2 Addresses
–  We tag the heap cells with their types
–  Types are useful only for static semantics. They are not

needed for the evaluation) not a part of the implementation
•  We call a “program” an expression along with a heap

 p ::= heap h in e
–  The initial program is “heap ; in e”
–  Heap addresses act as bound variables in the expression
–  This is a trick that allows easy reuse of properties of local

variables for heap addresses
•  e.g., we can rename the address and its occurrences at will

ECS 240 Lecture 14 46

Static Semantics of References

•  Typing rules for expressions:

•  and for programs

ECS 240 Lecture 14 47

Exceptions

•  A mechanism that allows non-local control flow
–  Useful for implementing the propagation of errors to caller

•  Exceptions ensure that errors are not ignored
–  Compare with the manual error handling in C

•  Languages with exceptions:
–  C++, ML, Modula-3, Java

•  We assume that there is a special type exn of
exceptions
–  exn could be int to model error codes
–  In Java or C++, exn is a special object type

ECS 240 Lecture 14 48

Modeling Exceptions

•  Syntax
 e ::= ... | raise e | try e1 handle x) e2
 τ ::= ... | exn

•  We ignore here how exception values are created
–  In examples we will use integers as exception values

•  The handler binds x in e2 to the actual exception value
•  The “raise” expression never returns to the

immediately enclosing context
–  1 + raise 2 is well-typed
–  if (raise 2) then 1 else 2 is also well-typed
–  (raise 2) 5 is also well-typed
–  What should the type of raise be?

ECS 240 Lecture 14 49

Example with Exceptions

•  A (strange) factorial function
 let f = λx:int.λres:int. if x = 0 then
 raise res
 else
 f (x - 1) (res * x)
 in try f 5 1 handle x) x

•  The function returns in one step from the recursion
•  The top-level handler catches the exception and turns

it into a regular result

ECS 240 Lecture 14 50

Typing Exceptions

•  New typing rules

•  A raise expression has an arbitrary type
•  This is a clear sign that the expression does not return to its

evaluation context
•  The type of the body of try and of the handler must

match
•  Just like for conditionals

ECS 240 Lecture 14 51

Recursive Types
Subtyping

ECS 240 Lecture 14 52

Recursive Types

•  It is useful to be able to define recursive data
structures

•  Example: lists
–  A list of elements of type τ (a τ list) is either empty or it is a

pair of a τ and a τ list
 τ list = unit + (τ £ τ list)
–  This is a recursive equation. We take its solution to be the

smallest set of values L that satisfies the equation
 L = {*} [(T £ L)
where T is the set of values of type τ	

–  Note: this interpretation can be troublesome
•  E.g. τ = τ ! τ, but only for trivial sets we have T = T ! T

–  Another interpretation is that the recursive equation is up-to
set isomorphism

ECS 240 Lecture 14 53

Recursive Types

•  We introduce a recursive type constructor
 µt. τ
–  The type variable t is bound in τ	

–  This is the solution to the equation

 t ' τ (t is isomorphic with τ)
–  E.g., τ list = µt. (unit + τ £ t)
–  This allows “unnamed” recursive types

•  We introduce syntactic operations for the conversion
between µt.τ and [µt.τ/t]τ 	

•  E.g. between “τ list” and “unit + τ £ τ list”
 e ::= … | foldµt.τ e | unfoldµt.τ e
 τ ::= … | t | µt.τ	

ECS 240 Lecture 14 54

Example with Recursive Types

•  Lists
 τ list = µt. (unit + τ £ t)
 nilτ = foldτ list (injl *)
 consτ = λx:τ.λL:τ list. foldτ list injr (x, L)

•  A list length function
lengthτ = λL:τ list. case (unfoldτ list L) of injl x) 0
 | injr y) 1 + lengthτ (snd y)

•  Verify that
–  nilτ : τ list
–  consτ : τ ! τ list ! τ list
–  lengthτ : τ list ! int

ECS 240 Lecture 14 55

Static Semantics of Recursive Types

•  The typing rules are syntax directed
•  Often, for syntactic simplicity, the fold and unfold

operators are omitted
–  This makes type checking somewhat harder

ECS 240 Lecture 14 56

Dynamics of Recursive Types

•  We add a new form of values
 v ::= … | foldµt.τ v
–  The purpose of fold is to ensure that the value has the

recursive type and not its unfolding
•  The evaluation rules:

•  The folding annotations are for type checking only
•  They can be dropped after type checking

ECS 240 Lecture 14 57

Recursive Types in ML

•  The language ML uses a simple syntactic trick to avoid
having to write the explicit fold and unfold

•  In ML recursive types are bundled with union types
 datatype t = C1 of τ1 | C2 of τ2 | ... | Cn of τn (t can appear in τi)

–  E.g., datatype intlist = Nil of unit | Cons of int £ intlist
•  When the programmer writes

 Cons (5, l)
–  the compiler treats it as
 foldintlist (injr (5, l))

•  When the programmer writes
–  case e of Nil) ... | Cons (h, t)) ...
the compiler treats it as
–  case unfoldintlist e of Nil) ... | Cons (h,t)) ...

