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The Brain: A Paradox

11
0 «

The brain contains 1 neurons”’, each of which may have upto

10* i/o connections.
Each neuron is “slow”, with a switching time of 1 msec.

Yet the brain is astonishingly fast (and reliable) at computationally
intensive tasks like vision, speech recognition, and retrieving stored

knowledge.

Neural nets or “connectionism” is a field based on the assumption
that a computational architecture similar to the brain will duplicate

(at least some of) its wonderful abilities.
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A Brief History of Neural Networks (Pomerleau)
e 1955-65: Rosenblatt’s Perceptron.

e Late 60’s: Minksy and Papert publish definite analysis of

perceptrons

e 1975: Werbos’ Ph.d. thesis at Harvard (Beyond regression)
defines backpropagation.

e 1985: PDP book published that ushers in modern era of

neural networks.

e 1990’s: Neural networks enter mainstream applications.
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ALVINN: A Neural Network-based Autonomous Vehicle
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PAVLOYV: A Neural-Net based Navigation Architecture
(Khaleeli)
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PAVLOYV: Learning to Find Trashcans
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Problems Suited to Neural Networks
e Input space is high-dimensional and continuous
e Output space is multi-dimensional and discrete/continuous
e Training examples are noisy
e Long training times are feasible
e Explanation of learned structure is not necessary

e Fast computing of output given input
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Single Layer Perceptrons

x0=1
x1
OK wO
w2 .
X20—
net —
wn
e)
XN

n
net = g W; L4
i=0

o= +11if net > 0 else 0 = —1.

+1/-1
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Single Layer Perceptrons

Simplest net over real-valued input.

N
o(r1,...,xn) =1 ifz w;x; >0, —1 otherwise
i=0

o=+1= ClassA

0= —1= ClassB

Example: Let N = 2. Then

wo + wix1 + wexe =0

w1 wo
ro —m ————1 — —
w2 w2
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1. Initialize weights and threshold: Set weights w; to small

~

The Perceptron Learning Algorithm

random values.

2. Present Input and Desired Output: Set the inputs to the

example values z; and let the desired output be t.

3. Calculate Actual Output:
o = sgn(wW - %)

4. Adapt Weights: If actual output is different from desired output,
then

w; <= w; + at — o)x;

where 0 < a < 1 is the learning rate.

5. Repeat from Step 2 until done.
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Decision Surface of a Perceptron
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Some linearly separable functions: AND.,...

Not all functions are linearly separable (e.g. XOR).
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Gradient Descent in Error Space
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Given a set of weights w;, the mean-squared error over the set

Gradient Descent in Error Space

of training instances is
B@) = 3 Y (ta— 0d)
2
deD
The function E(w) defines an error surface in weight space.

To find the weight vector that yields the lowest error, we can

do gradient descent along the error surface.

The direction of steepest descent is given by the gradient

function

VB - [aE 8E]

ow,’  Owy,
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Learning by Gradient Descent

e The training rule for gradient descent is
Aw = —nV E (W)

e The weight w; is changed by the amount

ok
811}7;

Aw; = —n

e For a linear unit (unthresholded perceptron), the weight

update is

Aw; =1 Z (tg — 0g)x?

13
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Batch Mode: Do until error < minimum

Incremental (Stochastic) Gradient Descent

1. Compute the gradient V Ep [wW]
2. W<+ W —nVEp[w]
Incremental Mode: Do until error < minimum

1. For each training example d € D
e Compute the gradient V E4[w]

® W< W — nVEd[ﬁ]

Ealw] = 5 (ta - 0d)’

\Given small enough 7, incremental SG can approximate batch SG.

