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Review 

•   λ-calculus is as expressive as a Turing machine 

•  We can encode a multitude of data types in the 
untyped λ-calculus 

•  To simplify programming it is useful to add types to 
the language 

•  We now start the study of type systems in the 
context of the typed λ-calculus 
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Types 

•  A program variable can assume a range of values 
during the execution of a program 

•  An upper bound of such a range is called a type of the 
variable 
–  A variable of type “bool” should only assume boolean values 
–  If x has type “bool” then  

•  “not(x)” has a sensible meaning 
•   but “1 + x” should not be allowed   
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Typed and Untyped Languages 

•  Untyped languages 
–  Do not restrict the range of values for a given variable 
–  Operations might be applied to inappropriate arguments. The 

behavior in such cases might be unspecified 
–  The pure λ-calculus is an extreme case of an untyped language 

(however, its behavior is completely specified) 

•  Typed languages 
–  Variables are assigned (non-trivial) types 
–  A type system keeps track of types 
–  Types might or might not appear in the program itself 
–  Languages can be explicitly typed or implicitly typed 
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Execution Errors 

•  The purpose of types is to prevent certain types of 
execution errors 

•  Trapped execution errors 
–  Cause the computation to stop immediately 
–  Well-specified behavior 
–  Usually enforced by hardware 
–  E.g., Division by zero 
–  E.g., Invoking a floating point operation with a NaN 
–  E.g., Dereferencing the address 0 
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Execution Errors (II) 

•  Untrapped execution errors 
–  Behavior is unspecified (depends on the state of the machine) 
–  Accessing past the end of an array 
–  Jumping to an address in the data segment 

•  A program is considered safe if it does not cause 
untrapped errors 
–  Languages in which all programs are safe are safe languages 

•  For a given language designate a set of forbidden errors 
–  A superset of the untrapped errors 
–  Includes some trapped errors as well 

•  E.g., null pointer dereference 
•  To ensure portability across architectures 
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Preventing Forbidden Errors - Static Checking 

•  Forbidden errors can be caught by a combination of 
static and run-time checking 

•  Static checking 
–  Detects errors early, before testing 
–  Types provide the necessary static information for static 

checking 
–  E.g., ML, Modula-3, Java 
–  Detecting certain/most errors statically is undecidable in 

most languages 
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Preventing Forbidden Errors - Dynamic Checking 

•  Required when static checking is undecidable 
–  e.g., array-bounds checking 

•  Run-time encoding of types are still used 
–  e.g., Scheme, Lisp  

•  Should be limited  
–  Delays the manifestation of errors 

•  Can be done in hardware  
–  e.g. null-pointer 
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Safe Languages 

•  There are typed languages that are not safe (weakly 
typed languages) 

•  All safe languages use types (either statically or 
dynamically) 

•  We will be concerned mainly with statically typed 
languages 

Typed Untyped 
Static Dynamic 

Safe ML, Java, ... Lisp, Scheme λ-calculus 
Unsafe C, C++, ... ? Assembly 
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Why Typed Languages? 

•  Development 
–  Type checking catches many mistakes early 
–  Reduced debugging time 
–  Typed signatures are a powerful basis for design 
–  Typed signatures enable separate compilation 

•  Maintenance 
–  Types act as checked specifications 
–  Types can enforce abstraction 

•  Execution 
–  Static checking reduces the need for dynamic checking 
–  Safe languages are easier to analyze statically 

•  the compiler can generate better code 
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Why Not Typed Languages? 

•  Static type checking imposes constraints on the 
programmer 
–  Some valid programs might be rejected 
–  But often they can be made well-typed easily 
–  Hard to step outside the language (e.g. OO programming in a 

non-OO language) 

•  Dynamic safety checks can be costly 
–  50% is a possible cost of bounds-checking in a tight loop 

•  In practice, the overall cost is much smaller 
–  Memory management must be automatic ) need a garbage 

collector with the associated run-time costs 
–  Some applications are justified to use weakly-typed languages 
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Properties of Type Systems 

•  How do types differ from other program annotations 
–  Types are more precise than comments 
–  Types are more easily mechanizable than program 

specifications 

•  Expected properties of type systems: 
–  Types should be enforceable 
–  Types should be checkable algorithmically 
–  Typing rules should be transparent 

•  It should be easy to see why a program is not well-typed 



ECS 240  Lecture 14 13 

Why Formal Type Systems? 