ECS 240 Lecture 14 58

Encoding Call-by-Value λ-calculus in F1
µ

•  So far, F1 was so weak that we could not encode non-
terminating computations
–  Cannot encode recursion
–  Cannot write the λx.x x (self-application)

•  The addition of recursive types makes typed λ-
calculus as expressive as untyped λ-calculus !

•  We can show a conversion algorithm from call-by-value
untyped λ-calculus to call-by-value F1

µ

ECS 240 Lecture 14 59

Untyped Programming in F1
µ

•  We write e for the conversion of the term e to F1
µ	

–  The type of e is V = µt. t ! t
•  The conversion rules

 x = x
 λx. e = foldV (λx:V. e)
 e1 e2 = (unfoldV e1) e2

•  Verify that
1.  · ` e : V
2.  e ⇓ v if and only if e ⇓ v

•  We can express non-terminating computation
D = (unfoldV (foldV (λx:V. (unfoldV x) x))) (foldV (λx:V. (unfoldV x) x)))
or, equivalently
D = (λx:V. (unfoldV x) x) (foldV (λx:V. (unfoldV x) x)))

ECS 240 Lecture 14 60

Subtyping

ECS 240 Lecture 14 61

Introduction to Subtyping

•  Viewing types as denoting sets of values, it is natural
to consider a subtyping relation between types as
induced by the subset relation between sets

•  Informal intuition:
–  If τ is a subtype of σ then any expression with type τ also has

type σ
–  If τ is a subtype of σ then any expression of type τ can be

used in a context that expects a σ
–  Subtyping is reflexive and transitive
–  We write τ < σ to say that τ is a subtype of σ

ECS 240 Lecture 14 62

Subtyping Examples

•  FORTRAN introduced int < real
–  5 + 1.5 is well-typed in many languages

•  PASCAL had [1..10] < [0..15] < int

•  It is generally accepted that subtyping is a
fundamental property of object-oriented languages
–  Let S be a subclass of C. Then an instance of S can be used

where an instance of C is expected
–  This is “subclassing) subtyping” philosophy

ECS 240 Lecture 14 63

Subsumption

•  We formalize the informal requirement on subtyping
•  Rule of subsumption

–  If τ < σ then an expression of type τ also has type σ

•  But now type safety is in danger:
•  If we say that int < int ! int
•  Then we can prove that “5 5” is well typed !

•  There is a way to construct the subtyping relation to
preserve type safety

ECS 240 Lecture 14 64

Defining Subtyping

•  The formal definition of subtyping is by derivation
rules for the judgment τ < σ

•  We start with subtyping on the base types
–  E.g. int < real or nat < int
–  These rules are language dependent and are typically based

directly on types-as-sets arguments
•  We then make subtyping a preorder (reflexive and

transitive)

•  Then we build-up subtyping for “larger” types

ECS 240 Lecture 14 65

Subtyping for Pairs

•  Try

•  Show (informally) that whenever a σ £ σ’ can be used,
a τ £ τ’ can also be used:

•  Consider the context H = H’[fst •] expecting a σ £ σ’
•  Then H’ expects a σ
•  Because τ < σ then H’ accepts a τ
•  Take e : τ £ τ’. Then fst e : τ so it works in H’
•  Thus e works in H

•  The case of “snd •” is similar

ECS 240 Lecture 14 66

Subtyping for Functions

•  This rule is unsound
–  Let Γ = f : int ! bool (and assume int < real)
–  We show using the above rule that Γ ` f 5.0 : bool
–  But this is wrong since 5.0 is not a valid argument of f

•  Try the (naive) rule

ECS 240 Lecture 14 67

Subtyping for Functions (Cont.)

•  The correct rule

•  We say that ! is covariant in the result type and
contravariant in the argument type

•  Informal correctness argument:
•  Pick f : τ ! τ’
•  f expects an argument of type τ
•  It also accepts an argument of type σ < τ	

•  f returns a value of type τ’
•  Which can also be viewed as a σ’ (since τ’ < σ’)
•  Hence f can be used as σ ! σ’

ECS 240 Lecture 14 68

More on Contravariance

•  Consider the subtype relationships
int ! real

real ! int

real ! real int ! int

•  In what sense f 2 real ! int) f 2 int ! int?
•  “real ! int” has a larger domain!

