	ECS170
	Homework Assignment
	Winter 2003

ECS 170 HW #4a: Perceptron Learning (Solution)

Assigned: 11 February 2003
Due: 18 February 2003

Problem 1 – Perceptrons
In the class I described a perceptron for digit recognition.

(a) (10 points) In the class I attempted to show you how to recognize the digit 0 (zero). Here we expected an output of 1 (yes) when the number presented at the input is 0 and 0 (no) when we presented any other number at the input. Complete the calculation (Recheck the calculation from the beginning, to make sure I did not maker any error) by presenting all the digits, one by one, at the input. What are the weights of the perceptron after convergence? (I expect that you should get the answer very quickly)

(a) (b) (15 Points) Repeat the above process for the recognition of the digit 8. (I expect this to take many iterations. That is why I am giving you the option of writing a small piece of code to do this).

It is imporatnt that you do this problem before you attempt back propagation.

Solution: Perceptron training to recognize the digit zero

	
	x0
	x1
	x2
	x3
	x4
	x5
	x6
	x7

	0
	-1
	0
	1
	1
	1
	1
	1
	1

	9
	-1
	1
	1
	1
	1
	1
	1
	0

	8
	-1
	1
	1
	1
	1
	1
	1
	1

	7
	-1
	0
	0
	1
	1
	1
	1
	0

	6
	-1
	1
	1
	1
	0
	1
	1
	1

	5
	-1
	1
	1
	1
	0
	1
	1
	0

	4
	-1
	1
	1
	0
	1
	1
	1
	0

	3
	-1
	1
	0
	1
	1
	1
	1
	0

	2
	-1
	1
	0
	1
	1
	0
	1
	1

	1
	-1
	0
	0
	0
	1
	1
	0
	0

Only the first line should produce a 1 and all other lines should produce a zero.

Let us start with all weights to be zero. w = (w0...w7) = (0 0 0 0 0 0 0 0)

starting weight vector = (0 0 0 0 0 0 0 0)

Apply input (-1 0 1 1 1 1 1 1)

Calculate w.x = 0

output = 0, but we expected a 1

Because the perceptron fails to identify the input correctly, add the input vector to the weight vector to get new weight vector

new weight, 1st update = (-1 0 1 1 1 1 1 1)

Apply next input, namely 9 --> (-1 0 1 1 1 1 1 0)

Calculate w.x = 1 + 1 + 1 + 1 + 1 + 0 = 5, which is greater than 0

output = 1, but we expected a 0

Because the perceptron falsely identifies 9, subtract the input vector from the weight vector to get new weight vector

new weight, 2nd update = (0 0 0 0 0 0 0 1)

Apply next input, namely 8 --> (-1 1 1 1 1 1 1 1)

Calculate w.x = 0 + 0 + 0 + 0 + 0 + 1 = 1, which is greater than 0

output = 1, but we expected a 0

Because the perceptron falsely identifies 8, subtract the input vector from the weight vector to get new weight vector

new weight, 3rd update = (1 -1 -1 -1 -1 -1 -1 0)

Apply next input, namely 7 --> (-1 0 0 1 1 1 1 0)

Calculate w.x = -1 + 0 + 0 + -1 - 2 -2 - 2 + 0 = -8, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 7, do nothing

new weight, 4th update = (1 -1 -1 -1 -1 -1 -1 0), the same as the earlier weight.

Apply next input, namely 6 --> (-1 1 1 1 0 1 1 1)

Calculate w.x = -1 -1 -1 -1 + 0 + -1 -1 + 0 = -6, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 6, do nothing

new weight, 5th update = (1 -1 -1 -1 -1 -1 -1 0), the same as the earlier weight.

Apply next input, namely 5 --> (-1 1 1 1 0 1 1 0)

Calculate w.x = -1 -1 -1 -1 + 0 + -1 -1 + 0 = -6, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 5, do nothing

new weight, 6th update = (1 -1 -1 -1 -1 -1 -1 0), the same as the earlier weight.

Apply next input, namely 4 --> (-1 1 1 0 1 1 1 0)

Calculate w.x = -1 -1 -1 +0 -1 -1 -1 + 0 = -6, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 4, do nothing

new weight, 7th update = (1 -1 -1 -1 -1 -1 -1 0), the same as the earlier weight.

Apply next input, namely 3 --> (-1 1 0 1 1 1 1 0)

Calculate w.x = -1 -1 +0 -1 -1 -1 -1 + 0 = -6, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 3, do nothing

new weight, 8th update = (1 -1 -1 -1 -1 -1 -1 0), the same as the earlier weight.

