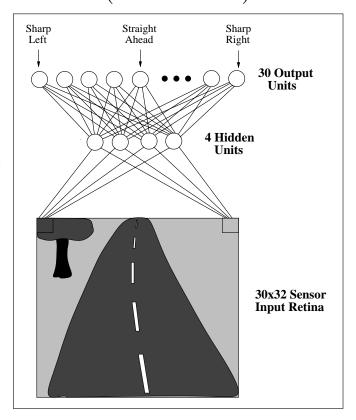
#### The Brain: A Paradox

- The brain contains  $10^{11}$  "neurons", each of which may have upto  $10^4$  i/o connections.
- Each neuron is "slow", with a switching time of 1 msec.
- Yet the brain is astonishingly fast (and reliable) at computationally intensive tasks like vision, speech recognition, and retrieving stored knowledge.
- Neural nets or "connectionism" is a field based on the assumption that a computational architecture similar to the brain will duplicate (at least some of) its wonderful abilities.

#### A Brief History of Neural Networks (Pomerleau)

- 1955-65: Rosenblatt's Perceptron.
- Late 60's: Minksy and Papert publish definite analysis of perceptrons
- 1975: Werbos' Ph.d. thesis at Harvard (Beyond regression) defines backpropagation.
- 1985: PDP book published that ushers in modern era of neural networks.
- 1990's: Neural networks enter mainstream applications.

# ALVINN: A Neural Network-based Autonomous Vehicle (Pomerleau)



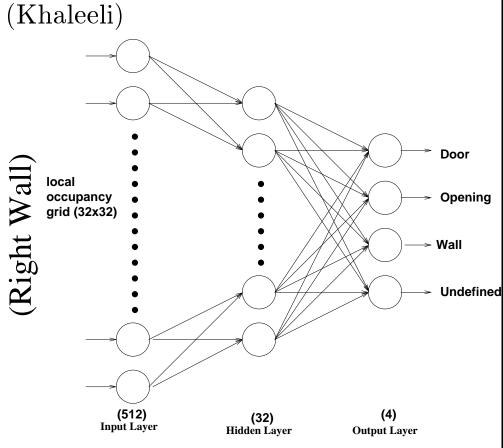
# PAVLOV: A Neural-Net based Navigation Architecture

(Front Opening)



Left Wall

(Back Opening)

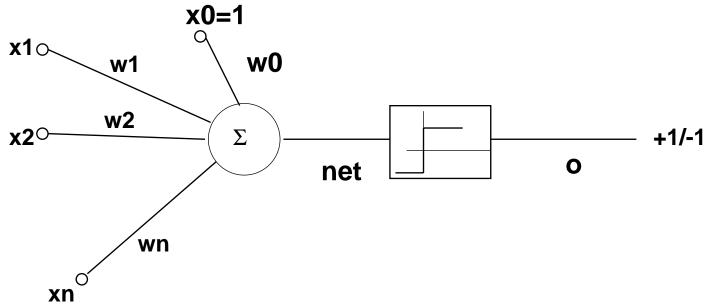


# PAVLOV: Learning to Find Trashcans (Theocharous) 001010 001100 101100 b a 010100 100110 001001 d е

#### Problems Suited to Neural Networks

- Input space is high-dimensional and continuous
- Output space is multi-dimensional and discrete/continuous
- Training examples are noisy
- Long training times are feasible
- Explanation of learned structure is not necessary
- Fast computing of output given input





$$net = \sum_{i=0}^{n} w_i x_i$$

$$o = +1 \text{ if } net > 0 \text{ else } o = -1.$$

#### Single Layer Perceptrons

Simplest net over real-valued input.