•  This suggests that “subtype-as-subset”
interpretation is not straightforward

ECS 240 Lecture 14 69

Subtyping References

•  Try covariance

–  Example: assume τ < σ
–  The following holds (if we assume the above rule):
 x : σ, y : τ ref, f : τ ! int ` y := x; f (! y)
–  Unsound: f is called on a σ but is defined only on τ	

–  Java has covariant arrays !

•  If we want covariance of references we can recover
type safety with a runtime check for each y := x
–  The actual type of x matches the actual type of y
–  But this is generally considered a bad design

ECS 240 Lecture 14 70

Subtyping References (Cont.)

•  Try contravariance:

–  Example: assume τ < σ
–  The following holds (if we assume the above rule):
 x : σ, y : σ ref, f : τ ! int ` y := x; f (! y)
–  Unsound: f is called on a σ but is defined only on τ	

•  References are invariant
–  no subtyping for references (unless we are prepared to add

run-time checks)
–  hence, arrays should be invariant
–  hence, mutable records should be invariant

ECS 240 Lecture 14 71

Subtyping Recursive Types

•  Recall τ list = µt.(unit + τ£t)
–  We would like τ list < σ list whenever τ < σ

•  Try simple covariance:

•  This is wrong if t occurs contravariantly in τ
•  Take τ = µt.t!int and σ=µt.t!real
•  Above rule says that τ < σ
•  We have τ'τ!int and σ'σ!real
•  τ<σ would mean covariant function type!
•  How can we still have the subtyping for lists?

ECS 240 Lecture 14 72

Subtyping Recursive Types (Cont.)

•  The correct rule

•  We add as an assumption that the type variables
stand for types with the desired subtype relationship
–  Before we assumed that they stand for the same type!

•  Verify that subtyping now works properly for lists

•  There is no subtyping between µt.t!int and µt.t!real

ECS 240 Lecture 14 73

Second-Order Type Systems

ECS 240 Lecture 14 74

The Limitations of F1

•  In F1 each function works exactly for one type
•  Example: sorting function

–  sort : (τ ! τ ! bool) ! τ array ! unit
•  The various sorting functions differ only in typing

–  At runtime they perform exactly the same operations
–  Need different versions only to keep the type checker happy

•  Two alternatives:
–  Circumvent the type system (example: C, Java), or
–  Use a more flexible type system that lets us write only one

sorting function (example: ML, Java 1.5)

ECS 240 Lecture 14 75

Polymorphism

•  Informal definition
 A function is polymorphic if it can be applied to “many” types

of arguments
•  Various kinds of polymorphism depending on the

definition of “many”
–  subtype (or bounded) polymorphism

•  “many” = all subtypes of a given type
–  ad-hoc polymorphism

•  “many” = depends on the function
•  choose behavior at runtime (depending on types, e.g. sizeof)

–  parametric predicative polymorphism
•  “many” = all monomorphic types

–  parametric impredicative polymorphism
•  “many” = all types

ECS 240 Lecture 14 76

Parametric Polymorphism: Types as Parameters

•  We introduce type variables and allow expressions to
have variable types

•  We introduce polymorphic types
 τ ::= b | τ1 ! τ2 | t | 8t. τ
 e ::= x | λx:τ.e | e1 e2 | Λt. e | e[τ]
–  Λt. e is type abstraction (or generalization)
–  e[τ] is type application (or instantiation)

•  Examples:
–  id = Λt.λx:t. x : 8t.t ! t
–  id[int] = λx:int. x : int ! int
–  id[bool] = λx:bool. x : bool ! bool
–  “id 5” is invalid. Use “id [int] 5” instead

ECS 240 Lecture 14 77

Impredicative Polymorphism

•  The typing rules:

ECS 240 Lecture 14 78

Impredicative Polymorphism (Cont.)

