Overview of Week 2

- Concept learning: search in hypotheses space
- Version spaces: candidate elimination algorithm
- Using bias in concept learning

Machine Learning Week 2 2

Concept Learning

Inferring a boolean function from labeled training examples.

Example: "user profile" for web browsing:

Dom.	Plat.	Browser	Day	Screen	Cont.	Click?
edu	Mac	Net3	Mon.	XVGA	America	Yes
com	Mac	${ m NetCom}$	Tue.	XVGA	America	Yes
com	PC	ΙE	Sat.	VGA	Eur.	No
org	Unix	Net2	Wed.	XVGA	America	Yes

Machine Learning Week 2 4

Concept Learning Problem

Given:

- Instances X:
 - Domain: edu, com, org
 - Platform: Mac, PC, Unix
 - Browser: Netscape 2, Netscape 3, Netscape Communicator, Microsoft IE.
 - Day: Monday Sunday.
 - Screen: VGA or XVGA.
 - Continent: America, Europe, Africa, Asia, Australia.

- Hypotheses H: Each $h \in H$ hypotheses is described by a conjunction of constraints on the above attributes (value, ?, ϕ).
- Target concept: Click $c: X \to 0, 1$
- Training examples D: positive and negative examples of target concept.

Determine: A hypothesis $h \in H$ s.t. $h(x) = c(x) \forall x \in X$.

Machine Learning Week 2 6

Hypotheses Space

- Hypotheses language: Every attribute can be a specific value, a wildcard (?), or null (ϕ) .
- If an instance i satisfies a hypothesis h, then i is a positive example (else i is a negative example).
- Let X be the set of instances. For the web example, |X| = 2520. (why?) How many possible concepts over X?
- Let *H* denote the set of all hypotheses representable in the hypotheses language.
- For the web example, number of syntactically distinct hypotheses is H = 37800 (why?)
- For the web example, number of semantically distinct hypotheses is H = 11521 (why?)

Inductive learning hypotheses

Any hypotheses found to approximate the target function over a sufficiently large set of training examples will also approximate the target function well over unobserved examples

Why is this true?

Sampling: Statistical theory for inferring population parameters from samples.

Occam's razor: "Small" hypotheses are likely to be more accurate than larger ones. (e.g. Kepler's law vs. epicycles).

- David Hume: An inquiry concerning human understanding (1748).
- Nelson Goodman: Fact, fiction, and forecast (1979).

Machine Learning Week 2 8

Concept Learning as Search in Hypotheses Space

- The hypotheses can be partially ordered under $more_general_than_or_equal_to$ (\geq_g).
- $h_1 \ge_g h_2$ iff

$$(\forall x \in X) \ (h_2(x) = 1) \Rightarrow (h_1(x) = 1)$$

- Example:
 - $h_1 = < edu, Mac, ?, Mon, ?, ? >$
 - $-h_2 = \langle edu, Mac, IE, Mon, ?, Europe \rangle$
- Why is \geq_h a partial ordering?
- Give an example where neither $h_1 \geq_g h_2$ nor $h_2 \geq_g h_1$.

Machine Learning Week 2 10

Find-S: Finding a Maximally Specific Hypothesis

- 1. Initialize h to the most specific hypothesis in H.
- 2. For each positive instance i, do
 - For each attribute constraint a_i do
 If i is not satisfied by h, then replace a_i by the next more general constraint that is satisfied by i.
- 3. Output hypothesis h

Machine Learning Week 2 12

Problems with Find-S Algorithm

- Convergence: cannot determine if unique hypothesis
- Singleton hypotheses set: why keep only the most specific h?
- Consistency: what if examples are inconsistent or noisy?
- Multiple specific hypotheses: need not be only one.

Version Space

A hypothesis h is **consistent** with a set of training examples D iff h(x) = c(x) for every $\langle x, c(x) \rangle \in D$.

The **version space** $VS_{H,D}$ with respect to hypothesis space H and training examples D is the set of all hypotheses $h \in H$ that are consistent with examples in D.

How to compute the version space?

- List-then-eliminate: obvious but impractical idea.
- Candidate elimination (Mitchell, Ph.d. thesis)

Machine Learning Week 2 14

Compact Representation of Version Spaces

Key idea: keep only the boundary sets, exploiting the partial ordering of the hypotheses space.

General boundary set G: is the set of maximally general members of H consistent with training data D.

