Bayesian Classifiers with Applications to Text

Professor Daphne Koller (substituting for Prof. Manning)

Joint Distribution

Smoking and Cancer

 $S \in \{no, light, heavy\}$ $C \in \{none, benign, malignant\}$

S	$C \Rightarrow$	none	benign	malignant
no		0.768	0.024	0.008
light		0.132	0.012	0.006
heav	y	0.035	0.010	0.005

Product Rule

• P(C,S) = P(C|S) P(S)

$S^{\downarrow\downarrow}$	$C \Rightarrow$	none	benign	malignant
no		0.768	0.024	0.008
light		0.132	0.012	0.006
heav	y	0.035	0.010	0.005

Marginalization

$S \downarrow C \Rightarrow$	none	benign	malig	total	_
no	0.768	0.024	0.008	.80	
light	0.132	0.012	0.006	.15	P(Smoke)
heavy	0.035	0.010	0.005	.05	
total	0.935	0.046	0.019)
		P(Cancer	~)		

Bayes Rule

$$P(S \mid C) = \frac{P(C,S)}{P(C)} = \frac{P(C \mid S)P(S)}{P(C)}$$

$ S^{\downarrow} C \Rightarrow$	none	benign	malig
no	0.768/.935	0.024/.046	0.008/.019
light	0.132/.935	0.012/.046	0.006/.019
heavy	0.030/.935	0.015/.046	0.005/.019

Cancer=	none	benign	malignant
P(S=no)	0.821	0.522	0.421
P(S=light)	0.141	0.261	0.316
P(S=heavy)	0.037	0.217	0.263

Bayes Rule

$$P(C, X) = P(C | X)P(X) = P(X | C)P(C)$$

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

The Classification Problem

 From a data set describing objects by vectors of features and a class

 Find a function F: features → class to <u>classify</u> a new object

Bayes-Optimal Classifiers

 Assumption: The data instances we see are generated from some probability distribution

$$P(X_1,...,X_n,C)$$

- Consider instance x, let
 - c be its true class,
 - $-\ell$ be the class returned by the classifier F.
- The classifier is <u>correct</u> if $c = \ell$, and in <u>error</u> if $c \neq \ell$.
 - define $\lambda(c=\ell)$ =0 if $c=\ell$ and 1 otherwise
- The expected error incurred by choosing label ℓ is

$$\sum_{i=1}^{n} \lambda(c_i = \ell) P(c_i \mid \vec{\mathbf{x}}) = 1 - P(\ell \mid \vec{\mathbf{x}})$$

Bayes-Optimal Classifiers

• The expected error incurred by choosing label ℓ is

$$\sum_{i=1}^{n} \lambda(c_i = \ell) P(c_i \mid \vec{\mathbf{x}}) = 1 - P(\ell \mid \vec{\mathbf{x}})$$

• Thus, if we knew P, we could minimize error rate by choosing ℓ_i when

$$P(c_i | \vec{x}) > P(c_i | \vec{x}) \forall j \neq i$$

- Bayes Optimal Classifier:
 - Given a new instance $\langle x_1, ..., x_n \rangle$

Set:
$$c = argmax_{C} P(C = c \mid x_{1},...,x_{n})$$

The Naïve Bayes Classifier

• **Assumption:** features are independent of each other given the class.

$$P(X_1,\ldots,X_5\mid C) = P(X_1\mid C) \bullet P(X_2\mid C) \bullet \cdots \bullet P(X_5\mid C)$$

Naïve Bayes Classification

$$\frac{P(c \mid x_1, ..., x_n)}{P(x_1, ..., x_n \mid c)P(c)}$$

$$\frac{P(x_1, ..., x_n \mid c)P(c)}{P(x_1, ..., x_n)}$$

$$= \arg \max_{c} P(x_1, ..., x_n \mid c) P(c)$$

$$= \arg\max_{c} P(x_1 \mid c) \bullet \cdots \bullet P(x_n \mid c) P(c)$$

$$= \arg\max_{c} P(c) \prod_{i} P(x_{i} \mid c)$$

Naïve Bayes Algorithm

- Learn: Input = Data Set, output =
 - For each class c_i :
 - estimate $\hat{P}(c_j)$
 - For each attribute value x_i of each attribute X_i estimate

$$\hat{P}(x_i \mid c_j)$$

Classify new instance <x₁,...,x_n as

$$\ell = \arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} | c)$$

Learning the Model

- Common practice:maximum likelihood
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

Problem with Max Likelihood

$$P(X_1,\ldots,X_5\mid C) = P(X_1\mid C) \bullet P(X_2\mid C) \bullet \cdots \bullet P(X_5\mid C)$$