•  Many typed languages have informal descriptions of 
the type systems (e.g., in language reference manuals) 

•  A fair amount of careful analysis is required to avoid 
false claims of type safety 

•  A formal presentation of a type system is a precise 
specification of the type checker 
–  And allows formal proofs of type safety 

•  But even informal knowledge of the principles of type 
systems help 
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Formalizing a Type System 

A multi-step process 
1.  Syntax 

•  Of expressions (programs) 
•  Of types 
•  Issues of binding and scoping 

2.  Static semantics (typing rules) 
•  Define the typing judgment and its derivation rules 

3.  Dynamic semantics (e.g., operational) 
•  Define the evaluation judgment and its derivation rules 

4.  Type soundness 
•  Relates the static and dynamic semantics 
•  State and prove the soundness theorem 
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Typing Judgments 

•  Judgments 
–  A statement J about certain formal entities 
–  Has a truth value ² J 
–  Has a derivation ` J 

•  A common form of the typing judgment: Γ ` e : τ	

(e is an expression and τ is a type) 

•   Γ is a set of type assignments for the free variables 
of e 
–  Defined by the grammar              Γ ::=  · | Γ, x : τ   
–  Usually viewed as a set of type assignments 
–  Type assignments for variables not free in e are not relevant 
–  E.g,    x : int, y : int ` x + y : int 



ECS 240  Lecture 14 16 

Typing rules 

•  Typing rules are used to derive typing judgments 

•  Examples: 
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Typing Derivations 

•  A typing derivation is a derivation of a typing 
judgment 

•  Example: 

•  We say that Γ ` e : τ to denote that there is a 
derivation of this typing judgment 

•  Type checking: given Γ, e and τ find a derivation 
•  Type inference: given Γ and e, find τ and a derivation 
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Proving Type Soundness 

•  A typing judgment has a truth value 
•  Define what it means for a value to have a type 

             v 2 k τ k 
(e.g. 5 2 k int k     and true 2 k bool k ) 

•  Define what it means for an expression to have a type 
                   e 2   | τ |     iff       8v. (e ⇓ v ) v 2 k τ k) 

•  Prove type soundness 
     If   · ` e : τ    then e 2 | τ | 
or equivalently 
   If · ` e : τ and e ⇓ v then v 2 k τ k 

•  This implies safe execution (since the result of an 
unsafe execution is not in k τ k for any τ) 
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Next 

•  We will give formal description of first-order type 
systems (no type variables) 
–  Function types (simply typed λ-calculus) 
–  Simple types (integers and booleans) 
–  Structured types (products and sums) 
–  Imperative types (references and exceptions) 
–  Recursive types 

•  The type systems of most common languages are 
first-order 

•  The we move to second-order type systems 
–  Polymorphism and abstract types 
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First-Order Type Systems 
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Simply-Typed Lambda Calculus 

•  Syntax: 
Terms     e ::=  x | λx:τ. e | e1 e2 
                    |  n | e1 + e2 | iszero e 
                    | true | false | not e | if e1 then e2 else e3 
 Types     τ ::= int | bool | τ1 ! τ2 

•   τ1 ! τ2 is the function type 
•   ! associates to the right 
•  Arguments have typing annotations 

•  This language is also called F1 



ECS 240  Lecture 14 22 

Static Semantics of F1 

•  The typing judgment 
                       Γ ` e : τ	


•  The typing rules 
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Static Semantics of F1 (Cont.) 

•  More typing rules  
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Typing Derivation in F1 

•  Consider the term 
 λx : int. λb : bool. if b then f x else x 
–  With the initial typing assignment  f : int ! int 
 
 
 
 
 
 
Where Γ = f : int ! int, x : int, b : bool 
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Type Checking in F1 

•  Type checking is easy because 
–  Typing rules are syntax directed 
–  Typing rules are compositional 
–  All local variables are annotated with types 

•  In fact, type inference is also easy for F1 

•  Without type annotations an expression does not have 
a unique type 
             · ` λx. x : int ! int 
             · ` λx. x : bool ! bool 
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Operational Semantics of F1 

•  Judgment: 
                                e ⇓ v 

•  Values 
             v ::= n | true | false | λx:τ. e 

•  The evaluation rules ... 
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Operational Semantics of F1 (Cont.) 

