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Overview of Week 2
e Concept learning: search in hypotheses space
e Version spaces: candidate elimination algorithm

e Using bias in concept learning
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/ General Model of Concept Learning'

F = space of functions

H = space of hypotheses

Example = <x, f(x)> ;
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Concept Learning

Example: “user profile” for web browsing:

Inferrring a boolean function from labeled training examples.

Dom. | Plat. | Browser | Day | Screen Cont. Click?
edu Mac Net3 Mon. | XVGA | America Yes
com Mac NetCom | Tue. | XVGA | America Yes
com PC IE Sat. VGA Eur. No
org Unix Net2 Wed. | XVGA | America Yes

-
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Given:

e Instances X:

Concept Learning Problem

Domain: edu, com, org

Platform: Mac, PC, Unix

Browser: Netscape2, Netscape 3, Netscape Communicator,

Microsoft IE.

Day: Monday - Sunday.
Screen: VGA or XVGA.

Continent: America, Europe, Africa, Asia, Australia.
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e Hypotheses H: Each h € H hypotheses is described by a
conjunction of constraints on the above attributes (value, 7, ¢).

e Target concept: Click c: X — 0,1

e Training examples D: positive and negative examples of target
concept.

Determine: A hypothesis h € H s.t. h(z) = c(z)Vz € X.

\_ /
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/ Hypotheses Space \

e Hypotheses language: Every attribute can be a specific value, a
wildcard (?), or null (¢).

e If an instance ¢ satisfies a hypothesis h, then ¢ is a positive
example (else i is a negative example).

e Let X be the set of instances. For the web example,
| X'| = 2520. (why?) How many possible concepts over X7

e Let H denote the set of all hypotheses representable in the
hypotheses language.

e For the web example, number of syntactically distinct
hypotheses is H = 37800 (why?)

e For the web example, number of semantically distinct

K hypotheses is H = 11521 (why?) /
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Inductive learning hypotheses

Any hypotheses found to approrimate the target function over a
sufficiently large set of training examples will also approximate the

target function well over unobserved examples
Why is this true?

Sampling: Statistical theory for inferring population parameters

from samples.

Occam’s razor: “Small” hypotheses are likely to be more accurate
than larger ones. (e.g. Kepler’s law vs. epicycles).

e David Hume: An inquiry concerning human understanding
(1748).

e Nelson Goodman: Fact, fiction, and forecast (1979).

\_ /
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Concept Learning as Search in Hypotheses Space

The hypotheses can be partially ordered under
more_general_than_or_equal_to (>).

hy >4 hy iff

(Ve € X) (ho(xz) =1) = (hi(z) =1)

Example:
— hy =< edu,Mac,?, Mon,?,7 >
— hy =< edu, Mac,IE, Mon,?, Europe >

Why is >} a partial ordering?

e Give an example where neither hy >4 hy nor hy >4 hy.
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Partial Ordering on Hypotheses Space

Instances Hypotheses

PY Specific

General

h1l = <edu,Mac,?,?,?,Eur>
h2 =<edu,?,IE,?,?,Eur>

h3 =<edu,?,?,?,? ,Eur>

x1 = <edu,Mac,|E,Mon,VGA Eur>

x2 = <edu,PC,IE,Mon,VGA Eur>
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Find-S: Finding a Maximally Specific Hypothesis
1. Initialize h to the most specific hypothesis in H.

2. For each positive instance ¢, do

e For each attribute constraint a; do
If 4 is not satisfied by h, then replace a; by the next more
general constraint that is satisfied by 1.

3. Output hypothesis h

\_
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Example of Find-S

Instances Hypotheses

Specific

General

x1 = <edu,Mac,Net3,Mon,XVGA,America>, + h0 =<0,0,0,0,0,0>

=< i >
X2 = <com,Mac,Net3, Tue, XVGA America>, + hl edu,Mac,Net3,Mon, XVGA,America:
x3 =<com,PC,IE,Sat,VGA Eur>, - h2 = <? Mac,Net3,? XVGA , America>
X4 = <org,Unix,Net2,Wed , XVGA America>, + h3 = <? Mac,Net3,? XVGA America>

h4 =<?,2,2,?,XVGA,America>
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Problems with Find-S Algorithm
Convergence: cannot determine if unique hypothesis
Singleton hypotheses set: why keep only the most specific h?
Consistency: what if examples are inconsistent or noisy?

