Training examples

1	0	0	1	laı
				large
1	1	1	0	is_mammal
1	1	1	1	has_claws
0	0	1	1	can_fly
1	1	0	0	can_bark
1	1	0	0	has_tail
+	+	1	1	Label

Machine Learning Week 1

9

A Learning Algorithm

- Initialize initial hypothesis $h \leftarrow A_1 \land \neg A_1 \dots A_n \land \neg A_n$
- 2. For each positive example $e \in S$ do:
- if the i^{th} boolean attribute $A_i = 0$ in the example, remove A_i from h, otherwise remove $\neg A_i$.
- 3. Output h as the hypothesis that best approximates the target concept.

Properties of this learning algorithm

Biases:

- Representational bias: concepts are describable by purely conjunctive expressions.
- Algorithmic bias: keeps track of only the most specific hypothesis consistent with the data.

Machine Learning Week 1

Analysis of this learning algorithm

- Size of hypothesis space $|F| = 3^n$ (exponential).
- Let n = 100. Then $F \approx 10^{47}$.
- How many examples are needed for the algorithm to learn the "dog" concept?
- additional assumptions are made (e.g. examples are drawn This algorithm will never converge quickly unless some from a fixed (unknown) distribution).
- Surprisingly, we can then show that this algorithm can reliably examples, where find high accuracy approximations in polynomial time, given m

$$m = \frac{1}{\epsilon} (n(\ln(3) + \ln(\frac{1}{\delta})))$$

Mistake-Bounded Model of Concept Learning

- example, it must *predict* the label (positive or negative), before Unlike before, each time the learner receives a training being given the right answer.
- Learner is evaluated in terms of the number of mistakes it makes before converging to the right hypothesis.
- Useful model of online learning (e.g. for web-based datamining).
- **Problem:** How many mistakes will our concept learning algorithm make, before converging to the right hypothesis?
- **Answer:** n+1 (where n is the number of attributes)

Machine Learning Week 1 13

Design of a Learning System

Choose

- Task (robot navigation, weather prediction,...)
- Training experience (scalar feedback, labeled examples,...)
- **Target function** (state \rightarrow value, feature vector \rightarrow label,...)
- neighbor,...) Function representation (neural nets, decision trees, nearest
- **Learning method** (backpropagation, c4.5, kernel regression,...)

Example: Weather Prediction

- Task: Predict weather in East Lansing next Saturday (Prob(snow)).
- Training experience: Database of measurements and final outcome.
- Target function: $f:(x_1,\ldots,x_n)\to[0,1]$
- Function representation: $f(x) = \sum_{i=1}^{n} w(i)x(i)$
- Learning method: LMS (Delta rule, Adaline)

Machine Learning Week 1

15

Learning Method

- Let P_t be the prediction on day t and z be the final outcome on Saturday.
- Generalized delta rule:

$$\Delta(w_t) = \alpha(z - P_t) \nabla_w P_t$$

• For linear approximators:

$$\Delta(w_t)(i) = \alpha(z - \sum_{k=1}^n w_t(k)x_t(k))x_t(i)$$

Machine Learning

Week 1

17

Sequential Prediction/Decision Problems

- Weather prediction
- Stock market
- Game playing
- Robot navigation
- Manufacturing/scheduling

Weather Prediction revisited

- Error $e_t = z P_t$ (e.g. Saturday's outcome Monday's prediction)
- Problem: Cannot learn until final outcome is known!
- How can an agent learn from online experience?
- Key idea: Temporal difference learning (Sutton)
- Reexpress error as sum of differences between temporally successive predictions.

Machine Learning Week 1

19

Temporal Difference Learning

Error = Saturday's outcome - Friday's prediction Friday's prediction - Thursday's prediction Tuesday's prediction - Monday's prediction Thursday's prediction - Wednesday's prediction Wednesday's prediction - Tuesday's prediction

• TD(0):
$$\Delta(w_t) = \alpha(P_{t+1} - P_t)\nabla_w P_t$$

• TD(1):
$$\Delta(w_t) = \alpha(P_{t+1} - P_t) \sum_{k=1}^t \nabla_w P_k$$

• TD(
$$\lambda$$
): $\Delta(w_t) = \alpha(P_{t+1} - P_t) \sum_{k=1}^t \lambda^{t-k} \nabla_w P_k$

21

Reinforcement Learning

- Reward: Scalar feedback
- **Policy:** what do I do in this state?
- fixed policy)? Value function: How good is this state (assuming I follow a
- Model: what happens if I do this action?
- **Key idea:** Learn the optimal value function V^*
- Model-free (TD(0) or Q-learning)
- Model-based (Real-time dynamic programming)

Other Function Approximators

Decision Trees

- Choose some feature to split on (e.g. humidity)
- Choose some value to split on (e.g. 80%)
- Partition all instances into $\leq 80\%$ and > 80%.
- Repeat until class impurity is minimal

Nearest Neighbor

- Store all instances
- Given a new feature vector, determine "closest" instances using some distance metric
- Assign new vector the class label of the majority of the closest

Issues in Choosing Approximators

- Generality of learning algorithm
- Convergence
- Noise immunity and robustness
- Speed
- \bullet Incrementality