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Review

A-calculus is as expressive as a Turing machine

We can encode a multitude of data types in the
untyped A-calculus

To simplify programming it is useful to add types to
the language

We now start the study of type systems in the
context of the typed A-calculus
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Types

* A program variable can assume a range of values
during the execution of a program

* An upper bound of such a range is called a type of the
variable
- A variable of type “bool” should only assume boolean values
- If x has type “bool” then
« “not(x)” has a sensible meaning
but “1 + x” should not be allowed
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Typed and Untyped Languages

* Untyped languages
- Do not restrict the range of values for a given variable

- Operations might be applied to inappropriate arguments. The
behavior in such cases might be unspecified

- The pure A-calculus is an extreme case of an untyped language
(however, its behavior is completely specified)

Typed languages
- Variables are assigned (non-trivial) types
- A type system keeps track of types
- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed
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Execution Errors

+ The purpose of types is to prevent certain types of
execution errors

 Trapped execution errors
- Cause the computation to stop immediately
- Well-specified behavior
- Usually enforced by hardware
- E.g., Division by zero
- E.g., Invoking a floating point operation with a NaN
- E.g., Dereferencing the address O
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Execution Errors (IT)

- Untrapped execution errors
- Behavior is unspecified (depends on the state of the machine)

- Accessing past the end of an array
- Jumping to an address in the data segment

» A program is considered safe if it does not cause
untrapped errors
- Languages in which all programs are safe are safe languages

» For a given language designate a set of forbidden errors
- A superset of the untrapped errors

- Includes some trapped errors as well
» E.g., null pointer dereference
* To ensure portability across architectures
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Preventing Forbidden Errors - Static Checking

+ Forbidden errors can be caught by a combination of
static and run-time checking

» Static checking
- Detects errors early, before testing

- Types provide the necessary static information for static
checking

- E.g., ML, Modula-3, Java

- Detecting certain/most errors statically is undecidable in
most languages
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Preventing Forbidden Errors - Dynamic Checking

Required when static checking is undecidable
- e.g., array-bounds checking

Run-time encoding of types are still used
- e.g., Scheme, Lisp

Should be limited

- Delays the manifestation of errors

Can be done in hardware
- e.g. null-pointer
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Safe Languages

There are typed languages that are not safe (weakly
typed languages)

All safe languages use types (either statically or
dynamically)

Typed Untyped
Static Dynamic
Safe ML, Java, ... | Lisp, Scheme | A\-calculus
Unsafe C, C++, .. ? Assembly

We will be concerned mainly with statically typed

languages
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Why Typed Languages?

* Development
- Type checking catches many mistakes early
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signatures enable separate compilation

« Maintenance
- Types act as checked specifications
- Types can enforce abstraction

+ Execution
- Static checking reduces the need for dynamic checking

- Safe languages are easier to analyze statically
- the compiler can generate better code
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Why Not Typed Languages?

Static type checking imposes constraints on the
programmer

- Some valid programs might be rejected

- But often they can be made well-typed easily

- Hard to step outside the language (e.g. OO programming in a
non-OO0 language)

Dynamic safety checks can be costly

- 50% is a possible cost of bounds-checking in a tight loop
* In practice, the overall cost is much smaller

- Memory management must be automatic = need a garbage
collector with the associated run-time costs

- Some applications are justified to use weakly-typed languages
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Properties of Type Systems

How do types differ from other program annotations
- Types are more precise than comments

- Types are more easily mechanizable than program
specifications

Expected properties of type systems:
- Types should be enforceable
- Types should be checkable algorithmically

- Typing rules should be transparent
* It should be easy to see why a program is not well-typed
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Why Formal Type Systems?