Multiple specific hypotheses: need not be only one.
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Version Space

A hypothesis h is consistent with a set of training examples D iff
h(z) = c(z) for every < z,c(z) >€ D.

The version space V Si, p with respect to hypothesis space H and
training examples D is the set of all hypotheses h € H that are

consistent with examples in D.

How to compute the version space?
e List-then-eliminate: obvious but impractical idea.

e Candidate elimination (Mitchell, Ph.d. thesis)

\_ /
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Compact Representation of Version Spaces

Key idea: keep only the boundary sets, exploiting the partial
ordering of the hypotheses space.

General boundary set G: is the set of maximally general
members of H consistent with training data D.

{h € H | Consistent(h,D)A (=3¢’ € H) ((g' >q h) A C’onsistent(g',D))}

Specific boundary set S: is the set of maximally specific
members of H consistent with training data D.

{h € H | Consistent(h,D)A (=3¢’ € H) ((h >q9) A Consz’stent(g',D))}

\_ /
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Candidate Elimination Algorithm — I

the set of maximally general hypotheses in H.

e S < the set of maximally specific hypotheses in H.

e For each training example d, do:

d is a positive example:

Remove from G any hypothesis inconsistent with d.

For each hypothesis s in S that is not consistent with d

- Remove s from S

- Add to S all minimal generalizations h of s s.t. h is
consistent with d, and some g € G is more general than h.

- Remove from S any hypothesis that is more general than
another hypothesis in S.
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Candidate Elimination Algorithm — IT

e If d is a negative example:
— Remove from S any hypothesis inconsistent with d.

— For each hypothesis g in G that is not consistent with d

Remove g from G

Add to G all minimal specializations h of g s.t. h is consistent
with d, and some s € S is more specific than h.

Remove from G any hypothesis that is less general than
another hypothesis in G.
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Version Space Example

SO:

{<0,0,0,0,0,0>}

GO

{<?,2,2,2,2,25}
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Version Space Example (continued)

S1:) {<edu,Mac,Net3,Mon,XVGA,America>}

Gl

{<?,2,2,2,2,2>}

<edu,Mac,Net3,Mon,XVGA,America>, +
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Version Space Example (continued)

S2: {<?,Mac,?,? XVGA,America>}

G2 {<?2,2,2,2,2,7>}

£, 0,0,0,0,¢

<com,Mac,NetCom,Tue, XVGA ,America>, +
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Version Space Example (continued)

S3:

G3:

{<?,Mac,?,? XVGA,America>}

{<?,Mac,?,?,?,?>,<?,?2,?,?, XVGA,?>. <?,2,?,?,?, America>}

<com,PC,IE,Sat,VGA, Eur>, -
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Active Learning with Version Spaces

<?Mac,?,,?, XVGA,?>

G3:

S3: {<?,Mac,?,?, XVGA,America>}

A

!

AN

<?,Mac,?,?,?, America>

<?,2,2,2, XVGA,America>

"\ >/

{<?.Mac,?,?,?,?>, <?,2,2,?, XVGA,?>. <?,?,2,?,?,America>}

What should be the best new example?
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Using Partially Learned Concepts

Dom. | Plat. | Browser | Day | Screen Cont. Click?
edu Mac IE Fri. XVGA | America ?
com PC NetCom | Wed. VGA Europe ?
org Unix Net2 Wed. | XVGA | America ?

21
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S4:

G4

Version Space Example (continued)

{<?,?2,?2,?, XVGA,America>}

{<?,2,2,2,XVGA,?>. <?,?,?,2,? America>}

<org,Unix,Net2,Wed,XVGA,America>, +
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Version Space Converged

S5: {<?,2,2,2,XVGA,?>}

G5: {<?,2,2,2,XVGA,?>}

<com,Unix,Net2,Wed,XVGA,Europe>, +
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Applications of Version Spaces

e META-DENDRAL: Predict molecular structure from mass
spectrometer data.

Intensity

e LEX: Learn heuristics for symbolic integration.

/udv:uv—/vdu

+: [ 3zcos(x)dz with u = 3z and dv = cos(z)dz.
- [ basin(z)dx with v = sin(z) and dv = Szdz.

