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Adversary Search

• Ref: Chapter 5
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Games & A.I.

• Easy to measure success
• Easy to represent states
• Small number of operators
• Comparison against humans is possible.
• Many games can be modeled very easily, 

although game playing turns out to be very 
hard.
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2 Player Games

• Requires reasoning under uncertainty.
• Two general approaches:

– Assume nothing more than the rules of the 
game are important - reduces to a search 
problem.

– Try to encode strategies using some type of 
pattern-directed system (perhaps one that can 
learn).
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Search and Games

• Each node in the search tree corresponds to a 
possible state of the game.

• Making a move corresponds to moving from the 
current state (node) to a child state (node).

• Figuring out which child is best is the hard part.
• The branching factor is the number of possible 

moves (children).
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Search Tree Size

• For most interesting games it is impossible 
to look at the entire search tree.

• Chess:
– branching factor is about 35
– typical match includes about 100 moves.
– Search tree for a complete game: 35100
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Heuristic Search

• Must evaluate each choice with less than 
complete information.

• For games we often evaluate the game tree 
rooted at each choice.

• There is a tradeoff between the number of 
choices analyzed and the accuracy of each 
analysis.
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Game Trees
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Plausible Move Generator

• Sometimes it is possible to develop a move 
generator that will (with high probability) 
generate only those moves worth consideration.

• This reduces the branching factor, which means 
we can spend more time analyzing each of the 
plausible moves.
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Recursive State Evaluation

• We want to rank the plausible moves 
(assign a value to each resulting state).

• For each plausible move, we want to know 
what kind of game states could follow the 
move (Wins? Loses?).

• We can evaluate each plausible move by 
taking the value of the best of the moves 
that could follow it. 
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Assume the adversary is good.

• To evaluate an adversary’s move, we should 
assume they pick a move that is good for 
them.

• To evaluate how good their moves are, we 
should assume we will do the best we can 
after their move (and so on…)
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Static Evaluation Function

• At some point we must stop evaluating states 
recursively.

• At each leaf node we apply a static evaluation 
function to come up with an estimate of how 
good the node is from our perspective.

• We assume this function is not good enough to 
directly evaluate each choice, so we instead 
use it deeper in the tree.
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Example evaluation functions

• Tic-Tac-Toe: number of rows, columns or 
diagonals with 2 of our pieces.

• Checkers: number of pieces we have - the 
number of pieces the opponent has.

• Chess: weighted sum of pieces:
– king=1000, queen=10, bishop=5, knight=5, ...
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Minimax

• Depth-first search with limited depth.

• Use a static evaluation function for all leaf 
states.

• Assume the opponent will make the best 
move possible.
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Minimax Search Tree
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Minimax Algorithm

Minimax(curstate, depth, player):

If (depth==max)

Return static(curstate,player)

generate successor states s[1..n]

If (player==ME)

Return max of Minimax(s[i],depth+1,OPPONENT) 

Else

Return min of Minimax(s[i],depth+1,ME) 



16

The Game of MinMax
-3 2 -1
-2 3
4 1 -4

•Start in the center square.

•Player MAX picks any number in the current row.

•Player MIN picks any number in the resulting column.

•The game ends when a player cannot move.

•MAX wins if the sum of numbers picked is > 0.
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Pruning

• We can use a branch-and-bound technique 
to reduce the number of states that must be 
examined to determine the value of a tree.

• We keep track of a lower bound on the 
value of a maximizing node, and don’t 
bother evaluating any trees that cannot 
improve this bound.
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Pruning Minimizing Nodes

• Keep track of an upper bound on the value 
of a minimizing node.

• Don’t bother with any subtrees that cannot 
improve (lower) the bound.
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Minimax with 
Alpha-Beta Cutoffs

• Alpha is the lower bound on maximizing nodes.
• Beta is the upper bound on minimizing nodes.

• Both alpha and beta get passed down the tree 
during the Minimax search.
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Usage of Alpha & Beta

• At minimizing nodes, we stop evaluating 
children if we get a child whose value is 
less than the current lower bound (alpha).

• At maximizing nodes, we stop evaluating 
children as soon as we get a child whose 
value is greater than the current upper 
bound (beta).
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Alpha & Beta

• At the root of the search tree, alpha is set to 
-∞ and beta is set to +∞.

• Maximizing nodes update alpha from the 
values of children.

• Minimizing nodes update beta from the 
value of children.

• If alpha > beta, stop evaluating children.
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Movement of Alpha and Beta
• Each node passes the current value of alpha 

and beta to each child node evaluated.
• Children nodes update their copy of alpha 

and beta, but do not pass alpha or beta back 
up the tree.

• Minimizing nodes return beta as the value 
of the node.

• Maximizing nodes return alpha as the value 
of the node.
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The Effectiveness of Alpha-Beta 

• The effectiveness depends on the order in 
which children are visited.

• In the best case, the effective branching 
factor will be reduced from b to  sqrt(b).

• In an average case (random values of 
leaves) the branching factor is reduced to 
b/logb.
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The Horizon Effect

• Using a fixed depth search can lead to the 
following:
– A bad event is inevitable.
– The event is postponed by selecting only those 

moves in which the event is not visible (it is 
over the horizon).

– Extending the depth only moves the horizon, it 
doesn’t eliminate the problem.
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Quiescence

• Using a fixed depth search can lead to other 
problems:
– it’s not fair to evaluate a board in the middle of an 

exchange of Chess pieces.
– What if we choose an odd number for the search 

depth on the game of MinMax?
• The evaluation function should only be applied to 

states that are quiescent (relatively stable).
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Pattern-Directed Play

• Encode a bunch of patterns and some 
information that indicates what move 
should be selected if the game state ever 
matches the pattern.

• Book play: often used in Chess programs 
for the beginning and ending of games.
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Iterative Deepening

• Many games have time constraints.
• It is hard to estimate how long the search to 

a fixed depth will take (due to pruning).
• Ideally we would like to provide the best 

answer we can, knowing that time could run 
out at any point in the search.

• One solution is to evaluate the choices with 
increasing depths.
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Iterative Deepening

• There is lots of repetition!
• The repeated computation is small 

compared to the new computation.
• Example: branching factor 10

– depth 3: 1,000 leaf nodes
– depth 4: 10,000 leaf nodes
– depth 5: 100,000 leaf nodes
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A* Iterative Deepening 

• Iterative deepening can also be used with A*.

1. Set THRESHOLD to be f(start_state).
2. Depth-first search, don’t explore any nodes 

whose f value is greater than THRESHOLD.
3. If no solution is found, increase THRESHOLD

and go back to step 2.


