Type Systems

Lecture 14 ECS 240

ECS 240 Lecture 14

- λ -calculus is as expressive as a Turing machine
- We can encode a multitude of data types in the untyped $\lambda\text{-calculus}$
- To simplify programming it is useful to add types to the language
- We now start the study of type systems in the context of the typed $\lambda\text{-calculus}$

Types

- A program variable can assume a range of values during the execution of a program
- An upper bound of such a range is called a <u>type</u> of the variable
 - A variable of type "bool" should only assume boolean values
 - If x has type "bool" then
 - "not(x)" has a sensible meaning
 - but "1 + x" should not be allowed

Typed and Untyped Languages

- Untyped languages
 - Do not restrict the range of values for a given variable
 - Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
 - The pure λ -calculus is an extreme case of an untyped language (however, its behavior is completely specified)
- Typed languages
 - Variables are assigned (non-trivial) types
 - A type system keeps track of types
 - Types might or might not appear in the program itself
 - Languages can be <u>explicitly typed</u> or <u>implicitly typed</u>

Execution Errors

- The purpose of types is to prevent certain types of execution errors
- Trapped execution errors
 - Cause the computation to stop immediately
 - Well-specified behavior
 - Usually enforced by hardware
 - E.g., Division by zero
 - E.g., Invoking a floating point operation with a NaN
 - E.g., Dereferencing the address 0

Execution Errors (II)

- Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine)
 - Accessing past the end of an array
 - Jumping to an address in the data segment
- A program is considered safe if it does not cause untrapped errors
 - Languages in which all programs are safe are <u>safe languages</u>
- For a given language designate a set of forbidden errors
 - A superset of the untrapped errors
 - Includes some trapped errors as well
 - E.g., null pointer dereference
 - To ensure portability across architectures

Preventing Forbidden Errors - Static Checking

- Forbidden errors can be caught by a combination of static and run-time checking
- Static checking
 - Detects errors early, before testing
 - Types provide the necessary static information for static checking
 - E.g., ML, Modula-3, Java
 - Detecting certain/most errors statically is undecidable in most languages

Preventing Forbidden Errors - Dynamic Checking

- Required when static checking is undecidable
 - e.g., array-bounds checking
- Run-time encoding of types are still used
 - e.g., Scheme, Lisp
- Should be limited
 - Delays the manifestation of errors
- Can be done in hardware
 - e.g. null-pointer

Safe Languages

- There are typed languages that are not safe (weakly typed languages)
- All safe languages use types (either statically or dynamically)

	Typed		Untyped
	Static	Dynamic	
Safe	ML, Java,	Lisp, Scheme	λ -calculus
Unsafe	<i>C</i> , <i>C</i> ++,	?	Assembly

 We will be concerned mainly with statically typed languages

ECS 240 Lecture 14

Why Typed Languages?

- Development
 - Type checking catches many mistakes early
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation
- Maintenance
 - Types act as checked specifications
 - Types can enforce abstraction
- Execution
 - Static checking reduces the need for dynamic checking
 - Safe languages are easier to analyze statically
 - the compiler can generate better code

Why Not Typed Languages?

- Static type checking imposes constraints on the programmer
 - Some valid programs might be rejected
 - But often they can be made well-typed easily
 - Hard to step outside the language (e.g. OO programming in a non-OO language)
- Dynamic safety checks can be costly
 - 50% is a possible cost of bounds-checking in a tight loop
 - In practice, the overall cost is much smaller
 - Memory management must be automatic \Rightarrow need a garbage collector with the associated run-time costs
 - Some applications are justified to use weakly-typed languages

Properties of Type Systems

- How do types differ from other program annotations
 - Types are more precise than comments
 - Types are more easily mechanizable than program specifications
- Expected properties of type systems:
 - Types should be enforceable
 - Types should be checkable algorithmically
 - Typing rules should be transparent
 - It should be easy to see why a program is not well-typed

- Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)
- A fair amount of careful analysis is required to avoid false claims of type safety
- A formal presentation of a type system is a precise specification of the type checker
 - And allows formal proofs of type safety
- But even informal knowledge of the principles of type systems help

Formalizing a Type System

A multi-step process

- 1. Syntax
 - Of expressions (programs)
 - Of types
 - Issues of binding and scoping
- 2. Static semantics (typing rules)
 - Define the typing judgment and its derivation rules
- 3. Dynamic semantics (e.g., operational)
 - Define the evaluation judgment and its derivation rules
- 4. Type soundness
 - Relates the static and dynamic semantics
 - State and prove the soundness theorem

Typing Judgments

- Judgments
 - A statement J about certain formal entities
 - Has a truth value \vDash J
 - Has a derivation $\vdash \mathbf{J}$
- A common form of the typing judgment: $\Gamma \vdash e : \tau$ (e is an expression and τ is a type)
- + Γ is a set of type assignments for the free variables of e
 - Defined by the grammar $\Gamma ::= \cdot | \Gamma, X : \tau$
 - Usually viewed as a set of type assignments
 - Type assignments for variables not free in e are not relevant
 - E.g, $x : int, y : int \vdash x + y : int$

Typing rules

- Typing rules are used to derive typing judgments
- Examples:

$$\begin{array}{c} \Gamma \vdash 1 : \text{int} \\ \\ \frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} \\ \\ \hline \end{array}
 \begin{array}{c} \Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int} \\ \hline \Gamma \vdash e_1 + e_2 : \text{int} \end{array}
 \end{array}$$

Typing Derivations

- A typing derivation is a derivation of a typing judgment
- Example:

	$x:\texttt{int} \vdash x:\texttt{int}$	$\overline{x:\texttt{int}Dash\texttt{1}:\texttt{int}}$
$\overline{x: \texttt{int} \vdash x: \texttt{int}}$	$x: \texttt{int} \vdash x$	r + 1: int
x:int	-x + (x + 1) : int	

- We say that $\Gamma \vdash e : \tau$ to denote that there is a derivation of this typing judgment
- Type checking: given Γ , e and τ find a derivation
- + Type inference: given Γ and e, find τ and a derivation

Proving Type Soundness

- A typing judgment has a truth value
- Define what it means for a <u>value</u> to have a type

$$\textbf{v} \in \parallel \tau \parallel$$

(e.g. 5 $\in \parallel$ int \parallel \quad and true $\in \parallel$ bool \parallel)

• Define what it means for an <u>expression</u> to have a type

 $\textbf{e} \in \quad \mid \tau \mid \quad \textbf{iff} \qquad \forall \textbf{v}. \textbf{ (e} \Downarrow \textbf{v} \Rightarrow \textbf{v} \in \parallel \tau \parallel \textbf{)}$

Prove type soundness

```
If \cdot \vdash e : \tau then e \in |\tau|
```

or equivalently

 $\textbf{If} \cdot \vdash \textbf{e} : \tau \text{ and } \textbf{e} \Downarrow \textbf{v} \text{ then } \textbf{v} \in \parallel \tau \parallel$

- This implies safe execution (since the result of an unsafe execution is not in $\parallel \tau \parallel$ for any $\tau)$

Next

- We will give formal description of first-order type systems (no type variables)
 - Function types (simply typed λ -calculus)
 - Simple types (integers and booleans)
 - Structured types (products and sums)
 - Imperative types (references and exceptions)
 - Recursive types
- The type systems of most common languages are first-order
- The we move to second-order type systems
 - Polymorphism and abstract types

First-Order Type Systems

Simply-Typed Lambda Calculus

Syntax:

- $\tau_1 \rightarrow \tau_2$ is the function type
- ightarrow associates to the right
- Arguments have typing annotations
- This language is also called F_1

Static Semantics of F_1

- The typing judgment $\Gamma \vdash e : \tau$
- The typing rules

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau} \qquad \frac{\Gamma,x:\tau\vdash e:\tau'}{\Gamma\vdash\lambda x:\tau.e:\tau\to\tau'}$$
$$\frac{\Gamma\vdash e_1:\tau_2\to\tau\quad\Gamma\vdash e_2:\tau_2}{\Gamma\vdash e_1e_2:\tau}$$

Static Semantics of F_1 (Cont.)

• More typing rules

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash n : \text{int} \quad \Gamma \vdash e_1 + e_2 : \text{int}}$$

 $\begin{array}{l} \hline { { \ } {$

ECS 240 Lecture 14

Typing Derivation in F_1

- Consider the term
 - λx : int. λb : bool. if b then f x else x
 - With the initial typing assignment $f: int \rightarrow int$

Type Checking in F_1

- Type checking is easy because
 - Typing rules are syntax directed
 - Typing rules are compositional
 - All local variables are annotated with types
- In fact, type inference is also easy for F_1
- Without type annotations an expression does not have a unique type

 $\cdot \vdash \lambda x. x : int \rightarrow int$

 $\cdot \vdash \lambda \textbf{x. x}: \textbf{bool} \rightarrow \textbf{bool}$

Operational Semantics of F_1

• Judgment:

Values

v ::= n | true | false | λx : τ . e

• The evaluation rules ...

Operational Semantics of F_1 (Cont.)

Call-by-value evaluation rules (sample)

 $\lambda x : \tau . e \Downarrow \lambda x : \tau . e$ $e_1 \Downarrow \lambda x : \tau \cdot e'_1 \quad e_2 \Downarrow v_2 \quad [v_2/x]e'_1 \Downarrow v$ $e_1 e_2 \Downarrow v$ $e_1 \Downarrow n_1 \quad e_2 \Downarrow n_2 \quad n = n_1 + n_2$ $n \Downarrow n$ $e_1 + e_2 \Downarrow n$ $e_1 \Downarrow \texttt{true} \quad e_t \Downarrow v$ Evaluation undefined if e_1 then e_t else $e_f \Downarrow v$ for ill-typed programs ! $e_1 \Downarrow \texttt{false} \quad e_f \Downarrow v$ if e_1 then e_t else $e_f \Downarrow v$

Type Soundness for F_1

- Theorem:
 - If $\cdot \vdash e : \tau$ and $e \Downarrow v$ then $\cdot \vdash v : \tau$
 - Also called, <u>subject reduction</u> theorem, <u>type preservation</u> theorem
- Try to prove by induction on e
 - Won't work because $[v_2/x]e'_1$ in the evaluation of $e_1 e_2$
 - Same problem with induction on $\cdot \vdash e : \tau$
- Try to prove by induction on $\boldsymbol{\tau}$
 - Won't work because e_1 has a "bigger" type than $e_1 e_2$
- Try to prove by induction on $e \Downarrow v$
 - To address the issue of $[v_2/x]e'_1$
 - This is it!

