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Need for a Revised Notion of Concept Learning

e Example: Consider an environmental-cleanup robot that needs to
inspect trees for damage from acid rain. We need to train this robot

to recognize “trees”.

e Suppose we train our robot in East Lansing. What will its
performance in Florida be? Vice-versa, we train our robot in

Florida. How will it do in East Lansing?

¢ Result: Robot trained in Florida will get confused by “fall colors”.
Vice-versa, robot trained in East Lansing will not recognize palm
trees.
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Probability Distribution on Instances

e For any given instance space, there is a non-uniform likelihood of
seeing different instances. We can represent this situation by
imagining that there is a probability distribution on the space of

instances.

e The learner does not know this distribution ahead of time, but is
allowed to assume that it is fixed. Thus, a learner trained on one
particular distribution should only be tested on that distribution.
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/ Approximate Concept Learning \

e Requiring a learner to learn the right concept is too strict (e.g. is
there a “right” concept of tree?).

¢ Instead, we relax this requirement and allow a learner to produce a
good approximation to the actual concept.

e Let P(z) be a fixed probability distribution on the instance space.
Let ¢ be the target concept, and let h be the concept produced by
the learner.

e Let S = {x|c(z) # h(z)} be the set of instances on which the target
concept and the approximation disagree. Let € be an error tolerance
parameter where 0 < € < 1. Then h is a good approximation (to
within €) of ¢ if and only if:

Y P <e
N\ /
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Approximation in Concept Learning

Error h-c

Error c-h
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Approximate Learning using Version Spaces

We say a version space is exhausted if the S and G sets are one
and the same singleton set. We already know this is too hard.

Given a hypothesis space H, a target concept ¢, a sequence of
examples ) of ¢, and an error tolerance ¢, the version space of )
(w.r.t. H) is e-exhausted if it does not contain any hypothesis that
has (true) error more than e (w.r.t c).

We will only require that the learner produce an e-exhausted version

space.

Furthermore, we will solve the problem of exponentially large G sets
by simply computing any one hypothesis h that has error < e.

Question: How many examples are needed to e-exhaust a version

)

space?
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Probabilistic Learning

Assume training examples are drawn independently and
randomly from an unknown but fixed distribution P on the

instance space.

We only require that the learner succeed in producing a good
approximation to the target concept with high probability.

Specifically, given a confidence parameter 9, we require the learner to
be able to e-exhaust a version space with probability at least 1 — §.

So how many examples are needed for the learner to e-exhaust a
version space with probability > 1 — §7?
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Sample Complexity for Probably Approximate Version
Spaces

e Theorem: Let H be a finite space of hypotheses, and denote its
size by |H|. Given m independently drawn random examples (drawn
using a fixed distribution P) of some concept ¢ in H, for any
0 < € < 1, the probability that the version space consistent with the
m examples is not e-exhausted is < |H|e™ ™.

e Proof: Let hi,...,hx be hypotheses in H that have error > ¢. We
will not e-exhaust the version space iff one of these h; is consistent
with all m training examples. Since each h; has error > ¢, an
individual example is consistent with a given h; with probability
< 1 — €. The same h; is consistent with all m examples with
probability < (1 — €)™. Now the probability of any h being
consistent with all m examples < k(1 — €)™. Since k < |H|, and
(1 —€)™ < e ™, the result follows.

\_ /
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/ How Many Examples are Needed for PAC Learning? \

e Corollary: Given reliability d and error €, the number of examples
needed to e-exhaust a version space consistent with some ¢ in H is

m > L(in(5) + n(|H)

e Proof: We know from the theorem that
d > |Hle™ ™
Taking natural logarithms on either side, we get
In(d) > In(|H|) — em

Transforming the above, we get

m > %(ln(%) +In(|HI))

Ko NOTE: Bound is logarithmic in |H|! /
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e Let the hypothesis space H be all pure conjunctive formulae over n
boolean attributes A1,..., A,. |H| = 3.

Example

m:%w%yumwn

m:;m%mmm@)

o Number of examples is linear in n.

e Consider n = 10, € = 0.05, § = 0.05, then

1
= —(In(=—= 10In(3)) = 260
m =~ (In(s==) + 100n(3))
e This is quite good, considering that there are almost 60,000 pure
conjunctive concepts on 10 boolean variables.
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Probably Approximately Correct (PAC) Learning \

e An algorithm A is a PAC learning algorithm for a class of
concepts F' if
1. A takes as input € and § (both > 0 and < 1) and a natural
number n (a “size” parameter)

2. A can call a routine EXAMPLE which returns examples for
some f € F'. Examples are selected randomly, independently,
and according to some fixed distribution P on the space of
instances I.

3. For all concepts f € F and all probability distributions P on I,
with probability > 1 — ¢ algorithm A outputs a concept g € F

such that
Z P(x) <e
w€{i|f(1)#9(i)}
e A class of concepts F' is PAC learnable if there exists a PAC

learning algorithm for F'. /
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e A class of concepts F' is polynomial-sample PAC learnable if it
is PAC learnable using atmost p(%, %,n) examples, where p() is a
polynomial function of its arguments.

e A class of concepts F' is polynomial-time PAC learnable if it is

PAC learnable in time atmost p(%, %,n), where p() is a polynomial

function of its arguments.
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Generic PAC Learning Algorithm

e PAC-Learn-H(e,J):
1. Call the EXAMPLE routine m times, where

m =~ (in(3) + In(|H])

2. Collect the examples in a set S.
3. Output any g € H consistent with S.
e Note sample complexity theorem guarantees g output by algorithm
will be PAC.
1. How do we find a consistent hypothesis?
2. How do we know if In(|H|) is polynomial in n?
3. Can we do better than In(|H|)?
4. What if H is infinite?