•  Call-by-value evaluation rules (sample) 

Evaluation undefined  
for ill-typed programs !  
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Type Soundness for F1 

•  Theorem: 
If · ` e : τ  and e ⇓ v then · ` v : τ	

–  Also called, subject reduction theorem, type preservation 

theorem 
•  Try to prove by induction on e 

–  Won’t work because [v2/x]e’1 in the evaluation of e1 e2 
–  Same problem with induction on · ` e : τ  

•  Try to prove by induction on τ 
–  Won’t work because e1 has a “bigger” type than e1 e2 

•  Try to prove by induction on e ⇓ v  
–  To address the issue of [v2/x]e’1 
–  This is it! 
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Type Soundness Proof 

•  Consider the case 

•  From IH on e1 ⇓ … we have  ·, x : τ2 ` e1’ : τ	

•  From IH on e2 ⇓ … we have · ` v2 : τ2 

•  Need to infer that · ` [v2/x]e1’ : τ and use the IH 
–  We need a substitution lemma (by induction on e1’) 
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Significance of Type Soundness 

•  The theorem says that the result of an evaluation has 
the same type as the initial expression 

•  The theorem does not say that 
–  The evaluation never gets stuck (e.g., trying to apply a non-

function, to add non-integers, etc.), nor that 
–  The evaluation terminates 

•  Even though both of the above facts are true of F1 

•  We need a small-step semantics to prove that the 
execution never gets stuck 
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Small-Step Contextual Semantics for F1 

•  We define redexes 
     r ::= n1 + n2 | if b then e1 else e2 | (λx:τ.e1) v2 

•  and contexts 
   H ::= H1 + e2 | n1 + H2 | if H then e1 else e2 | H1 e2 | (λx:τ. e1) H2 

•  and local reduction rules 
    n1 + n2                         ! n1 plus n2 
   if true then e1 else e2  ! e1 
   if false then e1 else e2 ! e2 
   (λx:τ. e1) v2                   ! [v2/x]e1 

•  and one global reduction rule 
   H[r] ! H[e]   iff r ! e 
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Contextual Semantics for F1 

•  Decomposition lemmas:  
1.  If · ` e : τ and e is not a value then there exist (unique) H 

and r such that e = H[r]  
•  any well typed expression can be decomposed 
•  Any well-typed non-value can make progress 

2.  Furthermore, there exists τ’ such that · ` r : τ’ 
–  the redex is closed and well typed 

3.  Furthermore, there exists e’ such that r ! e’ and · ` e’ : τ’ 
–  local reduction is type preserving 

4.  Furthermore, for any e’ , · ` e’  : τ’    implies  · ` H[e’] : τ   
•  the expression preserves its type if we replace the redex with 

an expression of same type 
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Contextual Semantics of F1 

•  Type preservation theorem 
–  If · ` e : τ and e ! e’ then · ` e’ : τ	

–  Follows from the decomposition lemma 

•  Progress theorem 
–  If · ` e : τ and e is not a value then there exists e’ such that 

e can make progress: e ! e’ 
•  Progress theorem says that execution can make 

progress on a well typed expression 
•  Furthermore, due to type preservation we know that 

the execution of a well typed expression never gets 
stuck 
–  this is a common way to state and prove type safety of a 

language 
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Product Types - Static Semantics 

•  Extend the syntax with (binary) tuples 
              e ::= ... | (e1, e2)  | fst e | snd e 
              τ ::= ... | τ1 £ τ2 

–  This language is sometimes called F1
£ 

•  Same typing judgment  Γ ` e : τ 
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Product Types: Dynamic Semantics and Soundness 

•  New form of values:      v ::= ... | (v1, v2) 
•  New (big step) evaluation rules: 

•  New contexts:  H ::= ... | (H1, e2) | (v1, H2) | fst H | snd H 
•  New redexes:   

              fst (v1, v2) ! v1 
              snd (v1, v2) ! v2 

•  Type soundness holds just as before 
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Records 

•  Records are like tuples with labels 
•  New form of expressions 

                  e ::= ... | {L1 = e1, ..., Ln = en} | e.L 
•  New form of values 

                   v ::= {L1 = v1, ..., Ln = vn} 
•  New form of types 

                   τ ::= ... | {L1 : τ1, ..., Ln : τn} 
•  ... follows the model of F1

£   
–  typing rules 
–  derivation rules 
–  type soundness 
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Sum Types 