$$o(x_1, \dots, x_n) = 1$$
 if  $\sum_{i=0}^{N} w_i x_i > 0$ ,  $-1$  otherwise

$$o = +1 \Rightarrow ClassA$$

$$o = -1 \Rightarrow ClassB$$

Example: Let N = 2. Then

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

#### The Perceptron Learning Algorithm

- 1. Initialize weights and threshold: Set weights  $w_i$  to small random values.
- 2. Present Input and Desired Output: Set the inputs to the example values  $x_i$  and let the desired output be t.
- 3. Calculate Actual Output:

$$o = sgn(\vec{w} \cdot \vec{x})$$

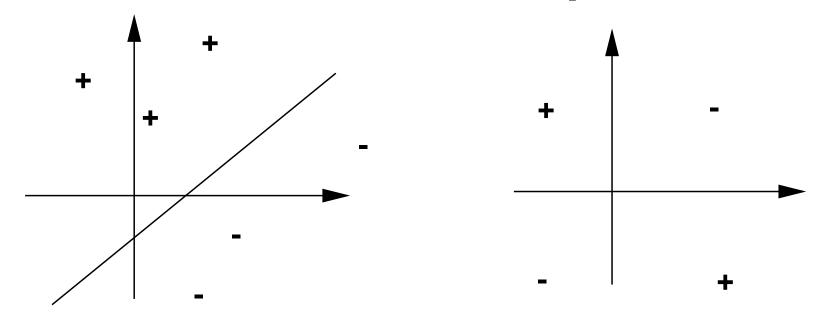
4. **Adapt Weights:** If actual output is different from desired output, then

$$w_i \Leftarrow w_i + \alpha(t - o)x_i$$

where  $0 < \alpha < 1$  is the learning rate.

5. Repeat from Step 2 until done.

# Decision Surface of a Perceptron



Some linearly separable functions: AND,...

Not all functions are linearly separable (e.g. XOR).

Gradient Descent in Error Space

#### Gradient Descent in Error Space

• Given a set of weights  $w_i$ , the mean-squared error over the set of training instances is

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

- The function  $E(\vec{w})$  defines an error surface in weight space.
- To find the weight vector that yields the lowest error, we can do gradient descent along the error surface.
- The direction of steepest descent is given by the *gradient* function

$$\nabla E(\vec{w}) = \left[ \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n} \right]$$

#### Learning by Gradient Descent

• The training rule for gradient descent is

$$\Delta w = -\eta \nabla E(\vec{w})$$

• The weight  $w_i$  is changed by the amount

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

• For a linear unit (unthresholded perceptron), the weight update is

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_i^d$$

# Incremental (Stochastic) Gradient Descent

14

Batch Mode: Do until error < minimum

1. Compute the gradient  $\nabla E_D[\vec{w}]$ 

2. 
$$\vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$$

Incremental Mode: Do until error < minimum

- 1. For each training example  $d \in D$ 
  - Compute the gradient  $\nabla E_d[\vec{w}]$
  - $\vec{w} \leftarrow \vec{w} \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

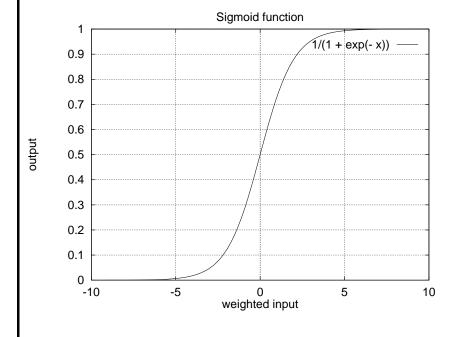
$$E_d[\vec{w}] = \frac{1}{2}(t_d - o_d)^2$$

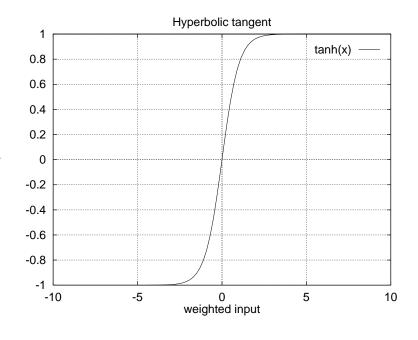
Given small enough  $\eta$ , incremental SG can approximate batch SG.

