Adversary Search

* Ref: Chapter 5

Games & A.l.

Easy to measure success

Easy to represent states

Small number of operators
Comparison against humans is possible.

Many games can be modeled very easily,
although game playing turns out to be very
hard.

2 Player Games

* Reguires reasoning under uncertainty.

e Two general approaches:

— Assume nothing more than the rules of the
game are important - reduces to a search
problem.

— Try to encode strategies using some type of
pattern-directed system (perhaps one that can
learn).

Search and Games

Each node in the search tree corresponds to a
possible state of the game.

Making a move corresponds to moving from the
current state (node) to a child state (node).

Figuring out which child is best isthe hard part.

The branching factor Is the number of possible
moves (children).

Search Tree Size

e For most interesting games it Isimpossible
to look at the entire search tree.

e Chess:
— branching factor 1s about 35

— typical match includes about 100 moves.
— Search tree for a complete game: 35190

Heuristic Search

e Must evaluate each choice with less than
compl ete information.

* For games we often evaluate the game tree
rooted at each choice.

 Thereisatradeoff between the number of
choices analyzed and the accuracy of each
analysis.

Game Trees

E@j/éﬁﬁ i

/\

/\

Plausible Move Generator

o Sometimes it Is possible to develop amove
generator that will (with high probability)
generate only those moves worth consideration.

 Thisreduces the branching factor, which means
we can spend more time analyzing each of the
plausible moves.

Recursive State Evaluation

* We want to rank the plausible moves
(assign avalue to each resulting state).

 For each plausible move, we want to know
what kind of game states could follow the
move (Wins? Loses?).

* \We can evaluate each plausible move by
taking the value of the best of the moves
that could follow It.

Assume the adversary is good.

 To evaluate an adversary’ s move, we should
assume they pick amove that is good for
them.

e To evaluate how good their moves are, we
snhould assume we will do the best we can
after their move (and so on...)

10

Static Evaluation Function

e At some point we must stop evaluating states
recursively.

» At each leaf node we apply a static evaluation
function to come up with an estimate of how
good the node is from our perspective.

e \We assume this function is not good enough to
directly evaluate each choice, so we instead
use it deeper in the tree.

11

Example evaluation functions

e Tic-Tac-Toe: number of rows, columns or
diagonals with 2 of our pieces.

e Checkers: number of pieces we have - the
number of pieces the opponent has.

e Chess: weighted sum of pieces:
— king=1000, queen=10, bishop=>5, knight=5, ...

12

Minimax
e Depth-first search with limited depth.

e Use adtatic evaluation function for all |eaf
states.

* Assume the opponent will make the best
move possible.

13

B
E F
9 -6

Minimax Search Tree

A
Our Move
Maximizing Ply
C D
Opponent’s Mov
Minimizing Ply
G H I J K
0 0 -2 -4 -3

14

Minimax Algorithm

M ni max(curstate, depth, player):
| f (dept h==max)
Return static(curstate, player)
generate successor states s[1..n]
| f (pl ayer ==ME)
Return max of M nimax(s[i], dept h+1, OPPONENT)
El se

Return mn of Mnimax(s[i], depth+l, ME)

15

The Game of MinM ax

3| 2 | -1
-2 3
4 |1 | -4

«Start in the center square.

Player MAX picks any number in the current row.
*Player MIN picks any number in the resulting column.
*The game ends when a player cannot move.

‘MAX wins if the sum of numbers picked is> 0.

16

)<t

/ N\

/\

@)

-1

(3] 2

17

3 MAX's Turn

Pruning

* \We can use a branch-and-bound technique
to reduce the number of states that must be
examined to determine the value of atree.

* \We keep track of alower bound on the
value of amaximizing node, and don’t
bother evaluating any trees that cannot
Improve this bound.

19

Pruning in MinMax

Pruning Minimizing Nodes

o Keep track of an upper bound on the value
of aminimizing node.

e Don't bother with any subtrees that cannot
Improve (lower) the bound.

21

Minimax with
Alpha-Beta Cutoffs

 Alphaisthelower bound on maximizing nodes.
e Betaisthe upper bound on minimizing nodes.

* Both alphaand beta get passed down the tree
during the Minimax search.

22

Usage of Alpha & Beta

e At minimizing nodes, we stop evaluating
children if we get a child whose value s
less than the current lower bound (alpha).

o At maximizing nodes, we stop evaluating
children as soon as we get a child whose
value Is greater than the current upper
bound (beta).

23

Alpha & Beta

At the root of the search tree, alphais set to
-0 and betals set to +oo.

Maximizing nodes update alpha from the
values of children.

Minimizing nodes update beta from the
value of children.

If alpha > beta, stop evaluating children.

24

Movement of Alphaand Beta

Each node passes the current value of alpha
and beta to each child node evaluated.

Children nodes update their copy of apha
and beta, but do not pass alpha or beta back
up the tree.

Minimizing nodes return beta as the value
of the node.

Maximizing nodes return alpha as the value
of the node.

25

The Effectiveness of Alpha-Beta

* The effectiveness depends on the order In
which children are visited.

* Inthe best case, the effective branching
factor will be reduced from b to sgrt(b).

 |n an average case (random values of
eaves) the branching factor is reduced to
o/logb.

27

The Horizon Effect

o Using afixed depth search can lead to the
following:
— A bad event isinevitable.

— The event is postponed by selecting only those
moves in which the event isnot visible (it is
over the horizon).

— Extending the depth only moves the horizon, it
doesn’t eliminate the problem.

28

Quiescence

o Using afixed depth search can lead to other
problems:

— I’ s not fair to evaluate a board in the middle of an
exchange of Chess pieces.

— What if we choose an odd number for the search
depth on the game of MinMax?

* The evaluation function should only be applied to
states that are quiescent (relatively stable).

29

Pattern-Directed Play

* Encode abunch of patterns and some
Information that indicates what move
should be selected if the game state ever
matches the pattern.

* Book play: often used in Chess programs
for the beginning and ending of games.

30

Iterative Deepening

Many games have time constraints.

It Is hard to estimate how long the search to
a fixed depth will take (due to pruning).

|deally we would like to provide the best
answer we can, knowing that time could run
out at any point in the search.

One solution 1sto evaluate the choices with
Increasing depths.

31

Iterative Deepening

"here islots of repetition!

"he repeated computation Is small
compared to the new computation.

Example: branching factor 10
— depth 3: 1,000 |eaf nodes

— depth 4: 10,000 |eaf nodes

— depth 5: 100,000 leaf nodes

32

A* lterative Deepening
* |terative degpening can also be used with A*.

1. Set THRESHOL D to be f(start_state).

2. Depth-first search, don’'t explore any nodes
whose f value Is greater than THRESHOLD.

3. If no solution is found, increase THRESHOLD
and go back to step 2.

33