•  We need types of the form 
–  either an int or a float 
–  either 0 or a pointer 
–  either true or false 
–  These are called disjoint union types 

•  New form of expressions and types 
e ::= ... | injl e | injr e |  
       case e of injl x ! e1 | injr y ! e2   
 τ ::= ... | τ1 + τ2 
–  A value of type τ1 + τ2 is either a τ1 or a τ2 

–  Like union in C or Pascal, but safe 
•  distinguishing between components is under compiler control 

–  case is a binding operator: x is bound in e1 and y is bound in e2  
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Examples with Sum Types 

•  Consider the type “unit” with a single element called * 
•  The type “optional integer” defined as “unit + int” 

–  Useful for optional arguments or return values 
•  No argument: injl * 
•  Argument is 5: injr 5 

–  To use the argument you must test the kind of argument 
–  case arg of injl x ) “no_arg_case” | injr y ) “...y...” 
–  injl and injr are tags and case is tag checking 

•  Bool is a union type: bool = unit + unit 
–  true    is    injl * 
–  false    is   injr * 
–  if e then e1 else e2     is      case e of injl x ) e1 | injr y ) e2 
–  Check the equivalence of the static and dynamic semantics 
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Static Semantics of Sum Types 

•  New typing rules 

•  Types are not unique anymore 
    injl 1 : int + bool 
    injl 1 : int + (int ! int) 
–  this complicates type checking, but still doable 



ECS 240  Lecture 14 40 

Dynamic Semantics of Sum Types 

•  New values            v ::= ... | injl v | injr v 
•  New evaluation rules 
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Type Soundness for F1
+ 

•  Type soundness still holds 

•  No way to use a τ1 + τ2 inappropriately 

•  The key is that the only way to use a τ1 + τ2 is with 
case, which ensures that you are not using a τ1 as a τ2 

•  In C or Pascal checking the tag is the responsibility of 
the programmer! 
–  Unsafe 
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Types for Imperative Features 

•  We looked at types for pure functional languages 
 
•  Now we look at types for imperative features 

•  Such types are used to characterize non-local effects 
–  assignments 
–  exceptions 

•  Contextual semantics is useful here 

 



ECS 240  Lecture 14 43 

Reference Types 

•  Such types are used for mutable memory cells 

•  Syntax (as in ML) 
                e ::= ... | ref e : τ | e1 := e2 | ! e 
                τ ::= ... | τ ref 
–  ref e - evaluates e, allocates a new memory cell, stores the 

value of e in it and returns the address of the memory cell 
•  like malloc + initialization in C, or new in C++ and Java 

–  e1 := e2, evaluates e1 to a memory cell and updates its value 
with the value of e2 

–  ! e - evaluates e to a memory cell and returns its contents 
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Global Effects with Reference Cells 

•  A reference cell can escape the static scope where it 
was created 
          (λf:int ! int ref. !(f 5))   (λx:int. ref x : int) 

•  The value stored in a reference cell must be visible 
from the entire program 

•  The “result” of an expression must now include the 
changes to the heap that it makes 

•  To model reference cells we must extend the 
evaluation model 
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Modeling References 

•  A heap is a mapping from addresses to values 
                         h ::= · | h, a Ã v : τ	

–  a 2 Addresses 
–  We tag the heap cells with their types 
–  Types are useful only for static semantics. They are not 

needed for the evaluation ) not a part of the implementation 
•  We call a “program” an expression along with a heap 

           p ::= heap h in e 
–  The initial program is “heap ; in e” 
–  Heap addresses act as bound variables in the expression 
–  This is a trick that allows easy reuse of properties of local 

variables for heap addresses 
•  e.g., we can rename the address and its occurrences at will 
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Static Semantics of References 

•  Typing rules for expressions: 

•  and for programs 
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Exceptions 

•  A mechanism that allows non-local control flow 
–  Useful for implementing the propagation of errors to caller 

•  Exceptions ensure that errors are not ignored 
–  Compare with the manual error handling in C 

•  Languages with exceptions: 
–  C++, ML, Modula-3, Java 

•  We assume that there is a special type exn of 
exceptions 
–  exn could be int to model error codes 
–  In Java or C++, exn is a special object type 