12



/ VC Dimension Examples' \

Calculate the VC-dimension of the following hypothesis spaces:

e All lines on a plane

— For some set of 1,2, and 3 points, we can always find a line
consistent with any labeling of these points.

— However, there is no set of size 4 that can be shattered.
Why?
e All hyperplanes in r dimensions (perceptron)

— VC dimension of r dimensional hyperplane is » + 1. Why?

e Pure conjunctions (monomials) of n boolean literals

— Consider n = 3 and let the set S = {011,101, 110}.

K — There is a monomial consistent with any labeling of S. /
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Learning Rectangles: Empirical Test of VCI

Different distributions can be generated based on the proportion of

~

positive and negative examples.

14
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Empirical Test of VC BoundsI

Each distribution shown here refers to the proportion of positive

Consistent Learner Tested on 10x10 square on 100x100 domain for Varying Distributions
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Error averaged over 30 Trials

Empirical Test of VC BoundsI
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/Small sample size behavior of Find-S algorithm'

Samples Error
0 0.504480
10 0.337607
20 0.175880
30 0.103427
40 0.087920
50 0.075420
60 0.068867
70 0.057460
80 0.046740
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/ Lower Bound Prediction of PAC Framework'

Any PAC learner who sees < m examples, as given below, will fail

~

sometimes (see book for exact theorem)

1. Ve(C) - 1)

1
> — —
m max(elog(5), 39¢

Lower Bound on Number of Examples Necessary for Consistent Learning
1 T T T T

09 error-0.5" —— 1
0.8 r
0.7
0.6

Error

05 |
04l ™
03|
02}

0.1 r

0 . .
0 20 80 100

. .
40 60
K Number of Examples /




/ VC Theory for Perceptron Networks' \

Theorem: Let G be a layered DAG with n input nodes and s > 2
internal nodes, each of fan-in < r. Let each node in the network compute
a concept ¢ € C which is over R" of VC-dim d. Let G¢ be the composite
concept computed by the overall network. Then, it can be shown that
VC-dim(Ge¢) < 2dslog(es).

Question: How many examples are needed to train a 10-input network
of 5 perceptrons to an accuracy of 90% with reliability > 95%7

m > % (4109(%) + 8VC’(H)log(1—63))
> % (4log(§) + 16(r + l)slog(es)log(§)>
> % (4109(%) + 16(11)(5)[09(65)[09(%))
> 10(4log(40) 4+ 16(11)(5)log(e5)log(130)) ~ 22000!

\_ /
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Applications of VC Theory to Neural Nets'

Theorem: Let F' be the class of all functions computed by

feedforward nets defined on a fixed underlying graph G with E
edges and N > 2 linear threshold nodes

Let W = E 4+ N be the total number of weights in the network (one
for each edge and one threshold weight for each node).

Then, it can be shown that VC-dim(F') < 2Wlog(eN).

Theorem: If a feedforward net with linear threshold units is given

m examples, where m > @ln@, and weights can be found that

classify at least 1 — 5 of these m examples, then it can be shown

that the net has learned an approximation with error < e with

em

confidence § > 1 — 8e™ 32

)
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/What Net Size Produces Valid Generalization '\

Suppose we want to train a neural net with W weights to learn a

high accuracy approximation with error < ¢, how many examples
m do we need?

Roughly speaking, m ~ %

€
So, if we want 90% accuracy on test examples from the same fixed
distribution used to train the network, we need 10 times as many
examples as there are weights in the network.

Is this borne out in practice? If we consider the neural net used in
ALVINN, or the neural network for recognizing sunglasses, the
number of weights is approximately

32 x 30 x 4 ~ 3600 weights!

Qo, the theory predicts you need > 30,000 training examples! /
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VC Results for Neural Nets: Summary'

™

Network VC bound Authors
Single threshold unit n+1 Wenocur-Dudley
Feedforward threshold O(w log w) Baum-Haussler
Nonoverlapping threshold | O(n log n) Schmitt
Feedforward sigmoidal O(w*) Karpinski-Macintyre
Nonoverlapping sigmoidal O(n*) Schmitt
-
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Consider the smooth nonlinear activation function

nfinite dimension VC Bound Neural Nets exist!
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Define N to be a neural net with 2 real-valued inputs, 2 hidden
units with the above activation function, and a linear threshold
gate as output

Qheorem (Sontag, 1992): VC-dim(N) = oo
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/ Agnostic PAC Learning Model' \

The standard PAC theory assumes that the target concept ¢ € H is
some element of the space of hypotheses H (so a consistent learner
is sufficient).

In many practical applications, this assumption is too stringent.
The agnostic PAC framework assumes that learner outputs the
hypothesis h € H that has the least error over the training data.

Theorem: After seeing m examples, an agnostic learner can
output a good hypothesis h whose error is < e with probability
>1—0if

1 1
m > = (1115 +1n(|H|)>

\_ /
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Application of PAC Theory to Decision Trees'

Define the rank of a decision tree as follows. If the tree is a single
leaf, the rank is 0. If the rank of the left subtree is 1, equals the
rank of the right subtree rg, then the tree rank is rp + 1.

Otherwise, the rank is maxrr, rg.
Lemma: A decision tree with [ leaves has rank atmost logsl.
Lemma: Rank r decision trees C r-decision lists.

Theorem: Constant rank decision trees are polynomial-time PAC
learnable.

Theorem: Arbitrary decision trees of size s can be learned in time
and number of examples = O(n!°9%).

\_ /
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