Many typed languages have informal descriptions of
the type systems (e.g., in language reference manuals)

A fair amount of careful analysis is required to avoid
false claims of type safety

A formal presentation of a type system is a precise
specification of the type checker
- And allows formal proofs of type safety

But even informal knowledge of the principles of type
systems help
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Formalizing a Type System

A multi-step process

1. Syntax
Of expressions (programs)
Of types
Issues of binding and scoping
2. Static semantics (typing rules)
Define the typing judgment and its derivation rules
3. Dynamic semantics (e.g., operational)
Define the evaluation judgment and its derivation rules
4. Type soundness

Relates the static and dynamic semantics
State and prove the soundness theorem
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Typing Judgments

» Judgments
- A statement J about certain formal entities
- Has a truth value £ J
- Has a derivation - J
+ A common form of the typing judgment: T He: 1
(e is an expression and T is a type)
I' is a set of type assignments for the free variables
of e
- Defined by the grammar Fu= - |0,x:1
- Usually viewed as a set of type assignments
- Type assignments for variables not free in e are not relevant
- Eg, x:int,y:intkEx+y:int
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Typing rules

» Typing rules are used to derive typing judgments

+ Examples:

[ 1:int

rxr.T €[
' a7

[ Fey;:int [ Feo: int
[ Fe1 4+ e>:int
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Typing Derivations

A typing derivation is a derivation of a typing
judgment

Example:

r.intkF 2 :int 2 :inthkF 1 : int
r . int F 2 : int r . intF x4+ 1: int
x.intFz 4+ (x+1):int

We say that T' I e : t to denote that there is a
derivation of this typing judgment

Type checking: given T, e and t find a derivation
Type inference: given I and e, find T and a derivation
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Proving Type Soundness

A typing judgment has a truth value
Define what it means for a value to have a type

vel ]|
(eg.5 €| int| andtrue € | bool | )
Define what it means for an expression to have a type
ec || iff Ww.(elv=vel|rT])

Prove type soundness
If -Fe:t theneec|T|
or equivalently
If -Fe:tande | vthenve | t|

This implies safe execution (since the result of an
unsafe execution is not in || T || for any t)
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Next

We will give formal description of first-order type
systems (no type variables)

- Function types (simply typed A-calculus)

- Simple types (integers and booleans)

- Structured types (products and sums)

- Imperative types (references and exceptions)

- Recursive types

The type systems of most common languages are
first-order

The we move to second-order type systems

- Polymorphism and abstract types
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First-Order Type Systems

ECS 240 Lecture 14

20



Simply-Typed Lambda Calculus

Syntax:
Terms e:= x|Axit.e|e; e,
| n|le +e,|iszeroe
| true | false | not e | if e; then e, else e,
Types t:u=int | bool | Ty — T,
*  T; — T, iS The function type
— associates to the right

Arguments have typing annotations

* This language is also called F,
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Static Semantics of F;

* The typing judgment
I'e:it
» The typing rules

v rerl Fx:7ke: 7

[ Fx T FFXe:Te:T7— 7'

|—|—€1:7‘2—>T |_|—€227'2

[ Fejes i T
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Static Semantics of F; (Cont.)

More typing rules
[ me;:int [ Feo:int

[ = n:int [ Fe1 +eo: int
[ - e : bool
[+ true : bool [ - not e : bool

[ Fepibool [ Fei7m Thepim

[~ 1if e; thene;elseeyr ! 7
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Typing Derivation in F,

- Consider the term
Ax . int. Ab : bool. if b then f x else x
- With the initial typing assignment f :int — int

[ f:int - int [ Fx ! int
[+ b: bool [ fx:int [ 2 int

f iint — int,x : int,b : bool - if b then f x else = : int

f int — int,x : int - Ab : bool. if b then f x else = : bool — int

f int — int - Ax : int.Ab : bool. if b then f x else x : int — bool — int
Where ' = f : int — int, x : int, b : bool
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Type Checking in F,

Type checking is easy because
- Typing rules are syntax directed
- Typing rules are compositional
- All local variables are annotated with types

In fact, type inference is also easy for F,

Without type annotations an expression does not have
a unique type

- AX. X tint — int

-+ Ax. X : bool — bool
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Operational Semantics of F,

»  Judgment:
* Values

vi=n| true | false | Axit. e

» The evaluation rules ...
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Operational Semantics of F; (Cont.)