ECS 240  Lecture 14 48 

Modeling Exceptions 

•  Syntax 
          e ::= ... | raise e | try e1 handle x ) e2  
          τ ::= ... | exn 

•  We ignore here how exception values are created 
–  In examples we will use integers as exception values 

•  The handler binds x in e2 to the actual exception value 
•  The “raise” expression never returns to the 

immediately enclosing context 
–  1 + raise 2 is well-typed 
–  if (raise 2) then 1 else 2 is also well-typed 
–  (raise 2) 5 is also well-typed 
–  What should the type of raise be?  
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Example with Exceptions 

•  A (strange) factorial function 
            let f = λx:int.λres:int. if x = 0 then  
                                                     raise res  
                                              else  
                                                    f (x - 1) (res * x) 
            in  try f 5 1 handle x ) x 
 
•  The function returns in one step from the recursion 
•  The top-level handler catches the exception and turns 

it into a regular result 
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Typing Exceptions 

•  New typing rules 

•  A raise expression has an arbitrary type 
•  This is a clear sign that the expression does not return to its 

evaluation context 
•  The type of the body of try and of the handler must 

match 
•  Just like for conditionals 
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Recursive Types 
Subtyping 
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Recursive Types 

•  It is useful to be able to define recursive data 
structures 

•  Example: lists 
–  A list of elements of type τ (a τ list) is either empty or it is a 

pair of a τ and a τ list 
                     τ list = unit + (τ £ τ list) 
–  This is a recursive equation. We take its solution to be  the 

smallest set of values L that satisfies the equation 
                         L = {*} [ (T £ L)   
where T is the set of values of type τ	


–  Note: this interpretation can be troublesome 
•  E.g.   τ = τ ! τ, but only for trivial sets we have T = T ! T 

–  Another interpretation is that the recursive equation is up-to 
set isomorphism 
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Recursive Types 

•  We introduce a recursive type constructor 
                                   µt. τ  
–  The type variable t is bound in τ	

–  This is the solution to the equation 

              t ' τ     (t is isomorphic with τ) 
–  E.g., τ list = µt. (unit + τ £ t) 
–  This allows “unnamed” recursive types 

•  We introduce syntactic operations for the conversion 
between µt.τ and [µt.τ/t]τ 	


•  E.g. between “τ list” and “unit + τ £ τ list” 
                  e ::= … | foldµt.τ e | unfoldµt.τ e  
                  τ ::= … | t | µt.τ	
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Example with Recursive Types 

•  Lists 
 τ list = µt. (unit + τ £ t) 
 nilτ = foldτ list (injl *) 
 consτ = λx:τ.λL:τ list. foldτ list injr (x, L) 

•  A list length function 
lengthτ = λL:τ list. case (unfoldτ list L) of  injl x ) 0 
                                                        | injr y ) 1 + lengthτ (snd y) 

•  Verify that 
–  nilτ       : τ list 
–  consτ    : τ ! τ list ! τ list 
–  lengthτ : τ list ! int 
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Static Semantics of Recursive Types 

•  The typing rules are syntax directed 
•  Often, for syntactic simplicity, the fold and unfold 

operators are omitted 
–  This makes type checking somewhat harder 
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Dynamics of Recursive Types 

•  We add a new form of values 
                          v ::= … | foldµt.τ v 
–  The purpose of fold is to ensure that the value has the 

recursive type and not its unfolding 
•  The evaluation rules: 

•  The folding annotations are for type checking only 
•  They can be dropped after type checking 
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Recursive Types in ML 

•  The language ML uses a simple syntactic trick to avoid 
having to write the explicit fold and unfold 

•  In ML recursive types are bundled with union types 
 datatype t = C1 of τ1 | C2 of τ2 | ... | Cn of τn (t can appear in τi) 

–  E.g., datatype intlist = Nil of unit | Cons of int £ intlist 
•  When the programmer writes  

                         Cons (5, l) 
–  the compiler treats it as 
                   foldintlist (injr (5, l)) 

•  When the programmer writes 
–  case e of Nil ) ... | Cons (h, t) ) ...  
the compiler treats it as 
–  case unfoldintlist e of Nil ) ... | Cons (h,t) ) ... 
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Encoding Call-by-Value λ-calculus in F1
µ 

•  So far, F1 was so weak that we could not encode non-
terminating computations 
–  Cannot encode recursion 
–  Cannot write the λx.x x   (self-application) 

•  The addition of recursive types makes typed λ-
calculus as expressive as untyped λ-calculus ! 