Type Soundness Proof

Consider the case

$$\mathcal{E} :: \frac{e_1 \Downarrow \lambda x : \tau_2 \cdot e'_1 \quad e_2 \Downarrow v_2 \quad [v_2/x] e'_1 \Downarrow v}{e_1 e_2 \Downarrow v}$$

and by inversion on the derivation of $e_1 \; e_2$: τ

$$\mathcal{D} :: \frac{\cdot \vdash e_1 : \tau_2 \longrightarrow \tau \quad \cdot \vdash e_2 : \tau_2}{\cdot \vdash e_1 \: e_2 : \tau}$$

- From IH on $e_1 \Downarrow \dots$ we have $\cdot, x : \tau_2 \vdash e_1' : \tau$
- From IH on $e_2 \Downarrow ...$ we have $\cdot \vdash v_2 : \tau_2$
- Need to infer that $\cdot \vdash [v_2/x]e_1' : \tau$ and use the IH
 - We need a substitution lemma (by induction on e_1 ')

Significance of Type Soundness

- The theorem says that the result of an evaluation has the same type as the initial expression
- The theorem <u>does not</u> say that
 - The evaluation never gets stuck (e.g., trying to apply a non-function, to add non-integers, etc.), nor that
 - The evaluation terminates
- Even though both of the above facts are true of F_1
- We need a small-step semantics to prove that the execution never gets stuck

Small-Step Contextual Semantics for F_1

• We define redexes

```
r ::= n_1 + n_2 | if b then e_1 else e_2 | (\lambda x:\tau.e_1) v_2
```

and contexts

 $H ::= H_1 + e_2 | n_1 + H_2 | \text{ if } H \text{ then } e_1 \text{ else } e_2 | H_1 e_2 | (\lambda x : \tau. e_1) H_2$

and local reduction rules

 $\begin{array}{ll} \mathsf{n}_1 + \mathsf{n}_2 & \to \mathsf{n}_1 \text{ plus } \mathsf{n}_2 \\ \text{if true then } \mathsf{e}_1 \text{ else } \mathsf{e}_2 & \to \mathsf{e}_1 \\ \text{if false then } \mathsf{e}_1 \text{ else } \mathsf{e}_2 \to \mathsf{e}_2 \\ (\lambda x : \tau. \ \mathsf{e}_1) \ \mathsf{v}_2 & \to [\mathsf{v}_2/\mathsf{x}]\mathsf{e}_1 \end{array}$

- and one global reduction rule $H[r] \rightarrow H[e] \quad \text{iff } r \rightarrow e$

Contextual Semantics for F_1

- Decomposition lemmas:
 - 1. If $\cdot \vdash e : \tau$ and e is not a value then there exist (unique) H and r such that e = H[r]
 - any well typed expression can be decomposed
 - Any well-typed non-value can make progress
 - 2. Furthermore, there exists τ' such that $\cdot \vdash r : \tau'$
 - the redex is closed and well typed
 - 3. Furthermore, there exists e' such that $r \rightarrow e'$ and $\cdot \vdash e'$: τ'
 - local reduction is type preserving
 - 4. Furthermore, for any e', $\cdot \vdash e'$: τ' implies $\cdot \vdash H[e']$: τ
 - the expression preserves its type if we replace the redex with an expression of same type

Contextual Semantics of F_1

- Type preservation theorem
 - If $\cdot \vdash e : \tau$ and $e \rightarrow e'$ then $\cdot \vdash e' : \tau$
 - Follows from the decomposition lemma
- Progress theorem
 - If $\cdot \vdash e: \tau$ and e is not a value then there exists e' such that e can make progress: $e \to e'$
- Progress theorem says that execution can make progress on a well typed expression
- Furthermore, due to type preservation we know that the execution of a well typed expression never gets stuck
 - this is a common way to state and prove type safety of a language

Product Types - Static Semantics

- Extend the syntax with (binary) tuples $e ::= ... | (e_1, e_2) |$ fst e | snd e $\tau ::= ... | \tau_1 \times \tau_2$
 - This language is sometimes called F_1^\times
- Same typing judgment $\Gamma \vdash e : \tau$

$$\begin{array}{c|c} \Gamma \vdash e_1 : \tau_1 & \Gamma \vdash e_2 : \tau_2 \\ \hline \Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2 \end{array}$$

$$\begin{array}{c|c} \Gamma \vdash e : \tau_1 \times \tau_2 \\ \hline \Gamma \vdash \operatorname{fst} e : \tau_1 \end{array} & \begin{array}{c|c} \Gamma \vdash e : \tau_1 \times \tau_2 \\ \hline \Gamma \vdash \operatorname{snd} e : \tau_2 \end{array}$$

Product Types: Dynamic Semantics and Soundness

- New form of values: $v ::= ... | (v_1, v_2)$
- New (big step) evaluation rules:

$$\frac{e_1 \Downarrow v_1 \quad e_2 \Downarrow v_2}{(e_1, e_2) \Downarrow (v_1, v_2)}$$

$$\frac{e \Downarrow (v_1, v_2)}{\texttt{fst } e \Downarrow v_1} \quad \frac{e \Downarrow (v_1, v_2)}{\texttt{snd } e \Downarrow v_2}$$

- New contexts: $H ::= ... | (H_1, e_2) | (v_1, H_2) | fst H | snd H$
- New redexes:

$$\begin{array}{l} \texttt{fst} (\texttt{v}_1, \texttt{v}_2) \rightarrow \texttt{v}_1 \\ \texttt{snd} (\texttt{v}_1, \texttt{v}_2) \rightarrow \texttt{v}_2 \end{array}$$

• Type soundness holds just as before

ECS 240 Lecture 14

Records

- Records are like tuples with labels
- New form of expressions

$$e ::= ... | \{L_1 = e_1, ..., L_n = e_n\} | e.L$$

New form of values

$$v ::= \{L_1 = v_1, ..., L_n = v_n\}$$

New form of types

$$\tau ::= ... | \{L_1 : \tau_1, ..., L_n : \tau_n\}$$

- ... follows the model of F_1^{\times}
 - typing rules
 - derivation rules
 - type soundness
Sum Types