» Call-by-value evaluation rules (sample)

Ax . T.ell AxT.e€

e1 b Az i1.e] ex vy [up/z]e] Yo
e1 ex v

er1ldny exldny n=mn;y+no

nin ert+exln
e1  true e Y v Evaluation undefined
if e; then ey else ey | v for ill-typed programs |

e1 |} false eyl v

if e; then ey elsees v
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Type Soundness for F,

Theorem:
If Fe:tande|vthen-Fv:xt

- Also called, subject reduction theorem, type preservation
theorem

Try to prove by induction on e

- Won' t work because [v,/x]e’ ;in the evaluation of e, e,
- Same problem with inductionon-Fe: =

Try to prove by induction on t

- Won’ t work because e; has a “bigger” type than e, e,
Try to prove by inductionone | v

- To address the issue of [v,/x]e’;

- This is itl
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Type Soundness Proof

Consider the case
e1 YAz 7] ex vy [up/zle] Jv
g el
and by inversion on the derivation of e; ex : 7

D--°'_€1:T2_>T el

HejexiT

FromIHone, || ..wehave -, x:1,Fe; it
FromIHone, || .. we have - F v, : T,

Need to infer that - + [v,/x]e; : T and use the IH
- We need a substitution lemma (by inductionone;’)
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Significance of Type Soundness

The theorem says that the result of an evaluation has
the same type as the initial expression

The theorem does not say that

- The evaluation never gets stuck (e.g., trying to apply a hon-
function, to add non-integers, etc.), nor that

- The evaluation terminates

Even though both of the above facts are true of F,

We need a small-step semantics to prove that the
execution never gets stuck
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Small-Step Contextual Semantics for F,

+ We define redexes
r:i=n;+n, | if bthene, elsee, | (Axit.e;) v,

» and contexts

H:u=H;+e,| nj+H,|if Hthene,elsee, | H, e, | (Axit. ;) H,
» and local reduction rules

n, +n, — n; plus n,

if true thene; elsee, — e,

if false thene, elsee, — e,

(Ax:t. e)) Vs, — [v,/x]e;
» and one global reduction rule

Hir] — H[e] iffr —e
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Contextual Semantics for F,

+  Decomposition lemmas:
1. If -+ e:tand e is not a value then there exist (unique) H
and r such that e = H[r]
any well typed expression can be decomposed
Any well-typed non-value can make progress
2. Furthermore, there exists v such that - -r: v
- the redex is closed and well typed

’

3. Furthermore, there exists e’ such thatr - e’ and - e’ : =
- local reduction is type preserving

4. Furthermore, foranye' ,-+e’ v implies -FH[e' ]:x

the expression preserves its type if we replace the redex with
an expression of same type
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Contextual Semantics of F,

Type preservation theorem
- If -Fe:tande — e then-Fe it
- Follows from the decomposition lemma

Progress theorem

- If - e:tand e is not a value then there exists e’ such that
e can make progress: e — e’

Progress theorem says that execution can make

progress oh a well typed expression

Furthermore, due to type preservation we know that
the execution of a well typed expression never gets
stuck

- this is a common way to state and prove type safety of a
language
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Product Types - Static Semantics

Extend the syntax with (binary) tuples
eu=..|(e,e;) |fste|snde

Tz LT X,
- This language is sometimes called F;*

Same typing judgment T'e: <
[ Fe1 T [ Fe>: 1o
T F (e1,en) i 71 X T

|_|—€Z7'1><7'2
[ Fsnde: ™

|_|—€Z7'1><7'2
[ Ffste:. Ty
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Product Types: Dynamic Semantics and Soundness

New form of values: v = ... | (v, V)

New (big step) evaluation rules:
erdvy exd v
(e1,e2) I (v1,v2)

el (v1,v2) el (vy,v2)
fst e | vy snd e | vo
New contexts: H:u= .. | (Hue,) | (vi, H,) | fst H | snd H
New redexes:
fst (vy, v,) — vy
snd (v, v,) — V,
Type soundness holds just as before
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Records