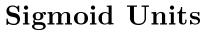
#### **Summary**

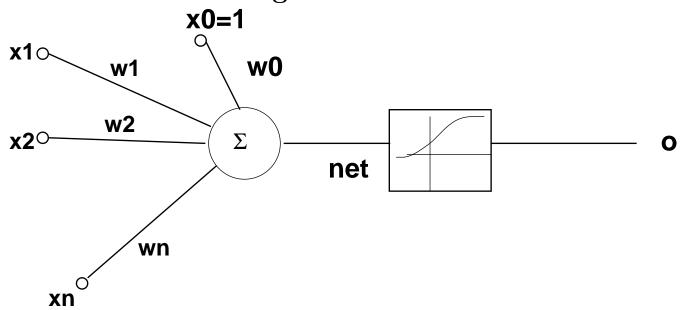
- Linear training unit uses gradient descent
- Guaranteed to converge to hypothesis with MSE
  - Provided learning rate  $\eta$  is sufficiently small
  - Even when training data is not describable in H
- Perceptron training rule guaranteed to succeed if
  - Training examples are linearly separable
  - Sufficiently small learning rate

#### Smooth Differentiable Units









$$net = \sum_{i=0}^{n} w_i x_i$$

$$o = \sigma(net) = \frac{1}{1 + e^{-net}}$$

#### Training Sigmoid Networks

If 
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Note that

$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

Error gradient for sigmoid units:

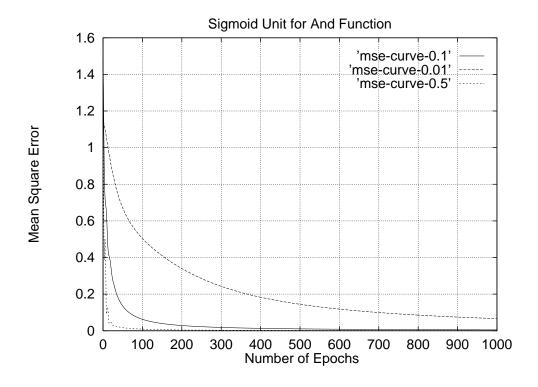
$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial_d}{\partial w_i}$$

$$= -\sum_{d} (t_d - o_d) o_d (1 - o_d) x_i^d$$

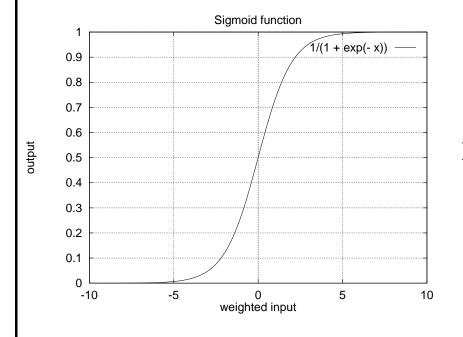
# Learning the AND Function with a Sigmoid Unit

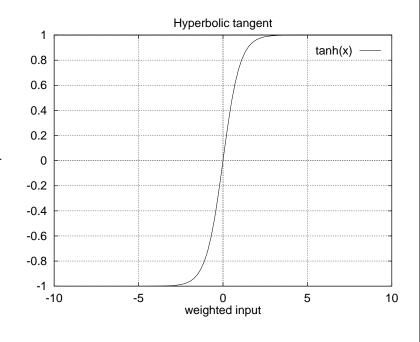


# Limitations of Threshold and Perceptron Units

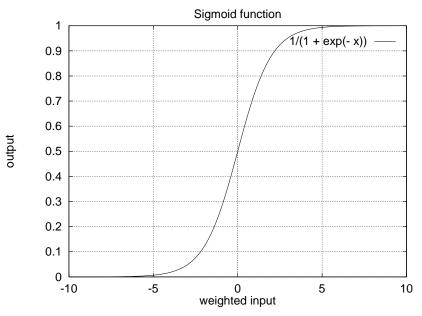
- Perceptrons can only learn linearly separable classes
- Perceptrons cycle if classes are not linearly separable
- Threshold units converge always to MSE hypothesis
- Network of perceptrons how to train?
- Network of threshold units not necessary! (why?)