- We need types of the form
 - either an int or a float
 - either 0 or a pointer
 - either true or false
 - These are called disjoint union types
- New form of expressions and types

```
e ::= ... | injl e | injr e |
```

```
case e of injl x \rightarrow e1 | injr y \rightarrow e2
```

- $\tau ::= \dots \mid \tau_1 + \tau_2$
- A value of type τ_1 + τ_2 is either a τ_1 or a τ_2
- Like union in C or Pascal, but safe
 - distinguishing between components is under compiler control
- case is a binding operator: x is bound in e_1 and y is bound in e_2

Examples with Sum Types

- Consider the type "unit" with a single element called *
- The type "optional integer" defined as "unit + int"
 - Useful for optional arguments or return values
 - No argument: injl *
 - Argument is 5: injr 5
 - To use the argument you <u>must</u> test the kind of argument
 - case arg of injl x \Rightarrow "no_arg_case" | injr y \Rightarrow "...y..."
 - injl and injr are tags and case is tag checking
- Bool is a union type: bool = unit + unit
 - true is injl*
 - false is injr*
 - if e then e_1 else e_2 is case e of injl $x \Rightarrow e_1 \mid$ injr $y \Rightarrow e_2$
 - Check the equivalence of the static and dynamic semantics

Static Semantics of Sum Types

New typing rules

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \operatorname{injl} e : \tau_1 + \tau_2} \quad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \operatorname{injr} e : \tau_1 + \tau_2}$$

 $\underline{\Gamma \vdash e_1 : \tau_1 + \tau_2 \quad \Gamma, x : \tau_1 \vdash e_l : \tau \quad \Gamma, y : \tau_2 \vdash e_r : \tau }$

 $\label{eq:case_l} \mathsf{F} \vdash \mathsf{case} \; e_1 \; \mathsf{of} \; \mathsf{injl} \; x \Rightarrow e_l \; | \; \mathsf{injr} \; y \Rightarrow e_r : \tau$

- Types are not unique anymore
 - injl 1 : int + bool
 - injl 1 : int + (int \rightarrow int)
 - this complicates type checking, but still doable

Dynamic Semantics of Sum Types

- New values
 v ::= ... | injl v | injr v
- New evaluation rules

 $\begin{array}{c} e \Downarrow v & e \Downarrow v \\ \hline \texttt{injl} e \Downarrow \texttt{injl} v & \texttt{injr} e \Downarrow \texttt{injr} v \\ \hline e \Downarrow \texttt{injl} v & [v/x]e_l \Downarrow v' \\ \hline e \texttt{det} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline e \Downarrow \texttt{injr} v & [v/y]e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \\ \hline \texttt{case} e \texttt{of} \texttt{injl} x \Rightarrow e_l \mid \texttt{injr} y \Rightarrow e_r \Downarrow v' \end{cases}$

Type Soundness for F_1^+

- Type soundness still holds
- No way to use a $\tau_1 + \tau_2$ inappropriately
- The key is that the only way to use a $\tau_1 + \tau_2$ is with case, which ensures that you are not using a τ_1 as a τ_2
- In C or Pascal checking the tag is the responsibility of the programmer!
 - Unsafe

Types for Imperative Features

- We looked at types for pure functional languages
- Now we look at types for imperative features
- Such types are used to characterize non-local effects
 - assignments
 - exceptions
- Contextual semantics is useful here

Reference Types

- Such types are used for mutable memory cells
- Syntax (as in ML)

```
e ::= ... | ref e : \tau | e_1 := e_2 | ! e
\tau ::= ... | \tau ref
```

- ref e evaluates e, allocates a new memory cell, stores the value of e in it and returns the address of the memory cell
 - like malloc + initialization in C, or new in C++ and Java
- $e_1 := e_2$, evaluates e_1 to a memory cell and updates its value with the value of e_2
- ! e evaluates e to a memory cell and returns its contents

Global Effects with Reference Cells

 A reference cell can escape the static scope where it was created

```
(\lambda f:int \rightarrow int ref. !(f 5)) (\lambda x:int. ref x : int)
```

- The value stored in a reference cell must be visible from the entire program
- The "result" of an expression must now include the changes to the heap that it makes
- To model reference cells we must extend the evaluation model

Modeling References

- A heap is a mapping from addresses to values $h ::= \cdot | h, a \leftarrow v : \tau$
 - $a \in \text{Addresses}$
 - We tag the heap cells with their types
 - Types are useful only for static semantics. They are not needed for the evaluation \Rightarrow not a part of the implementation
- We call a "program" an expression along with a heap p ::= heap h in e
 - The initial program is "heap \emptyset in e"
 - Heap addresses act as bound variables in the expression
 - This is a trick that allows easy reuse of properties of local variables for heap addresses
 - e.g., we can rename the address and its occurrences at will

Static Semantics of References

• Typing rules for expressions:

$$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash (\operatorname{ref} e : \tau) : \tau \operatorname{ref}} \qquad \frac{\Gamma \vdash e : \tau \operatorname{ref}}{\Gamma \vdash !e : \tau}$$

$$\frac{\Gamma \vdash e_1 : \tau \text{ ref } \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 := e_2 : \text{unit}}$$

• and for programs

$$\frac{\Gamma \vdash v_i : \tau_i \ (i = 1 \dots n) \quad \Gamma \vdash e : \tau}{\vdash \text{heap } h \text{ in } e : \tau}$$

where $\Gamma = a_1 : \tau_1 \operatorname{ref}, \dots, a_n : \tau_n \operatorname{ref}$ and $h = a_1 \leftarrow v_1 : \tau_1, \dots, a_n \leftarrow v_n : \tau_n$