Records are like tuples with labels
New form of expressions
e=..|{L;=e, .., Ly=e}lel
New form of values
viz{l;=vq, ... L= v}

New form of types

vz LT, Ly T)
... follows the model of F*
- typing rules

- derivation rules
- type soundness
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Sum Types

We need types of the form
- either an int or a float
- either O or a pointer
- either true or false
- These are called disjoint union types

New form of expressions and types

e:=..|injle|injre|
case e of injl x — e, | injry — e,
LA I PR

- A value of type t, + 1, is either at; or a,

- Like union in C or Pascal, but safe
- distinguishing between components is under compiler control

- case is a binding operator: x is bound in e; and y is bound in e,
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Examples with Sum Types

* Consider the type “unit” with a single element called *

* The type “optional integer” defined as “unit + int”
- Useful for optional arguments or return values
* No argument: injl *
* Argument is B: injr 5
- To use the argument you must test the kind of argument
- case arg of injl x = “ho_arg_case” | injry = “.y...”
- injl and injr are tags and case is tag checking
* Bool is a union type: bool = unit + unit
- true is injl*
- false is injr*
- ifethene,elsee, is caseeof injl x=¢e|injry=e,
- Check the equivalence of the static and dynamic semantics
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Static Semantics of Sum Types

* New typing rules

|_|_€Z7'1 |_|_€:7'2
[ Finjle: 714+ 7™ [ Finjre: 7 + ™

[ Fei:m71+m T[,xe:mmFe 7 y:imber:T

[+ caseeq of injlax = ¢ | injry=er: T

- Types are not unique anymore
injl 1:int + bool
injl 1:int + (int — int)
- this complicates type checking, but still doable
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Dynamic Semantics of Sum Types

New values Vo
New evaluation rules

el v el v

injle | injlv injre | injr v

. linjlv | injrv

el injlv [v/z]e; | o'

case e of injl x = ¢; | injry = e, | v’

e | injrv  [v/yler o/

case ¢ of injl x = ¢; | injry = er | v/
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Type Soundness for F,*

Type soundness still holds
No way to use a T, + T, inappropriately

The key is that the only way to use a t; + t, is with
case, which ensures that you are not using at; as a t,

» In C or Pascal checking the tag is the responsibility of
the programmer!
- Unsafe
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Types for Imperative Features

We looked at types for pure functional languages
Now we look at types for imperative features

Such types are used to characterize non-local effects

- assignments
- exceptions

Contextual semantics is useful here
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Reference Types

* Such types are used for mutable memory cells

* Syntax (as in ML)
ei=..|refe:t|e i=e,|le
Tz ... | tref

- ref e - evaluates e, allocates a new memory cell, stores the
value of e in it and returns the address of the memory cell

- like malloc + initialization in C, or new in C++ and Java

- e, = e,, evaluates e; to a memory cell and updates its value
with the value of e,
- le - evaluates e to a memory cell and returns its contents
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Global Effects with Reference Cells

A reference cell can escape the static scope where it
was created
(Af:int — int ref. I(f B)) (Ax:int. ref x : int)

The value stored in a reference cell must be visible
from the entire program

The “result” of an expression must now include the
changes to the heap that it makes

To model reference cells we must extend the
evaluation model
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Modeling References

* A heap is a mapping from addresses to values
hi=.|ha«v:it

- a € Addresses

- We tag the heap cells with their types

- Types are useful only for static semantics. They are not

needed for the evaluation = not a part of the implementation
+ We call a “program” an expression along with a heap
p:=heaphine
- The initial program is “heap 0 in e”
- Heap addresses act as bound variables in the expression

- This is a trick that allows easy reuse of properties of local
variables for heap addresses

- e.g., we can rename the address and its occurrences at will
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Static Semantics of References

» Typing rules for expressions:
[ Fe: T [+ e : 7 ref
[+ (refe:T):Tref e : T

[ Fey:7ref [ Fesx:T

[ F ey i=eo:unit
» and for programs
v, (G=1..n) ke:T

~heap hine: T
where [ = a1 : 71 ref,...,an . ™ ref
and h=aq1 < v1 :7T1,...,an < Un . Tn
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Exceptions