Apply next input, namely 2 --> (-1 1 0 1 1 0 1 1)

Calculate w.x = -1 -1 +0 -1 -1 +0 -1 + 0 = -5, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 2, do nothing

new weight, 9th update = (1 -1 -1 -1 -1 -1 -1 0), the same as the earlier weight.

Apply next input, namely 1 --> (-1 0 0 0 1 1 0 0)

Calculate w.x = -1 +0 +0 +0 -1 -1 +0 + 0 = -3, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 1, do nothing

new weight, 10th update = (1 -1 -1 -1 -1 -1 -1 0), the same as the earlier weight.

At this stage, we finished one "epoch" of training. That is, we applied ALL the inputs once.

Just to make sure, you want to check that the perceptron is properly trained by applying all the inputs once again and see that the correct output is obtained in each instance. I will only try the zero input, once gain, but you should try all of them, which is easy thing to do if you have a program doing this job!

Beginning of Second epoch

weight from the previous epoch = (1 -1 -1 -1 -1 -1 -1 0)

Apply first input (-1 0 1 1 1 1 1 1)

Calculate w.x = -1 +0 -1 -1 -1 -1 -1 +0 = -6

output = 0, but we expected a 1

Because the perceptron fails to identify the input correctly, add the input vector to the weight vector to get new weight vector

new weight, 1st update = (0 -1 0 0 0 0 0 1)

So we have to continue this once more.

Apply next input, namely 9 --> (-1 0 1 1 1 1 1 0)

Calculate w.x = 0 + 0 + 0 + 0 + 0 + 0 = 0

output = 0, and we expected a 0

Because the perceptron correctly identified 9, do nothing

new weight, 2nd update = (0 -1 0 0 0 0 0 1)

Apply next input, namely 8 --> (-1 1 1 1 1 1 1 1)

Calculate w.x = 0 -1 + 0 + 0 + 0 +0 +0 +1 = 0,

output = 0, and we expected a 0

Because the perceptron correctly identified 8, do nothing

new weight, 3rd update = (0 -1 0 0 0 0 0 1)

Apply next input, namely 7 --> (-1 0 0 1 1 1 1 0)

Calculate w.x = 0 + 0 + 0 + 0 +0 + 0 +0 +0 = 0,

output = 0, as it should be.

Because the perceptron correctly identified 7, do nothing

new weight, 4th update = (0 -1 0 0 0 0 0 1), the same as the earlier weight.

Apply next input, namely 6 --> (-1 1 1 1 0 1 1 1)

Calculate w.x = 0 -1 +0 +0 + 0 +0 +0 + 1 = 0,

output = 0, as it should be.

Because the perceptron correctly identified 6, do nothing

new weight, 5th update = (0 -1 0 0 0 0 0 1), the same as the earlier weight.

Apply next input, namely 5 --> (-1 1 1 1 0 1 1 0)

Calculate w.x = 0 -1 +0 +0 + 0 + 0 +0 + 0 = -1, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 5, do nothing

new weight, 6th update = (0 -1 0 0 0 0 0 1), the same as the earlier weight.

Apply next input, namely 4 --> (-1 1 1 0 1 1 1 0)

Calculate w.x = 0 -1 +0 +0 +0 +0 +0 + 0 = -1, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 4, do nothing

new weight, 7th update = (0 -1 0 0 0 0 0 1), the same as the earlier weight.

Apply next input, namely 3 --> (-1 1 0 1 1 1 1 0)

Calculate w.x = 0 -1 +0 +0 +0 +0 +0 +0 = -1, which is less than 0

output = 0, as it should be.

Because the perceptron correctly identified 3, do nothing

new weight, 8th update = (0 -1 0 0 0 0 0 1), the same as the earlier weight.

Apply next input, namely 2 --> (-1 1 0 1 1 0 1 1)

Calculate w.x = 0 -1 +0 +0 +0 +0 +0 + 1 = 0, which is 0

output = 0, as it should be.

Because the perceptron correctly identified 2, do nothing

new weight, 9th update = (0 -1 0 0 0 0 0 1), the same as the earlier weight.

Apply next input, namely 1 --> (-1 0 0 0 1 1 0 0)

Calculate w.x = 0 +0 +0 +0 +0 +0 +0 + 0 = 0, which is 0

output = 0, as it should be.

Because the perceptron correctly identified 1, do nothing

new weight, 10th update = (0 -1 0 0 0 0 0 1), the same as the earlier weight.

At this stage, we finished the second "epoch" of training. That is, we applied ALL the inputs twice.

I believe that no more iterations are necessary. If you wish you can check by going htrough a 3rd epoch and verify that the weights did NOT change for the ENTIRE epoch.

We obtained convergence in two epochs because we lucked out. I arranged the order of presentation so yuou would see this with the least effort.

When you try to teach the digiut 8, I RECOMMEND you do this on a computer!