ECS 240 Lecture 14

Exceptions

- A mechanism that allows non-local control flow
 - Useful for implementing the propagation of errors to caller
- Exceptions ensure that errors are not ignored
 - Compare with the manual error handling in C
- Languages with exceptions:
 - C++, ML, Modula-3, Java
- We assume that there is a special type exn of exceptions
 - exn could be int to model error codes
 - In Java or C++, exn is a special object type

Modeling Exceptions

• Syntax

```
\begin{array}{l} e \mathrel{\mathop:}:= ... \mid raise \; e \; | \; try \; e_1 \; handle \; x \Rightarrow e_2 \\ \tau \mathrel{\mathop:}:= ... \; | \; exn \end{array}
```

- We ignore here how exception values are created
 - In examples we will use integers as exception values
- The handler binds x in e_2 to the actual exception value
- The "raise" expression never returns to the immediately enclosing context
 - 1 + raise 2 is well-typed
 - if (raise 2) then 1 else 2 is also well-typed
 - (raise 2) 5 is also well-typed
 - What should the type of raise be?

Example with Exceptions

- A (strange) factorial function let $f = \lambda x$:int. λres :int. if x = 0 then raise res else f(x - 1) (res * x)in try f 51 handle $x \Rightarrow x$
- The function returns in one step from the recursion
- The top-level handler catches the exception and turns it into a regular result

Typing Exceptions

• New typing rules

$$\frac{\Gamma \vdash e : \texttt{exn}}{\Gamma \vdash \texttt{raise} \ e : \tau}$$

$$\Gamma \vdash e_1 : \tau \quad \Gamma, x : e_1 \vdash e_2 : \tau$$

$$\mathsf{\Gamma} \vdash \texttt{try} \ e_1 \text{ handle } x \Longrightarrow e_2 : \tau$$

- A raise expression has an arbitrary type
 - This is a clear sign that the expression does not return to its evaluation context
- The type of the body of try and of the handler must match
 - Just like for conditionals

ECS 240 Lecture 14

Recursive Types Subtyping

ECS 240 Lecture 14

Recursive Types

- It is useful to be able to define recursive data structures
- Example: lists
 - A list of elements of type τ (a τ list) is either empty or it is a pair of a τ and a τ list

 τ list = unit + ($\tau \times \tau$ list)

- This is a recursive equation. We take its solution to be the smallest set of values L that satisfies the equation

L = {*} U (T × L)

where T is the set of values of type $\boldsymbol{\tau}$

- Note: this interpretation can be troublesome
 - + E.g. τ = $\tau \rightarrow \tau,$ but only for trivial sets we have T = T \rightarrow T
- Another interpretation is that the recursive equation is up-to set isomorphism

Recursive Types

• We introduce a recursive type constructor

 μ t. τ

- The type variable t is bound in $\boldsymbol{\tau}$
- This is the solution to the equation

t $\simeq \tau$ ~ (t is isomorphic with $\tau)$

- E.g., τ list = μ t. (unit + $\tau \times$ t)
- This allows "unnamed" recursive types
- We introduce syntactic operations for the conversion between $\mu t.\tau$ and $[\mu t.\tau/t]\tau$
- + E.g. between " τ list" and "unit + $\tau \times \tau$ list"

 $e ::= ... | fold_{\mu t,\tau} e | unfold_{\mu t,\tau} e$ $\tau ::= ... | t | \mu t.\tau$

Example with Recursive Types

- Lists
 - τ list = μt. (unit + τ × t) nil_τ = fold_{τ list} (injl *) cons_τ = λx:τ.λL:τ list. fold_{τ list} injr (x, L)
- A list length function length_{τ} = λL : τ list. case (unfold_{τ list} L) of injl x \Rightarrow 0 | injr y \Rightarrow 1 + length_{τ} (snd y)
- Verify that
 - nil_{τ} : τ list
 - $\mbox{cons}_{\tau} \quad : \tau \rightarrow \tau \mbox{ list } \rightarrow \tau \mbox{ list }$
 - $\text{length}_{\tau}:\tau$ list \rightarrow int

$$\begin{array}{l} {\displaystyle \Gamma \vdash e : \mu t.\tau} \\ {\displaystyle \overline{\Gamma \vdash \mathrm{unfold}_{\mu t.\tau} \ e : [\mu t.\tau/t]\tau}} \\ \\ {\displaystyle \frac{\displaystyle \Gamma \vdash e : [\mu t.\tau/t]\tau}{\displaystyle \overline{\Gamma \vdash \mathrm{fold}_{\mu t.\tau} \ e : \mu t.\tau}}} \end{array} \end{array}$$

- The typing rules are syntax directed
- Often, for syntactic simplicity, the fold and unfold operators are omitted
 - This makes type checking somewhat harder

Dynamics of Recursive Types

We add a new form of values

$$v ::= \dots | fold_{\mu^{\dagger} \cdot \tau} v$$

- The purpose of fold is to ensure that the value has the recursive type and not its unfolding
- The evaluation rules:

$$\frac{e \Downarrow v}{\operatorname{fold}_{\mu t.\tau} e \Downarrow \operatorname{fold}_{\mu t.\tau} v} \quad \frac{e \Downarrow \operatorname{fold}_{\mu t.\tau} v}{\operatorname{unfold}_{\mu t.\tau} e \Downarrow v}$$

- The folding annotations are for type checking only
- They can be dropped after type checking

Recursive Types in ML

- The language ML uses a simple syntactic trick to avoid having to write the explicit fold and unfold
- In ML recursive types are bundled with union types datatype t = C_1 of $\tau_1 | C_2$ of $\tau_2 | ... | C_n$ of τ_n (t can appear in τ_i)
 - E.g., datatype intlist = Nil of unit | Cons of int \times intlist
- When the programmer writes