A mechanism that allows non-local control flow

- Useful for implementing the propagation of errors to caller
Exceptions ensure that errors are not ighored

- Compare with the manual error handling in C

Languages with exceptions:

- C++, ML, Modula-3, Java

We assume that there is a special type exn of
exceptions

- exn could be int Yo model error codes

- In Java or C++, exn is a special object type
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Modeling Exceptions

- Syntax
e = .. | raise e | try e; handle x = e,
ti= ... | exn

+ We ignore here how exception values are created
- In examples we will use integers as exception values

* The handler binds x in e, to the actual exception value

* The “raise” expression never returns o the
immediately enclosing context
- 1+ raise 2 is well-typed
- if (raise 2) then 1 else 2 is also well-typed
- (raise 2) 5 is also well-typed
- What should the type of raise be?
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Example with Exceptions

A (strange) factorial function
let f = Ax:int.Ares:int. if x = O then
raise res
else

f(x-1) (res* x)
in try f 51 handle x = x

The function returns in one step from the recursion

The top-level handler catches the exception and turns
it into a reqular result

ECS 240 Lecture 14 49



Typing Exceptions

New typing rules

[ e : exn

[+ raisee: T

[ Fey:7 [,x:exnbFex:T
[ = trye; handlex = es . T

A raise expression has an arbitrary type

- This is a clear signh that the expression does not return to its
evaluation context

The type of the body of try and of the handler must
match

- Just like for conditionals
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Recursive Types
Subtyping

ECS 240 Lecture 14
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Recursive Types

- T+t is useful to be able to define recursive data
structures

- Example: lists
- A list of elements of type t (a < list) is either empty or it isa
pair of atand at list
T list = unit + (v x t list)
- This is a recursive equation. We take its solution to be the
smallest set of values L that satisfies the equation
L={*}u (T xL)
where T is the set of values of type t
- Note: this interpretation can be troublesome
- E.g. t=1— 1, butonly for trivial setswe have T=T > T

- Another interpretation is that the recursive equation is up-to
set isomorphism
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Recursive Types

- We introduce a recursive type constructor
ut. t
- The type variable t is bound in t
- This is the solution to the equation
t~t (tisisomorphic with t)
- E.g., tlist = ut. (unit +t x 1)
- This allows “unnamed” recursive types
- We introduce syntactic operations for the conversion

between ut.t and [utt/tTr

+ E.g. between “t list” and “unit + t x < list”
e = .| fold,.e|unfold, e
iz |t | uta
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Example with Recursive Types

Lists

T list = ut. (unit +t x 1)

nil. = fold, ;& (injl *)

cons, = Ax:tAL:t list. fold_ | injr (x, L)
A list length function

length, = AL:t list. case (unfold, | L) of injl x =0

| injr y = 1+ length, (snd y)

Verify that

- nil, it list

- cons, :t—tlist — tlist

- length, : t list — int
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Static Semantics of Recursive Types

[ Fe:utT
" Funfold,;, e : [put.T/t]T

e [pt.r/t]r
[+ foldy;.r e ut.7

The typing rules are syntax directed

Often, for syntactic simplicity, the fold and unfold
operators are omitted
- This makes type checking somewhat harder
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Dynamics of Recursive Types

We add a new form of values
vi= | fold . v

- The purpose of fold is to ensure that the value has the
recursive type and not its unfolding

The evaluation rules:

el v e fold,t.r v

The folding annotations are for type checking only
They can be dropped after type checking
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Recursive Types in ML

The language ML uses a simple syntactic trick to avoid
having to write the explicit fold and unfold

In ML recursive types are bundled with union types
datatype t = C; of 1y | C, of 7, | ... | C,, of <, (+ can appear in )
- E.g., datatype intlist = Nil of unit | Cons of int x intlist
When the programmer writes
Cons (5, )
- the compiler treats it as
foldyist (injr (5, 1))
When the programmer writes
- casee of Nil = ... | Cons (h, 1) = ..