#### Smooth Differentiable Units





# Sigmoid Units



$$net = \sum_{i=0}^{n} w_i x_i$$

$$o = \sigma(net) = \frac{1}{1 + e^{-net}}$$

#### Training a Sigmoid Unit

If 
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

Note that

$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

Error gradient for sigmoid unit:

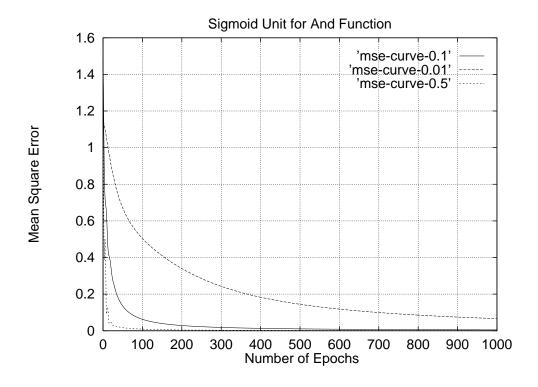
$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

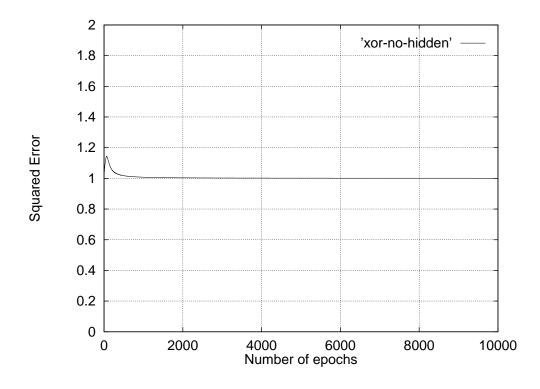
$$= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

$$= -\sum_{d} (t_d - o_d) o_d (1 - o_d) x_i^d$$

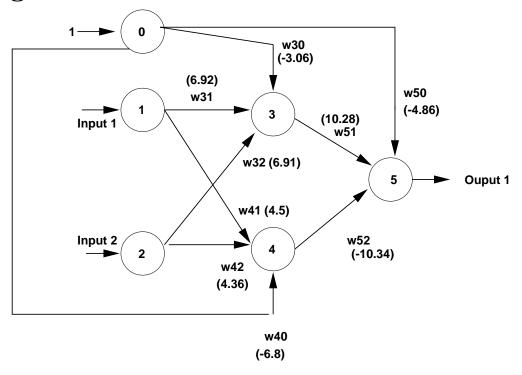
# Learning the AND Function with a Sigmoid Unit



# Cannot learn XOR Function with 1 sigmoid unit

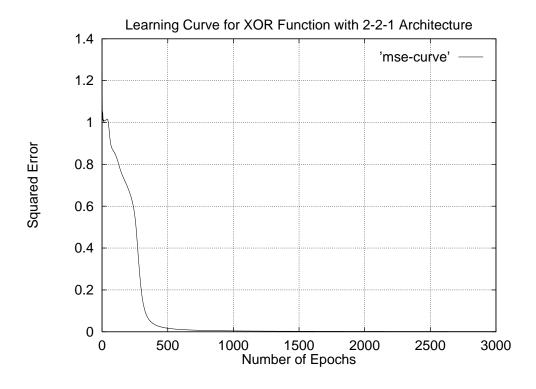


# Computing XOR Function with A Feedforward Network



| Input1 | Input2 | о3   | <b>o</b> 4 | Ouput 1 |
|--------|--------|------|------------|---------|
| 0      | 0      | 0.04 | 0.001      | 0.011   |
| 0      | 1      | 0.98 | 0.08       | 0.99    |
| 1      | 0      |      |            |         |
| 1      | 1      |      |            |         |