Cons (5, 1)

- the compiler treats it as

fold_{intlist} (injr (5, 1))

- When the programmer writes
 - case e of Nil \Rightarrow ... | Cons (h, t) \Rightarrow ...

the compiler treats it as

- case unfold_{intlist} e of Nil \Rightarrow ... | Cons (h,t) \Rightarrow ... ECS 240 Lecture 14

Encoding Call-by-Value λ -calculus in F_1^{μ}

- So far, F₁ was so weak that we could not encode nonterminating computations
 - Cannot encode recursion
 - Cannot write the $\lambda x.x \times$ (self-application)
- The addition of recursive types makes typed $\lambda-$ calculus as expressive as untyped $\lambda-$ calculus !
- We can show a conversion algorithm from call-by-value untyped $\lambda\text{-calculus}$ to call-by-value $F_1{}^\mu$

Untyped Programming in F_1^{μ}

- We write <u>e</u> for the conversion of the term e to F_{1}^{μ}
 - The type of <u>e</u> is V = μ t. t \rightarrow t
- The conversion rules

<u>x</u> = x

- $\underline{\lambda x. e} = fold_V (\lambda x: V. \underline{e})$
- $\underline{e_1 \ e_2} = (unfold_V \underline{e_1}) \underline{e_2}$
- Verify that

1.
$$\cdot \vdash \underline{e} : V$$

- 2. $e \Downarrow v$ if and only if $\underline{e} \Downarrow \underline{v}$
- We can express non-terminating computation $D = (unfold_V (fold_V (\lambda x: V. (unfold_V x) x))) (fold_V (\lambda x: V. (unfold_V x) x)))$ or, equivalently
 - $\mathsf{D} = (\lambda \times : \mathsf{V}. (\mathsf{unfold}_{\mathsf{V}} \times) \times) (\mathsf{fold}_{\mathsf{V}} (\lambda \times : \mathsf{V}. (\mathsf{unfold}_{\mathsf{V}} \times) \times)))$

ECS 240 Lecture 14

Subtyping

- Viewing types as denoting sets of values, it is natural to consider a subtyping relation between types as induced by the subset relation between sets
- Informal intuition:
 - If τ is a subtype of σ then any expression with type τ also has type σ
 - If τ is a subtype of σ then any expression of type τ can be used in a context that expects a σ
 - Subtyping is reflexive and transitive
 - We write τ < σ to say that τ is a subtype of σ

Subtyping Examples

- FORTRAN introduced int < real
 - 5 + 1.5 is well-typed in many languages
- PASCAL had [1..10] < [0..15] < int
- It is generally accepted that subtyping is a fundamental property of object-oriented languages
 - Let S be a subclass of C. Then an instance of S can be used where an instance of C is expected
 - This is "subclassing \Rightarrow subtyping" philosophy

Subsumption

- We formalize the informal requirement on subtyping
- Rule of <u>subsumption</u>
 - If τ < σ then an expression of type τ also has type σ

$$\frac{\Gamma \vdash e : \tau \quad \tau < \sigma}{\Gamma \vdash e : \sigma}$$

- But now type safety is in danger:
 - If we say that int < int \rightarrow int
 - Then we can prove that "5 5" is well typed !
- There is a way to construct the subtyping relation to preserve type safety

Defining Subtyping

- The formal definition of subtyping is by derivation rules for the judgment τ < σ
- We start with subtyping on the base types
 - E.g. int < real or nat < int
 - These rules are language dependent and are typically based directly on types-as-sets arguments
- We then make subtyping a preorder (reflexive and transitive)

$$\frac{\tau_1 < \tau_2 \quad \tau_2 < \tau_3}{\tau_1 < \tau_3}$$

• Then we build-up subtyping for "larger" types

Subtyping for Pairs

• Try
$$\frac{\tau < \sigma \quad \tau' < \sigma'}{\tau \times \tau' < \sigma \times \sigma'}$$

- Show (informally) that whenever a $\sigma\times\sigma'$ can be used, a $\tau\times\tau'$ can also be used:
- Consider the context H = H' [fst •] expecting a $\sigma \times \sigma'$
 - Then H' expects a σ
 - Because τ < σ then H' accepts a τ
 - + Take $e:\tau\times\tau'$. Then fst $e:\tau$ so it works in H'
 - Thus e works in H
- The case of "snd •" is similar

Subtyping for Functions

• Try the (naive) rule $\tau < \sigma \quad \tau' < \sigma'$

$$\tau \to \tau' < \sigma \to \sigma'$$

- This rule is unsound
 - Let Γ = f : int \rightarrow bool (and assume int < real)
 - We show using the above rule that $\Gamma \vdash f \ 5.0:$ bool
 - But this is wrong since 5.0 is not a valid argument of f

$$\begin{array}{ll} \hline{\Gamma \vdash f: \texttt{int} \rightarrow \texttt{bool}} & \frac{\texttt{int} < \texttt{real} & \texttt{bool} < \texttt{bool}}{\texttt{int} \rightarrow \texttt{bool} < \texttt{real} \rightarrow \texttt{bool}} \\ & \frac{\Gamma \vdash f: \texttt{real} \rightarrow \texttt{bool}}{\Gamma \vdash f \texttt{5.0: real}} & \Gamma \vdash \texttt{5.0: real} \end{array}$$

Subtyping for Functions (Cont.)