the compiler treats it as

- case unfold, s+ € of Nil = ... | Cons (h,t) = ...
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Encoding Call-by-Value A-calculus in F*

+ So far, F; was so weak that we could not encode non-
terminating computations
- Cannot encode recursion
- Cannot write the Ax.x x (self-application)

* The addition of recursive types makes typed i-
calculus as expressive as untyped A-calculus |

We can show a conversion algorithm from call-by-value
untyped A-calculus to call-by-value F
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Untyped Programming in F,¥

We write e for the conversion of the term e to F*
- ThetypeofeisV=ut. + >+

The conversion rules

X = X

Ax. e = fold, (Ax:V. e)

e, e, =(unfold,ey)e,

Verify that

1. ‘Fe:V

2. e|vifandonlyife |v

We can express non-terminating computation

D = (unfold, (fold, (Ax:V. (unfold, x) x))) (fold, (A-x:V. (unfoldy x) x)))
or, equivalently

D = (A.x:V. (unfold, x) x) (foldy (Ax:V. (unfoldy x) x)))
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Subtyping
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Introduction to Subtyping

Viewing types as denoting sets of values, it is natural
to consider a subtyping relation between types as
induced by the subset relation between sets

Informal intuition:

- If tis asubtype of o then any expression with type t also has
type o

- If tis a subtype of o then any expression of type t can be
used in a context that expectsa o

- Subtyping is reflexive and transitive
- We write t < o to say that t is a subtype of o

ECS 240 Lecture 14 61



Subtyping Examples

FORTRAN introduced int < real
- 5+ 15 is well-typed in many languages

PASCAL had [1..10] < [0..15] < int

- Tt is generally accepted that subtyping is a
fundamental property of object-oriented languages

- Let S be a subclass of C. Then an instance of S can be used
where an instance of C is expected

- This is “subclassing = subtyping” philosophy
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Subsumption

We formalize the informal requirement on subtyping
Rule of subsumption
- If t <o then an expression of type t also has type o
[ Fe:T 7<o0
[ Fe:.o

But now type safety is in danger:
+ If we say that int < int — int
* Then we can prove that “5 5" is well typed |

There is a way to construct the subtyping relation to
preserve type safety
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Defining Subtyping

The formal definition of subtyping is by derivation
rules for the judgment t<o

We start with subtyping on the base types
- E.g. int<real or nat<int
- These rules are language dependent and are typically based
directly on types-as-sets arguments
We then make subtyping a preorder (reflexive and
transitive)
T <To To< T3

TT T < 73

Then we build-up subtyping for “larger” types
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Subtyping for Pairs

Try

T O T'<J’

7'><7"<0><a’

Show (informally) that whenever a ¢ x ¢’ can be used,
at X T can also be used:

+ Consider the context H = H' [fst e¢] expectinga o x o’
* Then H" expectsaoc
* Because t < o then H' acceptsar
+ Takee:t x 1. Then fst e :tso it works in H’
* Thus e works in H
The case of “snd e” is similar
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Subtyping for Functions

 Try the (naive) rule
r<o Tt <o

ro17<o— o

* This rule is unsound
- LetT'=f:int — bool (and assume int < real)
- We show using the above rule that T+ f 5.0 : bool
- But this is wrong since 5.0 is not a valid argument of f

int < real Dbool < bool
[ f:int — bool int — bool < real — bool

[ = f:real — bool [ 5.0 real

[ = f 5.0 :bool
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Subtyping for Functions (Cont.)

- The correct rule
o <T 7! < o’

ro17<o— o

+ We say that — is covariant in the result type and
contravariant in the argument type

Informal correctness argument:
* Pickf:t—7
- f expects an argument of type t
» It also accepts an argument of type o <t
* f returns a value of type v’
* Which can also be viewed as a 6" (sincet’ <o)
+ Hence f can be used as 0 — ¢
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More on Contravariance

Consider the subtype relationships
int — real

/\

real — real int — int

\/

real — int

+ Inwhat sense f € real — int = f € int — int?
« “real — int” has a larger domain!