# Learning the XOR Function



#### The Backpropagation Algorithm: Batch Version

Initialize weights to small random values. Repeat until MSE < minimum. Repeat for every training example in data set

- 1. **Forward Propagation:** Input the training example to the net, and compute the network outputs.
- 2. Backward Propagation:
  - For each output unit k

$$\delta_k \leftarrow \delta_k + o_k (1 - o_k)(t_k - o_k)$$

• For each hidden unit h

$$\delta_h \leftarrow \delta_h + o_h(1 - o_h) \sum_{k \in \text{Downstream}(h)} w_{kh} \delta_k$$

Update each network weight  $w_{ji}$  by  $w_{ji} \Leftarrow w_{ji} + \eta \delta_j x_{ji}$ 

#### Stochastic Gradient Backpropagation

29

Initialize weights to small random values. Repeat until MSE < minimum. For each training example

- 1. Forward Propagation: Input the training example to the net, and compute the network outputs.
- 2. Backward Propagation:
  - For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

• For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{Downstream}(h)} w_{kh} \delta_k$$

3. Update each network weight  $w_{ji}$  by

$$w_{ji} \Leftarrow w_{ji} + \eta \delta_j x_{ji}$$

#### Derivation of the Backpropagation Algorithm

We need to determine how each weight  $w_{ji}$  affects the output of the network. Then, each weight is modified by

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

where  $E_d$  is the error on the training example d, summed over all outputs of the network

$$E_d(\vec{w}) = \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

Define  $net_j = \sum_i w_{ji} x_{ji}$ . Note that the weight  $w_{ji}$  can only influence the network output via  $net_j$ . So, we can use the chain rule to get

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} x_{ji}$$

#### Training Rule for Output Units

Using the chain rule again, we get  $\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} = -\delta_j$ 

For the first term:

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

$$= \frac{1}{2} 2(t_j - o_j) \frac{\partial}{\partial o_j} (t_j - o_j)$$

$$= -(t_j - o_j)$$

For the 2nd term:

$$\frac{\partial o_j}{\partial net_j} = \frac{\partial}{\partial net_j} \frac{1}{1 + e^{-net_j}}$$

$$= o_j(1 - o_j)$$

Combining these two, we get

$$\Delta w_{ji} = \eta(t_j - o_j)o_j(1 - o_j)x_{ji}$$

#### Training Rule for Hidden Units

$$\frac{\partial E_d}{\partial net_j} = \sum_{k \in Downstream(j)} \frac{\partial E_d}{\partial net_k} \frac{\partial net_k}{\partial net_j} \\
= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial net_j} \\
= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial o_j} \frac{\partial o_j}{\partial net_j} \\
= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j} \\
= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j} \\
-\frac{\partial E_d}{\partial net_j} = \delta_j = o_j (1 - o_j) \sum_{k \in Downstream(j)} \delta_k w_{kj}$$

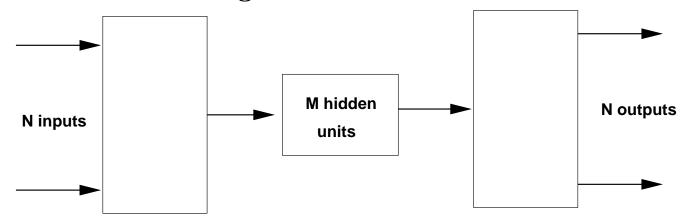
#### Some Practical Issues

- Convergence typically means the output of the desired unit is > 0.9 (if correct output is 1) or < 0.1 (if correct output is 0).
- Choice of initial weights impacts the convergence rate. One good heuristic when N is large is to choose weights randomly between (-1/N, 1/N) where N is input size.
- Larger  $\eta$  can produce faster convergence, but may cause instability.
- It is usually useful to add a momentum term to the weight adjustment rule

$$\Delta w_{ji}(n) \Leftarrow \alpha \Delta w_{ji}(n-1) + \eta \delta_j x_{ji}$$

• Choice of network topology (e.g. number of hidden units), input encoding, learning and momentum rates etc. are all important.