 $\{h \in H \mid Consistent(h,D) \land (\neg \exists g' \in H) \left((g' >_g h) \land Consistent(g',D) \right) \}$

Specific boundary set S: is the set of maximally specific members of H consistent with training data D.

 $\{h \in H \mid Consistent(h, D) \land (\neg \exists g' \in H) \left((h >_g g') \land Consistent(g', D) \right) \}$

Candidate Elimination Algorithm - I

- $G \leftarrow$ the set of maximally general hypotheses in H.
- $S \leftarrow$ the set of maximally specific hypotheses in H.
- For each training example d, do:
 - If d is a positive example:
 - * Remove from G any hypothesis inconsistent with d.
 - * For each hypothesis s in S that is not consistent with d
 - · Remove s from S
 - · Add to S all minimal generalizations h of s s.t. h is consistent with d, and some $g \in G$ is more general than h.
 - · Remove from S any hypothesis that is more general than another hypothesis in S.

Machine Learning Week 2 16

Candidate Elimination Algorithm – II

- If d is a negative example:
 - Remove from S any hypothesis inconsistent with d.
 - For each hypothesis g in G that is not consistent with d
 - * Remove g from G
 - * Add to G all minimal specializations h of g s.t. h is consistent with d, and some $s \in S$ is more specific than h.
 - * Remove from G any hypothesis that is less general than another hypothesis in G.

Machine Learning Week 2 18

Version Space Example (continued)

S2: {<?,Mac,?,?,XVGA,America>}

G2: {<?,?,?,?,?,?>}

<com, Mac, NetCom, Tue, XVGA, America>, +

Machine Learning Week 2 20

Version Space Example (continued)

S3: {<?,Mac,?,?,XVGA,America>}

G3: {<?,Mac,?,?,?,>, <?,?,?,XVGA,?>. <?,?,?,?,America>}

<com,PC,IE,Sat,VGA,Eur>, -

Active Learning with Version Spaces S3: {<?,Mac,?,?,XVGA,America>} <?,Mac,?,?,XVGA,?> <?,Mac,?,?,America> <?,?,?,XVGA,America>

What should be the best new example?

{<?,Mac,?,?,?,>, <?,?,?,XVGA,?>. <?,?,?,?,America>}

Machine Learning Week 2 22

Using Partially Learned Concepts

Dom.	Plat.	Browser	Day	Screen	Cont.	Click?
edu	Mac	ΙE	Fri.	XVGA	America	?
com	PC	NetCom	Wed.	VGA	Europe	?
org	Unix	${ m Net2}$	Wed.	XVGA	America	?

Version Space Example (continued)

S4: {<?,?,?,XVGA,America>}

G4: { <?,?,?,XVGA,?>. <?,?,?,?,America>}

<org,Unix,Net2,Wed,XVGA,America>, +

Machine Learning Week 2 24

Version Space Converged

\$5: {<?,?,?,XVGA,?>}

G5: { <?,?,?,XVGA,?>}

<com,Unix,Net2,Wed,XVGA,Europe>, +

Applications of Version Spaces

• META-DENDRAL: Predict molecular structure from mass spectrometer data.

• LEX: Learn heuristics for symbolic integration.

$$\int udv = uv - \int vdu$$

+: $\int 3x\cos(x)dx$ with u = 3x and $dv = \cos(x)dx$.

-: $\int 5x\sin(x)dx$ with $u = \sin(x)$ and dv = 5xdx.

Machine Learning Week 2 26

VS has Exponential Sample Complexity

Let the concept be $A_1 = true$. Let instances be described by n boolean attributes. Consider the sequence of 2^{n-2} examples:

•
$$A_1 = true \land A_2 = true \dots A_{n-1} = false \land A_n = false$$

•
$$A_1 = true \land A_2 = true \dots A_{n-1} = false \land A_n = true$$

•
$$A_1 = true \wedge A_2 = true \dots A_{n-1} = true \wedge A_n = false$$

•
$$A_1 = true \land A_2 = true \dots A_{n-1} = true \land A_n = true$$

Note that the VS must still contain $A_1 = true$, $A_2 = true$, $A_1 = true \wedge A_2 = true$.

Bias in Concept Learning

- **Bias** is defined as any criteria (other than strict consistency with the training examples) used to select one specific generalization over another.
- Source of bias:
 - Hypothesis (generalization) language: (e.g only? allowed).
 - Generalization algorithm: Find-s.
- What is an unbiased generalization language (algorithm) for the space of instances described by n boolean attributes?