This suggests that “subtype-as-subset”
interpretation is not straightforward
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Subtyping References

Try covariance
T O

Wrong!
T ref < o ref
- Example: assume t < o
- The following holds (if we assume the above rule):
x:o,y:tref,fit—=intky:=x f(ly)
- Unsound: f is called on a o but is defined only on t
- Java has covariant arrays |

If we want covariance of references we can recover
type safety with a runtime check for eachy := x

- The actual type of x matches the actual type of y

- But this is generally considered a bad design
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Subtyping References (Cont.)

- Try contravariance:
T<O

Also Wrong!
oref < 7ref

- Example: assume t < o
- The following holds (if we assume the above rule):
x:o,y:oref,fit—intFy:=x;f(y)
- Unsound: f is called on a o but is defined only on t
- References are invariant

- no subtyping for references (unless we are prepared to add
run-time checks)

- hence, arrays should be invariant
- hence, mutable records should be invariant
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Subtyping Recursive Types

Recall T list = ut.(unit + t=*t)
- We would like t list < o list whenever t< o

Try simple covariance:
T O

ut. T < pt.o

Wrong!

This is wrong if t occurs contravariantly in t
Take T = ut.t—int and o=ut.t—real

Above rule says that t< o

We have t~t—int and o~oc—real

<o would mean covariant function typel

How can we still have the subtyping for lists?
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Subtyping Recursive Types (Cont.)

The correct rule
t < S8
T < O
put.m < us.o

We add as an assumption that the type variables
stand for types with the desired subtype relationship
- Before we assumed that they stand for the same type!

Verify that subtyping now works properly for lists

There is no subtyping between ut.t—int and ut.t—real
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Second-Order Type Systems
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The Limitations of F,

In F; each function works exactly for one type

Example: sorting function
- sort: (t — t — bool) — t array — unit
The various sorting functions differ only in typing

- At runtime they perform exactly the same operations
- Need different versions only to keep the type checker happy

Two alternatives:
- Circumvent the type system (example: C, Java), or

- Use a more flexible type system that lets us write only one
sorting function (example: ML, Java 1.5)
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Polymorphism

Informal definition
A function is polymorphic if it can be applied to “many” types
of arguments
Various kinds of polymorphism depending on the
definition of “many”
- subtype (or bounded) polymorphism
* “many” = all subtypes of a given type
- ad-hoc polymorphism
* “many” = depends on the function
» choose behavior at runtime (depending on types, e.g. sizeof)
- parametric predicative polymorphism
* “many” = all monomorphic types
- parameftric impredicative polymorphism

* “many” = all types
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Parametric Polymorphism: Types as Parameters

+ We introduce type variables and allow expressions to
have variable types

+ We introduce polymorphic types
ti=b |t =1, | T]| Vi1
ei=x | Axite| e e, | At. e | e[t]
- Aft. e is type abstraction (or generalization)
- e[t] is type application (or instantiation)

+ Examples:
- id = At Ax:t. x Vit f
- id[int] = Ax:int. x :int — int
- id[bool] = Ax:bool. x : bool — bool

— “id B5” is invalid. Use “id [int] 5" instead
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Impredicative Polymorphism

The typing rules:

crin T Fx:7ke: T

FC+ox: 7T X :7e:7— 7

I_I—el:T—>T' [ Fe>: T

CFepes: 7

[ Fe:T
[+ At.e : Vt.T

t does not occur in I

CFe:Vtr!
[+ e[r] : [7/t]7’
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Impredicative Polymorphism (Cont.)

