
1

Adversary Search

• Ref: Chapter 5

2

Games & A.I.

• Easy to measure success
• Easy to represent states
• Small number of operators
• Comparison against humans is possible.
• Many games can be modeled very easily,

although game playing turns out to be very
hard.

3

2 Player Games

• Requires reasoning under uncertainty.
• Two general approaches:

– Assume nothing more than the rules of the
game are important - reduces to a search
problem.

– Try to encode strategies using some type of
pattern-directed system (perhaps one that can
learn).

4

Search and Games

• Each node in the search tree corresponds to a
possible state of the game.

• Making a move corresponds to moving from the
current state (node) to a child state (node).

• Figuring out which child is best is the hard part.
• The branching factor is the number of possible

moves (children).

5

Search Tree Size

• For most interesting games it is impossible
to look at the entire search tree.

• Chess:
– branching factor is about 35
– typical match includes about 100 moves.
– Search tree for a complete game: 35100

6

Heuristic Search

• Must evaluate each choice with less than
complete information.

• For games we often evaluate the game tree
rooted at each choice.

• There is a tradeoff between the number of
choices analyzed and the accuracy of each
analysis.

7

Game Trees

8

Plausible Move Generator

• Sometimes it is possible to develop a move
generator that will (with high probability)
generate only those moves worth consideration.

• This reduces the branching factor, which means
we can spend more time analyzing each of the
plausible moves.

9

Recursive State Evaluation

• We want to rank the plausible moves
(assign a value to each resulting state).

• For each plausible move, we want to know
what kind of game states could follow the
move (Wins? Loses?).

• We can evaluate each plausible move by
taking the value of the best of the moves
that could follow it.

10

Assume the adversary is good.

• To evaluate an adversary’s move, we should
assume they pick a move that is good for
them.

• To evaluate how good their moves are, we
should assume we will do the best we can
after their move (and so on…)

11

Static Evaluation Function

• At some point we must stop evaluating states
recursively.

• At each leaf node we apply a static evaluation
function to come up with an estimate of how
good the node is from our perspective.

• We assume this function is not good enough to
directly evaluate each choice, so we instead
use it deeper in the tree.

12

Example evaluation functions

• Tic-Tac-Toe: number of rows, columns or
diagonals with 2 of our pieces.

• Checkers: number of pieces we have - the
number of pieces the opponent has.

• Chess: weighted sum of pieces:
– king=1000, queen=10, bishop=5, knight=5, ...

13

Minimax

• Depth-first search with limited depth.

• Use a static evaluation function for all leaf
states.

• Assume the opponent will make the best
move possible.

14

Minimax Search Tree
A

E F G

B

H I

C

J K

D

9 -6 0 0 -2 -4 -3

Our Move
Maximizing Ply

Opponent’s Move
Minimizing Ply

15

Minimax Algorithm

Minimax(curstate, depth, player):

If (depth==max)

Return static(curstate,player)

generate successor states s[1..n]

If (player==ME)

Return max of Minimax(s[i],depth+1,OPPONENT)

Else

Return min of Minimax(s[i],depth+1,ME)

16

The Game of MinMax
-3 2 -1
-2 3
4 1 -4

•Start in the center square.

•Player MAX picks any number in the current row.

•Player MIN picks any number in the resulting column.

•The game ends when a player cannot move.

•MAX wins if the sum of numbers picked is > 0.

17

-3 2 -1
-2 3
4 1 -4

-3 2 -1
-2 3
4 1 -4

-3 2 -1
-2 3
4 1 -4

-3 2 -1
3

4 1 -4

-3 2 -1
3

4 1 -4

-3 2 -1
-2
4 1 -4

-3 2 -1
-2
4 1 -4

18

-3

2

1

4 -4

-1 3

-1

3 -4

1 4

2

-3 2 -1
3

4 1 -4
MAX’s Turn

Max

Max

Min

Min

Max

19

Pruning

• We can use a branch-and-bound technique
to reduce the number of states that must be
examined to determine the value of a tree.

• We keep track of a lower bound on the
value of a maximizing node, and don’t
bother evaluating any trees that cannot
improve this bound.

20

-3

2

1

4 -4

-1 3

-1

3 -4

1 4

2

Max

Max

Min

Min

Max

Pruning in MinMax

21

Pruning Minimizing Nodes

• Keep track of an upper bound on the value
of a minimizing node.

• Don’t bother with any subtrees that cannot
improve (lower) the bound.

22

Minimax with
Alpha-Beta Cutoffs

• Alpha is the lower bound on maximizing nodes.
• Beta is the upper bound on minimizing nodes.

• Both alpha and beta get passed down the tree
during the Minimax search.

23

Usage of Alpha & Beta

• At minimizing nodes, we stop evaluating
children if we get a child whose value is
less than the current lower bound (alpha).

• At maximizing nodes, we stop evaluating
children as soon as we get a child whose
value is greater than the current upper
bound (beta).

24

Alpha & Beta

• At the root of the search tree, alpha is set to
-∞ and beta is set to +∞.

• Maximizing nodes update alpha from the
values of children.

• Minimizing nodes update beta from the
value of children.

• If alpha > beta, stop evaluating children.

25

Movement of Alpha and Beta
• Each node passes the current value of alpha

and beta to each child node evaluated.
• Children nodes update their copy of alpha

and beta, but do not pass alpha or beta back
up the tree.

• Minimizing nodes return beta as the value
of the node.

• Maximizing nodes return alpha as the value
of the node.

26

A

B C

D E F G H

I J M N

K L

3 5

0 7

5 7 8

4

27

The Effectiveness of Alpha-Beta

• The effectiveness depends on the order in
which children are visited.

• In the best case, the effective branching
factor will be reduced from b to sqrt(b).

• In an average case (random values of
leaves) the branching factor is reduced to
b/logb.

28

The Horizon Effect

• Using a fixed depth search can lead to the
following:
– A bad event is inevitable.
– The event is postponed by selecting only those

moves in which the event is not visible (it is
over the horizon).

– Extending the depth only moves the horizon, it
doesn’t eliminate the problem.

29

Quiescence

• Using a fixed depth search can lead to other
problems:
– it’s not fair to evaluate a board in the middle of an

exchange of Chess pieces.
– What if we choose an odd number for the search

depth on the game of MinMax?
• The evaluation function should only be applied to

states that are quiescent (relatively stable).

30

Pattern-Directed Play

• Encode a bunch of patterns and some
information that indicates what move
should be selected if the game state ever
matches the pattern.

• Book play: often used in Chess programs
for the beginning and ending of games.

31

Iterative Deepening

• Many games have time constraints.
• It is hard to estimate how long the search to

a fixed depth will take (due to pruning).
• Ideally we would like to provide the best

answer we can, knowing that time could run
out at any point in the search.

• One solution is to evaluate the choices with
increasing depths.

32

Iterative Deepening

• There is lots of repetition!
• The repeated computation is small

compared to the new computation.
• Example: branching factor 10

– depth 3: 1,000 leaf nodes
– depth 4: 10,000 leaf nodes
– depth 5: 100,000 leaf nodes

33

A* Iterative Deepening

• Iterative deepening can also be used with A*.

1. Set THRESHOLD to be f(start_state).
2. Depth-first search, don’t explore any nodes

whose f value is greater than THRESHOLD.
3. If no solution is found, increase THRESHOLD

and go back to step 2.