Mass-to-charge ratio

~
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VS has Exponential Sample Complexity

Let the concept be A; = true. Let instances be described by n
boolean attributes. Consider the sequence of 2”2 examples:

o A =trueN Ay =true...A,_1 = false N A, = false
o Ay =true N Ay =true...A,,_1 = false N A,, = true
o A =trueN Ay =true...A,_1 =true N A,, = false

e Ay =trueN Ay =true...A,,_1 = true A\ A,, = true

Note that the VS must still contain A, = true, As = true,

1 = true A\ Ay = true.

25
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Bias in Concept Learning

Bias is defined as any criteria (other than strict consistency
with the training examples) used to select one specific

generalization over another.

Source of bias:

— Hypothesis (generalization) language: (e.g only ? allowed).

— Generalization algorithm: Find-s.

What is an unbiased generalization language (algorithm) for
the space of instances described by n boolean attributes?
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Bias-Free Learning

Assume H can represent all possible boolean formulae on the
attributes (conjunctions, disjunctions, negations).

Example: (Platform=Macintosh V Platform = Unix) A =
(Platform = PC).

Given positive examples z1, ..., z; and negative examples
Y1,-..,Yj, what are the S and G sets?

- S:.’L'l\/.’li'z\/....’l','i

- G:—ly1/\—|y2...—|yj

Bias-free learning does not allow making inductive leaps
beyond the observed training instances!

27
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e An unbiased generalization algorithm (e.g. version spaces) that

uses an unbiased hypothesis space (e.g. all boolean functions)
can never go beyond the observed training instances.

e The power of a learning system follows completely
from the appropriateness of its biases.

e Machine learning is the study of bias.

e Useful classes of biases:
— Factual knowledge of the domain

— Intended use of the learned generalization

Knowledge about source of training data

Simplicity and generality

K — Analogy with previously learned generalizations /
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Probability Distribution on Instances

e For any given instance space, there is a non-uniform likelihood of
seeing different instances. We can represent this situation by
imagining that there is a probability distribution on the space of

instances.

e The learner does not know this distribution ahead of time, but is
allowed to assume that it is fixed. Thus, a learner trained on one
particular distribution should only be tested on that distribution.

\_ /
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Approximate Concept Learning

Requiring a learner to learn the right concept is too strict (e.g. is
there a “right” concept of tree?).

Instead, we relax this requirement and allow a learner to produce a
good approximation to the actual concept.

Let P(z) be a fixed probability distribution on the instance space.
Let ¢ be the target concept, and let h be the concept produced by
the learner.

Let S = {z|c(z) # h(x)} be the set of instances on which the target
concept and the approximation disagree. Let € be an error tolerance
parameter where 0 < € < 1. Then h is a good approximation (to
within €) of ¢ if and only if:

Y P <e

)
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Approximation in Concept Learning

Error h-c
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Approximate Learning using Version Spaces

We say a version space is exhausted if the S and G sets are one
and the same singleton set. We already know this is too hard.

Given a hypothesis space H, a target concept ¢, a sequence of
examples ) of ¢, and an error tolerance ¢, the version space of )
(w.r.t. H) is e-exhausted if it does not contain any hypothesis that
has (true) error more than e (w.r.t c).

We will only require that the learner produce an e-exhausted version

space.

Furthermore, we will solve the problem of exponentially large G sets
by simply computing any one hypothesis h that has error < e.

Question: How many examples are needed to e-exhaust a version

space?

)
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Probabilistic Learning

Assume training examples are drawn independently and
randomly from an unknown but fixed distribution P on the

instance space.

We only require that the learner succeed in producing a good
approximation to the target concept with high probability.

Specifically, given a confidence parameter 9, we require the learner to
be able to e-exhaust a version space with probability at least 1 — §.

So how many examples are needed for the learner to e-exhaust a
version space with probability > 1 — §7?

)
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Sample Complexity for Probably Approximate Version
Spaces

e Theorem: Let H be a finite space of hypotheses, and denote its
size by |H|. Given m independently drawn random examples (drawn
using a fixed distribution P) of some concept ¢ in H, for any
0 < € < 1, the probability that the version space consistent with the

—€eEm

m examples is not e-exhausted is < |Hle
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Proof: Let hi,...,hr be hypotheses in H that have error > e.

We will not e-exhaust the version space iff one of these h; is

consistent with all m training examples.

Since each bad hypothesis h; has error > ¢, an individual example is
consistent with a given bad h; with probability <1 —e.

The same h; is consistent with all m examples with probability
<@-om

Now the probability of any h being consistent with all m examples
<Kk(l—¢™.

Since k < |H|, and (1 — €)™ < e~ ", the result follows.

)
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