Verify that “id [int] 5” has type int

Note the side-condition in the rule for type
abstraction

- Prevents ill-formed terms like: Ax:t.At.x

The evaluation rules are just like those of F;

- This means that type abstraction and application are all
performed at compile time

- We do not evaluate under A (At. e is a value)
- We do not have to operate on types at run-time
- This is called phase separation: type checking and execution
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Expressiveness of Impredicative Polymorphism

» This calculus is called
- FZ
- system F
- second-order A-calculus
- polymorphic A-calculus

* Polymorphism is extremely expressive

+ We can encode many base and structured types in F,
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What’ s Wrong with F,

Simple syntax but very complicated semantics
- id can be applied to itself: “id [V+. t — t]id”

- This can lead to paradoxical situations in a pure set-theoretic
interpretation of types

- E.g., the meaning of id is a function whose domain contains a
set (the meaning of vt.t— 1) that contains id |

- This suggests that giving an interpretation to impredicative
type abstraction is tricky

Complicated termination proof (Girard)

Type reconstruction (typeability) is undecidable
- If the type application and abstraction are missing
How to fix it?

- Restrict the use of polymorphism
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Predicative Polymorphism

Restriction: type variables can be instantiated only
with monomorphic types

This restriction can be expressed syntactically

T..=b
O =7
e .= X

T, =T, | T
Vt. o | 0, — o,
e; e, | Axio.e | Ate | e [1]

- Type application is restricted to mono types
- Cannot apply “id” to itself anymore

Same typing rules

Simple semantics and termination proof
Type reconstruction still undecidable
Must restrict further |
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Prenex Predicative Polymorphism

+ Restriction: polymorphic type constructor at top level

» This restriction can also be expressed syntactically

only
T::=b
o=T
ez X

T, =T, | T
Vt.o
e e, | Axit. e | Ate | e [t]

- Type application is restricted to mono types (i.e., predicative)
- Abstraction only on mono types
- The only occurrences of ¥V are at the top level of a type

(Vt.t — 1) = (V. t — t) is not a valid type

» Same typing rules
+ Simple semantics and termination proof
» Decidable type inference !
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Expressiveness of Prenex Predicative F,

+ We have simplified oo much |

* Not expressive enough to encode nat, bool
- But such encodings are only of theoretical interest anyway

-+ Is it expressive enough in practice?
- Almost
- Cannot write something like
(As:Vtx. ...s [nat] x ... s [bool]ly) (At. ... code for sort)
- Because the type of formal argument s cannot be polymorphic
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ML’ s Polymorphic Let

ML solution: slight extension of the predicative F,

- Introduce “let x:o=¢;ine,”
- With the semantics of “(Ax : o.e,) e,
- And typed as “[e;/x] e,”

[ Fei:0 l,x.:0Fe>:.T

[ Fletx:0 =ejiner: T

This lets us write the polymorphic sort as
let
s : V.t = At. ... code for polymorphic sort ...
In
.. S [nat] x .... s [bool] y
Surprise: this was a major ML design flaw!
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ML Polymorphism and References

let is evaluated using call-by-value but is typed using
call-by-name
- What if there are side effects ?

Example:
let x:Vt. (t — t) ref = At.ref (Ax: t. x)
in
x [bool] := Ax: bool. not x
(I x [int]) 5
end

- Will apply “not” to 5
- Similar examples can be constructed with exceptions

It took 10 years to find and agree on a clean solution
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The Value Restriction in ML

A type in a let is generalized only for syntactic values

[Fei:0 T@Mx:oFe>:7 e Is a syntactic
value or o IS

[ Fletx:0 =e1inex: T  monomorphic

Since e, is a value, its evaluation cannot have side-
effects

In this case call-by-name and call-by-value are the
same

In the previous example ref (Ax:t. x) is not a value
This is not too restrictive in practice !
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Subtype Bounded Polymorphism

We can bound the instances of a given type variable
Vi<t. 0

Consider a functionf : Vt<t.t —» o

How is this different from " :t — o
- We can also invoke f on any subtype of t

They are different if t appears in o
- Eg, f:vtet > tand f it >t

- Take x: 1t <71

- Wehave f[t']x: 7

- Andf’ x:7

- We lost information with f’
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Not covered in this class

A lotl
Dependent Types
» Types for abstraction and modularity
» Pi calculus
+ Object calculi
+ Type-based analysis
+ Constraint-based analysis
- Applications (looked at some)
*+ And more ...
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