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                                                           Your ID:_____________________

UC-Davis

ECS 271 Midterm Examination

Closed book

Spring 2004

Show all work clearly and legibly. Remember, you are being tested. So even if an answer is obvious to you, pl. show all the justification by clearly showing the calculations, or explaining why a calculation is skipped.

1. True or False? ( 9 points each)

(a) In PAC learning model, the learner makes no assumptions aboutthe class from which the target concept is drawn. (False)

(b) In PAC learning, the learner outputs the hypothesis from H that has theleast error (possibly zero) over the training data (False)

(c) The numberof training examples required for successful learning is strongly influenced by the complexity of the hypothesis space considered by the learner. (True)

2. (15 points) Illustrate your understanding of the back propagation method by explicitly showing all steps of the calculations with respect to a single-neuron with a sigmoidal nonlinearity. Assume that you are at the output stage of the network. The objective is for the unit to learn a single input pattern, namely
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The desired output is o = 1. Initially assume 
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. Use a learning rate 
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. Show all the calculations for two iterations. Show the weight values at the end of the first and second iterations.  In what direction is the weight vector   moving from iteration to iteration?

Solution:

1st iteration:   netinput = 0. output = 1/2, error = (1-0.5)**2 = 0.25

delta-w1 = eta*del*output = 1.0*(0.5)(0.5)(1-0.5) i1 = 0.125 i1 = 0.125

delta-w2 = eta*del*output = 1.0*(0.5)(0.5)(1-0.5) i1 = 0.125 i2 = 0.5

new weights are 0.125 and 0.5

2nd iteration

2nd iteration:   netinput = 2.125. output = 1 + exp (-2.125) = 0.893, error = (1-..893)**2 = 0.0114

delta-w1 = eta*del*output = 1.0*(1-0.893)(0.893)(1-0.893) i1 = 0.0853 i1 = 0.0853

delta-w2 = eta*del*output = 0.0853 i2 =0.341

new weights are 0.210 and 0.841

The weight vector is moving toward the input vector.

3. (8 points) Suppose H is a set of possible hypotheses and D is a set of training data. We would like our program to output the most probable hypothesis h from H, given the data D. Under what conditions does the following hold?
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            Solution: First, there is a typo. The H should be h under arg max. But this is a minor thing and it did not bother any of you. So let us proceed.

The starting formula is 
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P(D) can be dropped because it does not depend on h

P(h) can be treated as a constant if all the hypothesesin the hypothesis space are equally likely.

Under these conditons, both sides are equal as stated int he question.

4. (12 points) For each of the following algorithms, (a) state the objective that the learning algorithm is trying to optimize, and (b) indicate whether the algorithm is guaranteed to find the global optimum hypothesis with respect to the objective.

(a) Backpropagation with multi-layer networks

i. Objective:

ii. Global optimum?:

             Solution:

(i) We are minimizing the sum of the squares of the errors over the training data set

(j) The algorithm will conversge asymptotically to a local maximum. You may stumbleinto a global maximum, but you would not know it.

(b) The Perceptron training rule applied to a single Perceptron

i. Objective:

ii. Global optimum?

                Solution:

                (i) Here we are minimizing the error (not the sum of the squares of the error) over the training data set.

               (ii) The Perceptron Convergence Theorem guarantees that the procedure will converge if there is a solution (i.e., if the patterns are linearly separable).

(c) Support vector machines

i. Objective:

ii. Global optimum

                     Solution: (i) Here we are minimizing the margin.

                                     (ii) You can always find a minimum-margin solution for linearly separable cases. In non-separable cases, you should be able to find a mapping to a sufficiently high-dimensional space where the problem is renedered "linearly-separable".

5. (a) (12 points) Build a decision tree to classify the following patterns. Show all the calculations systematically or explain why certain calculations are skipped.

	Pattern

(x1,x2,x3)
	Class

	(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)
	0

0

0

0

0

1

0

1


(b) (2 points) What Boolean function is the above tree implementing?

Solution:

A plot of the 8 points along x1, x2 and x3 gives an idea on how to solve this.

The initail uncertainity of all 8 points is 

-(6/8) log2 (6/8) – (2/8) log2 (2/8) = 0.81

Suppose we divide the points by drawing a plane along the x1- axis (i. e., parallel to the x2-x3 plane. Then the left-branch has 4 points all belonging to the same class and the right hand branch has two of each class. So the uncertainity of the left branch is

-(4/4) log2 (4/4) – (0/4) log2 (0/4) = 0

The uncertainity of the right branch is

-(2/4) log2 (2/4) – (2/4) log2 (2/4) = 1

Average uncertainity after the first test (on x1) is

(1/2) 0 + (1/2) (1) = 1/2

Uncertainity reduction achieved is 0.81 – 0.5 = 0.31

Do a similar thing along x2 and x3 and find out that test along x3 gives exactly the same uncertainity and a test along x2 gives no improvement at all. So first choose either x1 or x2.

The decision tree really implements f = x1x3.

(c) ( 5 points) Consider a decision tree built from an arbitrary set of data. If the output is discreet-valued and can take on k different possible values, what is the maximum training set error (expressed as a fraction) that any data set could possibly have?

Suggested Solution: The answer is (k-1)/k. Consider data sets with identical inputs but the outputs are evenly distributed among k classes. Then we will always get one correct classification and (k-1) erroneous classifications. 

6. (12 points) Imagine that you are given the following set of training examples.  All the features are Boolean-valued.


F1
F2
F3
Result


 T
 T
F
   +


 F
 T
T
   +


 T
 F
T
   -


 F
 T
F
   -


 F
 F
T
   -

How would a Naive Bayes approach classify the following test example?
Be sure to show your work.
F1 = T      F2 = F      F3 = F

Solution: There are only two possible answers + and - . So it is possible that you can toss a coin and guess the answer and be on the correct side 50% of the time. Therefore, it becomes imporatnt that you show all calculations and they be correct too, to justify your answer.

Furthermore, one of the probability terms is zero. This makes it doubly dangerous because you can getthe correct classification despite a horde of calculation errors.

From the historical data given to you, P(+) = 2/5 = 0.4 and P(-) = 3/5 = 0.6

You simply have to calculate arg max P(vj) P(F1=T|vj) P(F2=F|vj) P(F3=F|vj); Naive Bayes assumption. Note vj can assume only two values + and -.

P(vj = +)* P(F1| +) P(F2| +) P(F3 | +)

P(vj = -)* P(F1| -) P(F2| -) P(F3 | -)

P(F1|+) = P(F1=T|+) = 1/2 = 0.5

P(F2|+) = P(F2=F|+) = 0/2 = 0.0

P(F3|+) = P(F3=F|+) = 1/2 = 0.5

P(F1|-) = P(F1=T|-) = 1/3 = 

P(F2|-) = P(F2=F|-) = 2/3 = 

P(F3|-) = P(F3=F|-) = 1/3 = 

Plugging thse into the above eqn.

P(vj = +)* P(F1=T| +) P(F2=F| +) P(F3=F | +) = (2/5)*(1/2)*(0.0)*(1/2) = 0

P(vj = -)* P(F1| -) P(F2| -) P(F3 | -) = (3/5) * (2/3)*(2/3)*(1/3) = 2/45 = 0.044

The correct hypothesis therefore is -

_1146037916.unknown

_1146040184.unknown

_1146464466.unknown

_1146040182.unknown

_1146040183.unknown

_1146037917.unknown

_1146035778.unknown