•  We can show a conversion algorithm from call-by-value 
untyped λ-calculus to call-by-value F1

µ 
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Untyped Programming in F1
µ 

•  We write e for the conversion of the term e to F1
µ	


–  The type of e is V = µt. t ! t 
•  The conversion rules 

 x         = x 
 λx. e   = foldV (λx:V. e) 
 e1  e2   = (unfoldV e1) e2 

•  Verify that  
1.   · ` e : V 
2.  e ⇓ v if and only if e ⇓ v 

•  We can express non-terminating computation 
D = (unfoldV (foldV (λx:V. (unfoldV x) x))) (foldV (λx:V. (unfoldV x) x))) 
or, equivalently 
D = (λx:V. (unfoldV x) x) (foldV (λx:V. (unfoldV x) x))) 
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Subtyping 
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Introduction to Subtyping 

•  Viewing types as denoting sets of values, it is natural 
to consider a subtyping relation between types as 
induced by the subset relation between sets 

•  Informal intuition: 
–  If τ is a subtype of σ then any expression with type τ also has 

type σ 
–  If τ is a subtype of σ then any expression of type τ can be 

used in a context that expects a σ 
–  Subtyping is reflexive and transitive  
–  We write τ < σ to say that τ is a subtype of σ 
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Subtyping Examples 

•  FORTRAN introduced int < real 
–  5 + 1.5 is well-typed in many languages 

•  PASCAL had [1..10] < [0..15] < int 

•  It is generally accepted that subtyping is a 
fundamental property of object-oriented languages 
–  Let S be a subclass of C. Then an instance of S can be used 

where an instance of C is expected 
–  This is “subclassing ) subtyping” philosophy 
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Subsumption 

•  We formalize the informal requirement on subtyping 
•  Rule of subsumption 

–  If τ < σ then an expression of type τ also has type σ 

•  But now type safety is in danger: 
•  If we say that int < int ! int   
•  Then we can prove that “5 5” is well typed ! 

•  There is a way to construct the subtyping relation to 
preserve type safety 
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Defining Subtyping 

•  The formal definition of subtyping is by derivation 
rules for the judgment τ < σ 

•  We start with subtyping on the base types 
–  E.g.   int < real   or   nat < int 
–  These rules are language dependent and are typically based 

directly on types-as-sets arguments 
•  We then make subtyping a preorder (reflexive and 

transitive) 

•  Then we build-up subtyping for “larger” types 
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Subtyping for Pairs 

•  Try 

•  Show (informally) that whenever a σ £ σ’ can be used, 
a τ £ τ’ can also be used: 

•  Consider the context H = H’[fst •] expecting a σ £ σ’ 
•  Then H’ expects a σ 
•  Because τ < σ then H’ accepts a τ 
•  Take e : τ £ τ’. Then fst e : τ so it works in H’ 
•  Thus e works in H 

•  The case of “snd •” is similar 
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Subtyping for Functions 

•  This rule is unsound 
–  Let Γ = f : int ! bool   (and assume int < real) 
–  We show using the above rule that Γ ` f  5.0 : bool 
–  But this is wrong since 5.0 is not a valid argument of f 

•  Try the (naive) rule 
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Subtyping for Functions (Cont.) 

•  The correct rule 

•  We say that ! is covariant in the result type and 
contravariant in the argument type 

•  Informal correctness argument: 
•  Pick f : τ ! τ’ 
•  f expects an argument of type τ 
•  It also accepts an argument of type σ < τ	


•  f returns a value of type τ’ 
•  Which can also be viewed as a σ’ (since τ’ < σ’) 
•  Hence f can be used as σ ! σ’ 
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More on Contravariance 

•  Consider the subtype relationships 
int ! real 

real ! int 

real ! real int ! int 

•  In what sense f 2 real ! int ) f 2 int ! int? 
•  “real ! int” has a larger domain! 
  