Machine Learning Week 2 28

Bias-Free Learning

- Assume *H* can represent all possible boolean formulae on the attributes (conjunctions, disjunctions, negations).
- Example: (Platform=Macintosh ∨ Platform = Unix) ∧ ¬ (Platform = PC).
- Given positive examples x_1, \ldots, x_i and negative examples y_1, \ldots, y_j , what are the S and G sets?
 - $-S = x_1 \vee x_2 \vee \dots x_i$
 - $-G = \neg y_1 \wedge \neg y_2 \dots \neg y_i$
- Bias-free learning does not allow making inductive leaps beyond the observed training instances!

Bias cannot be eliminated!

- An unbiased generalization algorithm (e.g. version spaces) that uses an unbiased hypothesis space (e.g. all boolean functions) can never go beyond the observed training instances.
- The power of a learning system follows completely from the appropriateness of its biases.
- Machine learning is the study of bias.
- Useful classes of biases:
 - Factual knowledge of the domain
 - Intended use of the learned generalization
 - Knowledge about source of training data
 - Simplicity and generality
 - Analogy with previously learned generalizations

Machine Learning Week 2 30

Probability Distribution on Instances

- For any given instance space, there is a **non-uniform** likelihood of seeing different instances. We can represent this situation by imagining that there is a **probability distribution** on the space of instances.
- The learner does not know this distribution ahead of time, but is allowed to assume that it is **fixed**. Thus, a learner trained on one particular distribution should only be tested on that distribution.

Approximate Concept Learning

- Requiring a learner to learn the *right* concept is too strict (e.g. is there a "right" concept of *tree*?).
- Instead, we relax this requirement and allow a learner to produce a **good approximation** to the actual concept.
- Let P(x) be a fixed probability distribution on the instance space. Let c be the target concept, and let h be the concept produced by the learner.
- Let $S = \{x | c(x) \neq h(x)\}$ be the set of instances on which the target concept and the approximation disagree. Let ϵ be an error tolerance parameter where $0 < \epsilon < 1$. Then h is a good approximation (to within ϵ) of c if and only if:

$$\sum_{x \in S} P(x) \le \epsilon$$

Machine Learning Week 2 32

Approximate Learning using Version Spaces

- We say a version space is **exhausted** if the *S* and *G* sets are one and the same singleton set. We already know this is too hard.
- Given a hypothesis space H, a target concept c, a sequence of examples Q of c, and an error tolerance ε, the version space of Q (w.r.t. H) is ε-exhausted if it does not contain any hypothesis that has (true) error more than ε (w.r.t c).
- We will only require that the learner produce an ϵ -exhausted version space.
- Furthermore, we will solve the problem of exponentially large G sets by simply computing any one hypothesis h that has error $< \epsilon$.
- Question: How many examples are needed to ϵ -exhaust a version space?

Machine Learning Week 2 34

Probabilistic Learning

- Assume training examples are drawn **independently and** randomly from an unknown but fixed distribution *P* on the instance space.
- We only require that the learner succeed in producing a good approximation to the target concept with high probability.
- Specifically, given a confidence parameter δ , we require the learner to be able to ϵ -exhaust a version space with probability at least 1δ .
- So how many examples are needed for the learner to ϵ -exhaust a version space with probability $\geq 1 \delta$?

Sample Complexity for Probably Approximate Version Spaces

• Theorem: Let H be a finite space of hypotheses, and denote its size by |H|. Given m independently drawn random examples (drawn using a fixed distribution P) of some concept c in H, for any $0 < \epsilon < 1$, the probability that the version space consistent with the m examples is not ϵ -exhausted is $\leq |H|e^{-\epsilon m}$.

Machine Learning Week 2 36

Proof: Let h_1, \ldots, h_k be hypotheses in H that have error $> \epsilon$.

We will not ϵ -exhaust the version space iff one of these h_i is consistent with all m training examples.

Since each bad hypothesis h_i has error $> \epsilon$, an individual example is consistent with a given bad h_i with probability $\le 1 - \epsilon$.

The same h_i is consistent with all m examples with probability $\leq (1 - \epsilon)^m$.

Now the probability of any h being consistent with all m examples $\leq k(1-\epsilon)^m$.

Since $k \leq |H|$, and $(1 - \epsilon)^m < e^{-\epsilon m}$, the result follows.