•  Verify that “id [int] 5” has type int
•  Note the side-condition in the rule for type

abstraction
–  Prevents ill-formed terms like: λx:t.Λt.x

•  The evaluation rules are just like those of F1
–  This means that type abstraction and application are all

performed at compile time
–  We do not evaluate under Λ (Λt. e is a value)
–  We do not have to operate on types at run-time
–  This is called phase separation: type checking and execution

ECS 240 Lecture 14 79

Expressiveness of Impredicative Polymorphism

•  This calculus is called
–  F2
–  system F
–  second-order λ-calculus
–  polymorphic λ-calculus

•  Polymorphism is extremely expressive

•  We can encode many base and structured types in F2

ECS 240 Lecture 14 80

What’s Wrong with F2

•  Simple syntax but very complicated semantics
–  id can be applied to itself: “id [8t. t ! t] id”
–  This can lead to paradoxical situations in a pure set-theoretic

interpretation of types
–  E.g., the meaning of id is a function whose domain contains a

set (the meaning of 8t.t! t) that contains id !
–  This suggests that giving an interpretation to impredicative

type abstraction is tricky
•  Complicated termination proof (Girard)
•  Type reconstruction (typeability) is undecidable

–  If the type application and abstraction are missing
•  How to fix it?

–  Restrict the use of polymorphism

ECS 240 Lecture 14 81

Predicative Polymorphism

•  Restriction: type variables can be instantiated only
with monomorphic types

•  This restriction can be expressed syntactically
 τ ::= b | τ1 ! τ2 | t
 σ ::= τ | 8t. σ | σ1 ! σ2
 e ::= x | e1 e2 | λx:σ. e | Λt.e | e [τ]
–  Type application is restricted to mono types
–  Cannot apply “id” to itself anymore

•  Same typing rules
•  Simple semantics and termination proof
•  Type reconstruction still undecidable
•  Must restrict further !

ECS 240 Lecture 14 82

Prenex Predicative Polymorphism

•  Restriction: polymorphic type constructor at top level
only

•  This restriction can also be expressed syntactically
 τ ::= b | τ1 ! τ2 | t
 σ ::= τ | 8t. σ	

 e ::= x | e1 e2 | λx:τ. e | Λt.e | e [τ]
–  Type application is restricted to mono types (i.e., predicative)
–  Abstraction only on mono types
–  The only occurrences of 8 are at the top level of a type

 (8t. t ! t) ! (8t. t ! t) is not a valid type
•  Same typing rules
•  Simple semantics and termination proof
•  Decidable type inference !

ECS 240 Lecture 14 83

Expressiveness of Prenex Predicative F2

•  We have simplified too much !

•  Not expressive enough to encode nat, bool
–  But such encodings are only of theoretical interest anyway

•  Is it expressive enough in practice?
–  Almost
–  Cannot write something like
(λs:8t.τ. ... s [nat] x ... s [bool] y) (Λt. ... code for sort)
–  Because the type of formal argument s cannot be polymorphic

ECS 240 Lecture 14 84

ML’s Polymorphic Let

•  ML solution: slight extension of the predicative F2
–  Introduce “let x : σ = e1 in e2”
–  With the semantics of “(λx : σ.e2) e1”
–  And typed as “[e1/x] e2”

•  This lets us write the polymorphic sort as
let
 s : 8t.τ = Λt. ... code for polymorphic sort ...
in
 ... s [nat] x s [bool] y

•  Surprise: this was a major ML design flaw!

ECS 240 Lecture 14 85

ML Polymorphism and References

•  let is evaluated using call-by-value but is typed using
call-by-name
–  What if there are side effects ?

•  Example:
let x : 8t. (t ! t) ref = Λt.ref (λx : t. x)
in
 x [bool] := λx: bool. not x
 (! x [int]) 5
end
–  Will apply “not” to 5
–  Similar examples can be constructed with exceptions

•  It took 10 years to find and agree on a clean solution

ECS 240 Lecture 14 86

The Value Restriction in ML

•  A type in a let is generalized only for syntactic values

•  Since e1 is a value, its evaluation cannot have side-
effects

•  In this case call-by-name and call-by-value are the
same

•  In the previous example ref (λx:t. x) is not a value
•  This is not too restrictive in practice !

ECS 240 Lecture 14 87

Subtype Bounded Polymorphism

•  We can bound the instances of a given type variable
 8t < τ. σ	

•  Consider a function f : 8t < τ. t ! σ	

•  How is this different from f’ : τ ! σ	

–  We can also invoke f’ on any subtype of τ

•  They are different if t appears in σ
–  E.g, f : 8t<τ.t ! t and f’ : τ ! τ
–  Take x : τ’ < τ
–  We have f [τ’] x : τ’
–  And f’ x : τ	

–  We lost information with f’

ECS 240 Lecture 14 88

Not covered in this class

•  A lot!
•  Dependent Types
•  Types for abstraction and modularity
•  Pi calculus
•  Object calculi
•  Type-based analysis
•  Constraint-based analysis
•  Applications (looked at some)
•  And more …