•  This suggests that “subtype-as-subset” 
interpretation is not straightforward 
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Subtyping References 

•  Try covariance 

–  Example: assume τ < σ 
–  The following holds (if we assume the above rule):  
                   x : σ, y : τ ref, f : τ ! int ` y := x; f (! y) 
–  Unsound: f is called on a σ but is defined only on τ	

–  Java has covariant arrays ! 

•  If we want covariance of references we can recover 
type safety with a runtime check for each y := x 
–  The actual type of x matches the actual type of y 
–  But this is generally considered a bad design   
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Subtyping References (Cont.) 

•  Try contravariance: 

–  Example: assume τ < σ 
–  The following holds (if we assume the above rule):  
                   x : σ, y : σ ref, f : τ ! int ` y := x; f (! y) 
–  Unsound: f is called on a σ but is defined only on τ	


•  References are invariant 
–  no subtyping for references (unless we are prepared to add 

run-time checks) 
–  hence, arrays should be invariant 
–  hence, mutable records should be invariant 
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Subtyping Recursive Types 

•  Recall τ list = µt.(unit + τ£t) 
–  We would like τ list < σ list whenever τ < σ 

•  Try simple covariance: 

•  This is wrong if t occurs contravariantly in τ 
•  Take τ = µt.t!int and σ=µt.t!real 
•  Above rule says that τ < σ 
•  We have τ'τ!int and σ'σ!real 
•   τ<σ would mean covariant function type! 
•  How can we still have the subtyping for lists? 
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Subtyping Recursive Types (Cont.) 

•  The correct rule 

•  We add as an assumption that  the type variables 
stand for types with the desired subtype relationship 
–  Before we assumed that they stand for the same type! 

•  Verify that subtyping now works properly for lists 

•  There is no subtyping between µt.t!int and µt.t!real 
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Second-Order Type Systems 
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The Limitations of F1 

•  In F1 each function works exactly for one type 
•  Example: sorting function 

–  sort : (τ ! τ ! bool) ! τ array ! unit 
•  The various sorting functions differ only in typing 

–  At runtime they perform exactly the same operations 
–  Need different versions only to keep the type checker happy 

•  Two alternatives: 
–  Circumvent the type system (example: C, Java), or 
–  Use a more flexible type system that lets us write only one 

sorting function (example: ML, Java 1.5) 
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Polymorphism 

•  Informal definition 
    A function is polymorphic if it can be applied to “many” types 

of arguments 
•  Various kinds of polymorphism depending on the 

definition of “many” 
–  subtype (or bounded) polymorphism 

•  “many” = all subtypes of a given type 
–  ad-hoc polymorphism 

•  “many” = depends on the function 
•  choose behavior at runtime (depending on types, e.g. sizeof) 

–  parametric predicative polymorphism 
•  “many” = all monomorphic types 

–  parametric impredicative polymorphism 
•  “many” = all types 
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Parametric Polymorphism: Types as Parameters 

•  We introduce type variables and allow expressions to 
have variable types 

•  We introduce polymorphic types 
          τ ::= b | τ1 ! τ2 | t | 8t. τ 
          e ::= x | λx:τ.e | e1 e2 | Λt. e | e[τ] 
–   Λt. e is type abstraction (or generalization) 
–  e[τ] is type application (or instantiation) 

•  Examples: 
–  id = Λt.λx:t. x             :   8t.t ! t 
–  id[int] = λx:int. x        :   int ! int 
–  id[bool] = λx:bool. x    :   bool ! bool 
–  “id 5” is invalid. Use “id [int] 5” instead 



ECS 240  Lecture 14 77 

Impredicative Polymorphism 

•  The typing rules: 
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Impredicative Polymorphism (Cont.) 

•  Verify that “id [int] 5” has type int 
•  Note the side-condition in the rule for type 

abstraction 
–  Prevents ill-formed terms like: λx:t.Λt.x 

•  The evaluation rules are just like those of F1 
–  This means that type abstraction and application are all 

performed at compile time 
–  We do not evaluate under Λ (Λt. e is a value) 
–  We do not have to operate on types at run-time 
–  This is called phase separation: type checking and execution 
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Expressiveness of Impredicative Polymorphism 

•  This calculus is called 
–  F2 
–  system F 
–  second-order λ-calculus 
–  polymorphic λ-calculus 

•  Polymorphism is extremely expressive 

•  We can encode many base and structured types in F2 
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What’s Wrong with F2 

•  Simple syntax but very complicated semantics 
–  id can be applied to itself: “id [8t. t ! t] id” 
–  This can lead to paradoxical situations in a pure set-theoretic 

interpretation of types 
–  E.g., the meaning of id is a function whose domain contains a 

set (the meaning of 8t.t! t) that contains id ! 
–  This suggests that giving an interpretation to impredicative 

type abstraction is tricky 
•  Complicated termination proof (Girard) 
•  Type reconstruction (typeability) is undecidable 

–  If the type application and abstraction are missing 
•  How to fix it? 