#### Learning the Encoder Function



Examples: N = 4, M = 2N = 8, M = 3

Can we make M to be small enough to force the network to "discover" a clever encoding?

#### Hidden units "discover" binary encoding!

#### 4-2-4 Network:

 $0.99 \quad 0.99 \quad -> \quad 0.99 \quad 0.01 \quad 0.01 \quad 0.00$ 

0.01 0.98 -> 0.01 0.99 0.00 0.01

 $0.96 \quad 0.01 \quad -> \quad 0.02 \quad 0.00 \quad 0.99 \quad 0.01$ 

0.01 0.01 -> 0.00 0.02 0.02 0.98

#### 8-2-8 Network:

 $0.98 \quad 0.01 \quad 0.95 \quad -> \quad 0.97 \quad 0.00 \quad 0.00 \quad 0.03 \quad 0.02 \quad 0.00 \quad 0.01$ 

 $0.02 \quad 0.00 \quad 0.18 \quad \rightarrow \quad 0.00 \quad 0.97 \quad 0.00 \quad 0.00 \quad 0.02 \quad 0.00 \quad 0.03 \quad 0.02$ 

 $0.99 \quad 0.98 \quad 0.02 \quad -> \quad 0.00 \quad 0.00 \quad 0.97 \quad 0.02 \quad 0.00 \quad 0.00 \quad 0.02 \quad 0.02$ 

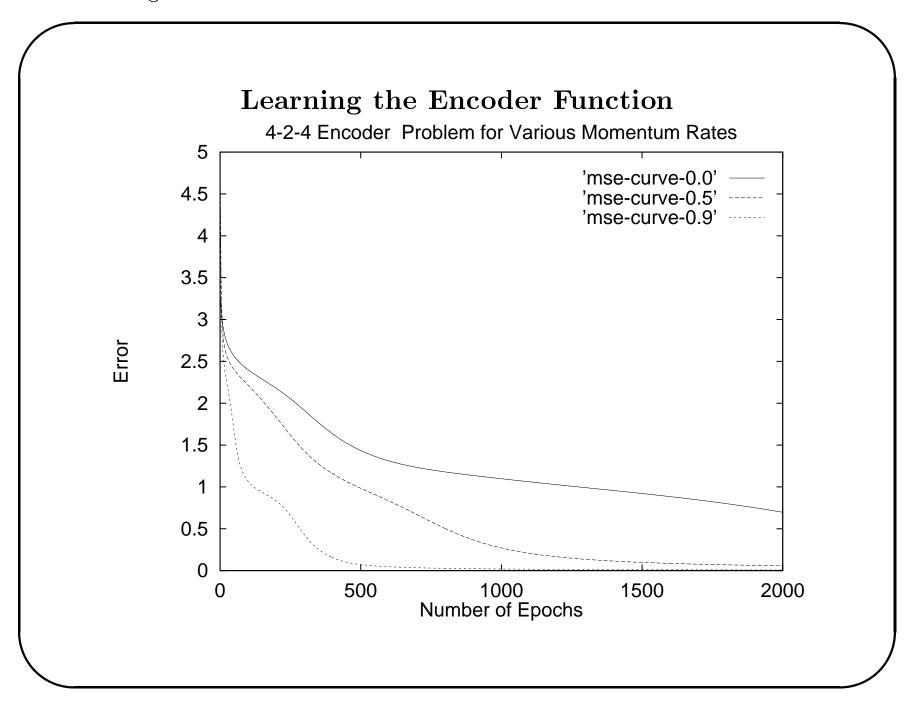
 $0.99 \quad 0.99 \quad 0.99 \quad -> \quad 0.01 \quad 0.00 \quad 0.02 \quad 0.96 \quad 0.00 \quad 0.02 \quad 0.00 \quad 0.00$ 