The correct rule

$$\frac{\sigma < \tau \quad \tau' < \sigma'}{\tau \to \tau' < \sigma \to \sigma'}$$

- We say that \rightarrow is covariant in the result type and contravariant in the argument type
- Informal correctness argument:
 - Pick $\textbf{f}:\tau\rightarrow\tau'$
 - f expects an argument of type τ
 - + It also accepts an argument of type σ < τ
 - f returns a value of type τ'
 - Which can also be viewed as a σ' (since τ' < σ')
 - Hence f can be used as $\sigma \to \sigma'$

More on Contravariance

Consider the subtype relationships

- In what sense $f \in real \rightarrow int \Rightarrow f \in int \rightarrow int?$
 - "real \rightarrow int" has a larger domain!
- This suggests that "subtype-as-subset" interpretation is not straightforward

Subtyping References

Try covariance

$$\frac{\tau < \sigma}{\tau \, \text{ref} < \sigma \, \text{ref}} \qquad \text{Wrong!}$$

- Example: assume $\tau < \sigma$
- The following holds (if we assume the above rule):

 $x : \sigma, y : \tau \text{ ref}, f : \tau \rightarrow \text{int} \vdash y := x; f (! y)$

- Unsound: f is called on a σ but is defined only on τ
- Java has covariant arrays !
- If we want covariance of references we can recover type safety with a runtime check for each y := x
 - The actual type of x matches the actual type of y
 - But this is generally considered a bad design

Subtyping References (Cont.)

Try contravariance:

 $\frac{\tau < \sigma}{\sigma \operatorname{ref} < \tau \operatorname{ref}} \qquad \text{Also Wrong!}$

- Example: assume $\tau < \sigma$
- The following holds (if we assume the above rule):

 $x : \sigma, y : \sigma \text{ ref}, f : \tau \rightarrow \text{int} \vdash y := x; f (! y)$

- Unsound: f is called on a σ but is defined only on τ
- References are <u>invariant</u>
 - no subtyping for references (unless we are prepared to add run-time checks)
 - hence, arrays should be invariant
 - hence, mutable records should be invariant

Subtyping Recursive Types

- Recall τ list = μ t.(unit + $\tau \times$ t)
 - We would like τ list < σ list whenever τ < σ
- Try simple covariance:

$$\frac{\tau < \sigma}{\mu t.\tau < \mu t.\sigma} \qquad \text{Wrong!}$$

- This is wrong if t occurs contravariantly in $\boldsymbol{\tau}$
- Take τ = μ t.t \rightarrow int and σ = μ t.t \rightarrow real
- Above rule says that τ < σ
- We have $\tau{\simeq}\tau{\rightarrow}\text{int}$ and $\sigma{\simeq}\sigma{\rightarrow}\text{real}$
- $\tau < \sigma$ would mean covariant function type!
- How can we still have the subtyping for lists?

Subtyping Recursive Types (Cont.)

The correct rule

- We add as an assumption that the type variables stand for types with the desired subtype relationship
 - Before we assumed that they stand for the <u>same</u> type!
- Verify that subtyping now works properly for lists
- There is no subtyping between $\mu t.t{\rightarrow} int$ and $\mu t.t{\rightarrow} real$
Second-Order Type Systems

The Limitations of F_1

- In F_1 each function works exactly for one type
- Example: sorting function
 - sort : ($\tau \rightarrow \tau \rightarrow$ bool) $\rightarrow \tau$ array \rightarrow unit
- The various sorting functions differ only in typing
 - At runtime they perform exactly the same operations
 - Need different versions only to keep the type checker happy
- Two alternatives:
 - Circumvent the type system (example: C, Java), or
 - Use a more flexible type system that lets us write only one sorting function (example: ML, Java 1.5)

Polymorphism

- Informal definition
 - A function is polymorphic if it can be applied to "many" types of arguments
- Various kinds of polymorphism depending on the definition of "many"
 - subtype (or bounded) polymorphism
 - "many" = all subtypes of a given type
 - ad-hoc polymorphism
 - "many" = depends on the function
 - choose behavior at runtime (depending on types, e.g. sizeof)
 - parametric predicative polymorphism
 - "many" = all monomorphic types
 - parametric impredicative polymorphism
 - "many" = all types

Parametric Polymorphism: Types as Parameters

- We introduce type variables and allow expressions to have variable types
- We introduce polymorphic types

 $\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid \textbf{t} \mid \forall \textbf{t}. \tau$

e ::= x | λ x: τ .e | $e_1 e_2$ | Λ t. e | $e[\tau]$

- Λt . e is type abstraction (or generalization)
- $e[\tau]$ is type application (or instantiation)
- Examples:
 - id = $\Lambda t.\lambda x:t. x$: $\forall t.t \rightarrow t$
 - id[int] = λx :int. x : int \rightarrow int
 - id[bool] = λx :bool. x : bool \rightarrow bool
 - "id 5" is invalid. Use "id [int] 5" instead

Impredicative Polymorphism

• The typing rules:

$$\frac{x:\tau \text{ in }\Gamma}{\Gamma \vdash x:\tau} \qquad \frac{\Gamma, x:\tau \vdash e:\tau'}{\Gamma \vdash \lambda x:\tau.e:\tau \rightarrow \tau'}$$
$$\frac{\Gamma \vdash e_1:\tau \rightarrow \tau' \quad \Gamma \vdash e_2:\tau}{\Gamma \vdash e_1 e_2:\tau'}$$

 $\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \Lambda t.e : \forall t.\tau} \quad t \text{ does not occur in } \Gamma$

$$\frac{\Gamma \vdash e : \forall t.\tau'}{\Gamma \vdash e[\tau] : [\tau/t]\tau'}$$

ECS 240 Lecture 14

Impredicative Polymorphism (Cont.)