–  Restrict the use of polymorphism 
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Predicative Polymorphism 

•  Restriction: type variables can be instantiated only 
with monomorphic types 

•  This restriction can be expressed syntactically 
 τ ::= b | τ1 ! τ2 | t 
 σ ::= τ | 8t. σ | σ1 ! σ2 
 e ::= x | e1 e2 | λx:σ. e | Λt.e | e [τ] 
–  Type application is restricted to mono types 
–  Cannot apply “id” to itself anymore 

•  Same typing rules 
•  Simple semantics and termination proof 
•  Type reconstruction still undecidable 
•  Must restrict further ! 
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Prenex Predicative Polymorphism 

•  Restriction: polymorphic type constructor at top level 
only 

•  This restriction can also be expressed syntactically 
 τ ::= b | τ1 ! τ2 | t 
 σ ::= τ | 8t. σ	

 e ::= x | e1 e2 | λx:τ. e | Λt.e | e [τ] 
–  Type application is restricted to mono types (i.e., predicative) 
–  Abstraction only on mono types 
–  The only occurrences of 8 are at the top level of a type 

       (8t. t ! t) ! (8t. t ! t) is not a valid type 
•  Same typing rules 
•  Simple semantics and termination proof 
•  Decidable type inference ! 
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Expressiveness of Prenex Predicative F2 

•  We have simplified too much ! 

•  Not expressive enough to encode nat, bool 
–  But such encodings are only of theoretical interest anyway 

•  Is it expressive enough in practice? 
–  Almost 
–  Cannot write something like 
(λs:8t.τ. ... s [nat] x ...   s [bool] y) (Λt. ... code for sort) 
–  Because the type of formal argument s cannot be polymorphic 
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ML’s Polymorphic Let 

•  ML solution: slight extension of the predicative F2 
–  Introduce “let x : σ = e1 in e2” 
–  With the semantics of “(λx : σ.e2) e1” 
–  And typed as “[e1/x] e2” 

•  This lets us write the polymorphic sort as 
let  
     s : 8t.τ = Λt. ... code for  polymorphic sort ... 
in  
    ... s [nat] x .... s [bool] y     

•  Surprise: this was a major ML design flaw! 
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ML Polymorphism and References 

•  let is evaluated using call-by-value but is typed using 
call-by-name 
–  What if there are side effects ? 

•  Example: 
let    x : 8t. (t ! t) ref = Λt.ref (λx : t. x)  
in 
   x [bool] := λx: bool. not x 
   (! x [int]) 5 
end 
–  Will apply “not” to 5 
–  Similar examples can be constructed with exceptions 

•  It took 10 years to find and agree on a clean solution 
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The Value Restriction in ML 

•  A type in a let is generalized only for syntactic values 

•  Since e1 is a value, its evaluation  cannot have side-
effects 

•  In this case call-by-name and call-by-value are the 
same 

•  In the previous example ref (λx:t. x) is not a value 
•  This is not too restrictive in practice ! 
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Subtype Bounded Polymorphism 

•  We can bound the instances of a given type variable 
                  8t < τ. σ	


•  Consider a function f : 8t < τ. t ! σ	

•  How is this different from f’ : τ ! σ	


–  We can also invoke f’ on any subtype of τ 

•  They are different if t appears in σ 
–  E.g, f : 8t<τ.t ! t and f’ : τ ! τ 
–  Take x : τ’ < τ 
–  We have f [τ’] x : τ’ 
–  And f’ x : τ	

–  We lost information with f’ 
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Not covered  in this class 

•  A lot!  
•  Dependent Types 
•  Types for abstraction and modularity 
•  Pi calculus  
•  Object calculi  
•  Type-based analysis 
•  Constraint-based analysis 
•  Applications (looked at some) 
•  And more …  