 $0.02 \quad 0.18 \quad 0.99 \quad \rightarrow \quad 0.02 \quad 0.02 \quad 0.00 \quad 0.00 \quad 0.97 \quad 0.02 \quad 0.00 \quad 0.00$ 

 $0.01 \ 0.99 \ 0.76 \ \rightarrow \ 0.00 \ 0.00 \ 0.03 \ 0.02 \ 0.96 \ 0.02 \ 0.00$ 

 $0.03 \quad 0.71 \quad 0.00 \quad -> \quad 0.00 \quad 0.02 \quad 0.02 \quad 0.00 \quad 0.00 \quad 0.03 \quad 0.97 \quad 0.00$ 

 $0.96 \quad 0.04 \quad 0.01 \quad -> \quad 0.02 \quad 0.02 \quad 0.02 \quad 0.00 \quad 0.00 \quad 0.00 \quad 0.97$ 



# Is it possible to learn 4-1-4?

1.00 -> 0.99 0.00 0.11 0.07

 $0.00 \rightarrow 0.00 \quad 0.93 \quad 0.31 \quad 0.14$ 

0.18 -> 0.01 0.08 0.26 0.12

 $0.23 \rightarrow 0.01 \quad 0.02 \quad 0.25 \quad 0.12$ 

4-1-4 encoder architecture

5

4-1-4'

3

2

1

0

0

2000

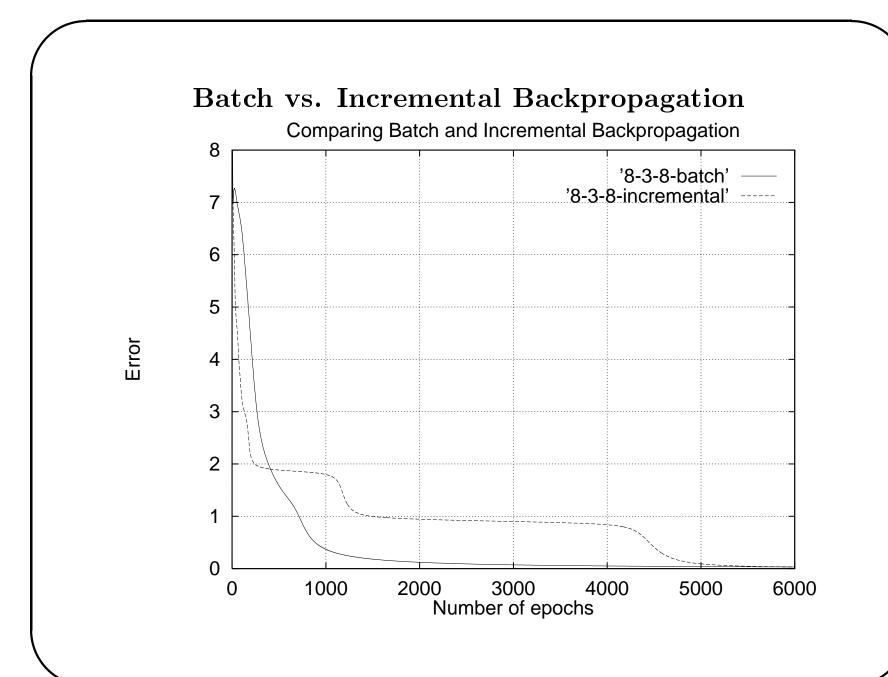
4000

8000

8000

10000

Number of epochs



# Some Practical Successes of Backpropagation

- Learning pronounciations of English words (NETTALK).
- Handwritten character recognition of postal zip codes (AT & T).
- Driving an autonomous land vehicle (a Ford truck) at highway speeds (ALVINN).
- Recognizing spoken words (isolated speech) (Lang, Waibel, Hinton).
- Adaptive Optics (Arizona State).