- Verify that "id [int] 5" has type int
- Note the side-condition in the rule for type abstraction
 - Prevents ill-formed terms like: λx :t. $\Lambda t.x$

- The evaluation rules are just like those of F_1
 - This means that type abstraction and application are all performed at compile time
 - We do not evaluate under Λ (Λ t. e is a value)
 - We do not have to operate on types at run-time
 - This is called phase separation: type checking and execution

Expressiveness of Impredicative Polymorphism

- This calculus is called
 - F₂
 - system F
 - second-order λ -calculus
 - polymorphic $\lambda\text{-calculus}$
- Polymorphism is extremely expressive
- We can encode many base and structured types in F_2

- Simple syntax but very complicated semantics
 - id can be applied to itself: "id [\forall t. t \rightarrow t] id"
 - This can lead to paradoxical situations in a pure set-theoretic interpretation of types
 - E.g., the meaning of id is a function whose domain contains a set (the meaning of $\forall t.t \rightarrow$ t) that contains id !
 - This suggests that giving an interpretation to impredicative type abstraction is tricky
- Complicated termination proof (Girard)
- Type reconstruction (typeability) is undecidable
 - If the type application and abstraction are missing
- How to fix it?
 - Restrict the use of polymorphism

Predicative Polymorphism

- Restriction: type variables can be instantiated only with monomorphic types
- This restriction can be expressed syntactically $\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid t$ $\sigma ::= \tau \mid \forall t. \sigma \mid \sigma_1 \rightarrow \sigma_2$
 - e ::= x | $e_1 e_2$ | λx : σ . e | Λt .e | e [τ]
 - Type application is restricted to mono types
 - Cannot apply "id" to itself anymore
- Same typing rules
- Simple semantics and termination proof
- Type reconstruction still undecidable
- Must restrict further !

Prenex Predicative Polymorphism

- Restriction: polymorphic type constructor at top level only
- This restriction can also be expressed syntactically $\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid t$ $\sigma ::= \tau \mid \forall t. \sigma$
 - e ::= x | $e_1 e_2$ | λx : τ . e | Λt .e | e [τ]
 - Type application is restricted to mono types (i.e., predicative)
 - Abstraction only on mono types
 - The only occurrences of \forall are at the top level of a type $(\forall t. t \rightarrow t) \rightarrow (\forall t. t \rightarrow t)$ is <u>not</u> a valid type
- Same typing rules
- Simple semantics and termination proof
- Decidable type inference !

Expressiveness of Prenex Predicative F_2

- We have simplified too much !
- Not expressive enough to encode nat, bool
 - But such encodings are only of theoretical interest anyway
- Is it expressive enough in practice?
 - Almost
 - Cannot write something like
 - $(\lambda s: \forall t.\tau. ... s [nat] x ... s [bool] y) (\Lambda t. ... code for sort)$
 - Because the type of formal argument s cannot be polymorphic

- ML solution: slight extension of the predicative F₂
 - Introduce "let $x : \sigma = e_1$ in e_2 "
 - With the semantics of " $(\lambda x : \sigma.e_2) e_1$ "
 - And typed as " $[e_1/x] e_2$ "

$$\Box \vdash e_1 : \sigma \quad \Box, x : \sigma \vdash e_2 : \tau$$

$$\neg \vdash \texttt{let} \ x : \sigma = e_1 \ \texttt{in} \ e_2 : \tau$$

 This lets us write the polymorphic sort as let

```
s: \forall t.\tau = \Lambda t.... code for polymorphic sort ...
```

```
... s [nat] x .... s [bool] y
```

in

• Surprise: this was a major ML design flaw!

ECS 240 Lecture 14

ML Polymorphism and References

- let is evaluated using call-by-value but is typed using call-by-name
 - What if there are side effects?
- Example:

```
let x: \forall t. (t \rightarrow t) ref = \Lambda t.ref(\lambda x: t. x)
```

in

```
x [bool] := \lambda x: bool. not x
```

```
(! x [int]) 5
```

end

- Will apply "not" to 5
- Similar examples can be constructed with exceptions
- It took 10 years to find and agree on a clean solution

• A type in a let is generalized only for syntactic values

 $\Gamma \vdash e_1 : \sigma \quad \Gamma, x : \sigma \vdash e_2 : \tau \quad e_1$ is a syntactic $\Gamma \vdash \operatorname{let} x : \sigma = e_1 \operatorname{in} e_2 : \tau \quad \text{monomorphic}$

value or σ İS

- Since e_1 is a value, its evaluation cannot have sideeffects
- In this case call-by-name and call-by-value are the • same
- In the previous example ref (λx :t. x) is not a value •
- This is not too restrictive in practice !

Subtype Bounded Polymorphism

- We can bound the instances of a given type variable $\forall t < \tau. \sigma$
- Consider a function $\textbf{f}:\forall\textbf{t}\textbf{<}\tau.\textbf{t}\rightarrow\sigma$
- How is this different from f' $:\tau\to\sigma$
 - We can also invoke f' on any subtype of τ
- They are different if t appears in σ
 - E.g, $f: \forall \mbox{t<} \tau.\mbox{t} \rightarrow \mbox{t}$ and $f': \tau \rightarrow \tau$
 - Take $x : \tau' < \tau$
 - We have f [τ '] x : τ '
 - And f' $x : \tau$
 - We lost information with f'

Not covered in this class

- A lot!
- Dependent Types
- Types for abstraction and modularity
- Pi calculus
- Object calculi
- Type-based analysis
- Constraint-based analysis
- Applications (looked at some)
- And more ...