 What if we have seen no training cases where patient had no flu and muscle aches?

$$\hat{P}(X_5 = t \mid C = nf) = \frac{N(X_5 = t, C = nf)}{N(C = nf)} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

$$\ell = \arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Smoothing to Avoid Overfitting

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k}$$
of values of X_i

Somewhat more subtle version.

overall fraction in data where X_i = $x_{i,k}$

$$\hat{P}(x_{i,k} \mid c_j) = \frac{N(X_i = x_{i,k}, C = c_j) + mp_{i,k}}{N(C = c_j) + m}$$
extent of "smoothing"

Conditional Independence

- Conditional independence assumption is typically false
 - Sinus condition not independent of runny nose, even given flu
- Nevertheless, it works surprisingly well
 - Reason 1: small number of parameters
 - if we try to fit too many parameters with sparse data, can get really strange models
 - Reason 2: Don't need probabilities to be correct, only argmax

$$\arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c) = \arg\max_{c} P(c) \prod_{i} P(x_{i} \mid c)$$

Text Classification

- Input: Document consisting of words
- Output: Classification into a set of classes
- Examples:
 - learn which news articles are "interesting"
 - learn to classify webpages by topic
- Naïve Bayes is surprisingly good at this task

Two Models

- Model 1: Multi-variate binomial
 - One feature X_{w} for each word in dictionary
 - X_w = true in document d if w appears in d
 - Naïve Bayes assumption:
 - Given the document's topic, appearance of one word in document tells us nothing about chances that another word appears

Two Models

- Model 2: Multinomial
 - One feature X_i for each word in document
 - feature values are all words in dictionary
 - Value of X_i is the word in position i
 - Naïve Bayes assumption:
 - Given the document's topic, word in one position in document tells us nothing about value of words in other positions
 - Second assumption:
 - word appearance does not depend on position

$$P(X_i = w \mid c) = P(X_j = w \mid c)$$

for all positions *i,j*, word *w*, and class *c*

Parameter estimation

Binomial model:

$$\hat{P}(X_w = t \mid c_j) = \frac{\text{fraction of documents of topic } c_j}{\text{in which word } w \text{ appears}}$$

• Multinomial model:

$$\hat{P}(X_i = w \,|\, c_j) = \begin{array}{c} \text{fraction of times in which} \\ \text{word } w \text{ appears} \\ \text{across all documents of topic } c_i \end{array}$$

- creating a mega-document for topic j by concatenating all documents in this topic
- use frequency of w in mega-document

Example: AutoYahoo!

 Classify 13589 Yahoo! webpages in "Science" subtree into 95 different topics (hierarchy depth 2)

Example: WebKB (CMU)

- Classify webpages from CS departments into:
 - student, faculty, course, project

WebKB Experiment

- Train on ~5,000 hand-labeled web pages
 - Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU)
- Results:

	Student	Faculty	Person	Project	Course	Departmt
Extracted	180	66	246	99	28	1
Correct	130	28	194	72	25	1
Accuracy:	72%	42%	79%	73%	89%	100%

Faculty		Stude	Students		Courses	
associate	0.004	.17	resume	0.00516	homeworl	0.00
chair	0.003	03	advisor	0.00456	syllabus	0.00
member	0.002	88	student	0.00387	assignmen	its 0.00
рh	0.002	87	working	0.00361	exam	0.00
director	0.002	82	stuff	0.00359	grading	0.00
fax	0.002	79	links	0.00355	midterm	0.00
journal	0.002	71	homepage	0.00345	рm	0.00
recent	0.002	60	interests	0.00332	instructor	0.00
received	0.002	58	personal	0.00332	due	0.00
award	0.002	50	favorite	0.00310	final	0.00
Depa departmen	rtmen	ts 0.01246		Projects rs 0.00256	Oth 6 tupe	ers 0.00164
-			investigato.	0.00-0.	* *F-	0.00-0.
colloquia	١,	0.01076	group	0.00250	~ <u> </u>	0.00148
epartment	. ,	0.01045	members	0.00242	-	0.00145
seminars).00997	researchers	0.00-	-	0.00142
schedules	().00879	laboratory	0.00238	8 program	0.00136
webmaster	ւ (0.00879	develop	0.0020	1 net	0.00128
events	(0.00826	related	0.00200	0 time	0.00128
facilities	(0.00807	агра	0.00187	7 format	0.00124
eople	().00772	affiliated	0.00184	4 access	0.00117
postgradu	540 C	0.00764	project	0.00183	3 begin	0.00116