~

/
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Summary
e Linear training unit uses gradient descent

e Guaranteed to converge to hypothesis with MSE
— Provided learning rate n is sufficiently small

— Even when training data is not describable in H

e Perceptron training rule guaranteed to succeed it
— Training examples are linearly separable

— Sufficiently small learning rate

15
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Smooth Differentiable Units

Sigmoid function Hyperbolic tangent
1 1
1/(1 +exp(- X)) — tanh(x) —
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Sigmoid Units
x0=1

x1
OK w0
(2O— w2 ﬁ

net

wn

XN

mn
net = g W; T4
i=0

o= o(net) = =
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/ Training Sigmoid Networks
If o(x) = H%
Note that
) o)1 - o)

Error gradient for sigmoid units:

oF 0 1
Ow; B 8w-§z(td_0d)2

0 0
= — Z(td - Od) Od d

Onety Ow;

d
— Z(td — Od)Od(l — Od)CU,EZ
d
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Learning the AND Function with a Sigmoid Unit

Sigmoid Unit for And Function
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'mse-curve-0.1" ——
1.4 - ‘'mse-curve-0.01" -
'mse-curve-0.5" -

\
\
\
\
0.8 | -
8 1
\
\
‘

Mean Square Error

\
\
\
\
e,
. <
\

04l

0.2 |-

0O 100 200 300 400 500 600 700 800 900 1000
Number of Epochs

0




Machine Learning Week 5

-~

Limitations of Threshold and Perceptron Units
Perceptrons can only learn linearly separable classes
Perceptrons cycle if classes are not linearly separable
Threshold units converge always to MSE hypothesis
Network of perceptrons — how to train?

Network of threshold units — not necessary! (why?)

20
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Smooth Differentiable Units

Sigmoid function Hyperbolic tangent
1 1
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Sigmoid Units

Sigmoid function

1/(1 +exp(-x)) —
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weighted input
n
net = g W; T4

1=0

1
o = o(net)

= 1 +e—net
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/ Training a Sigmoid Unit
If 0'(513) = H%
Note that
do(x)

o = o@)(l—o(z))

Error gradient for sigmoid unit:

oF 0 1
Ow; B 8w-§z(td_0d)2

1 0,
-2 Z Ow; (fa = 0d)2
d 1

B _Z(t . dog Onety
- - d d Onety Ow;

— Z(td — Od)Od(l — Od)CU,EZ
d
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Learning the AND Function with a Sigmoid Unit

Sigmoid Unit for And Function
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Cannot learn XOR Function with 1 sigmoid unit

2 ! ! ! '
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Input 1

w32 (6.9

w4
Input 2 e w5h2
— (-10.34)
w42
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y
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~

Computing XOR Function with A Feedforward Network

e (2
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Squared Error

Learning the XOR Function

Learning Curve for XOR Function with 2-2-1 Architecture

14 T
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The Backpropagation Algorithm: Batch Version

Initialize weights to small random values. Repeat until MSE <

minimum. Repeat for every training example in data set

compute the network outputs.

2. Backward Propagation:

e For each output unit &

Or < 0 + Ok;(l — Ok;)(tk; — Ok;)

e For each hidden unit A

Op <— Op + Oh(l — Oh) Z WrhOk

reDownstream(hn)

Update each network weight w;; by w;; < w;; +nd; ;i

N

~

1. Forward Propagation: Input the training example to the net, and

/
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/ Stochastic Gradient Backpropagation \

Initialize weights to small random values. Repeat until MSE <

minimum. For each training example

1. Forward Propagation: Input the training example to the net, and

compute the network outputs.

2. Backward Propagation:

e For each output unit &

Op <+ Ok;(l — Ok;)(tk; — Ok;)
e For each hidden unit A

5h < Oh(l — Oh) Z wkhdk

reDownstream(n)

3. Update each network weight w;; by

\ Wji <= Wi 102 /

29
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/ Derivation of the Backpropagation Algorithm \
We need to determine how each weight w;; aftects the output of the
network. Then, each weight is modified by

OFE

8wj7;

iji - —n

where F; is the error on the training example d, summed over all
outputs of the network

Eq(w) = % Z (tr, — op)*

kecoutputs

Define net; = ) . wj;x;;. Note that the weight w;; can only
influence the network output via net;. So, we can use the chain
rule to get

8Ed 8Ed 8netj o 8Ed

\ Owj; - Onet; Ow;;  Onet; o /
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Combining these two, we get

N

Awj; = n(t; —05)o;(1 —0j)xj

/ Training Rule for Output Units
. . . OE; _ OE, O0Ooj 5
Using the chain rule again, we get Bret; — Doy Bnet; — 0;
For the first term:
0F4 0 1 2
— - t _
80j 803' 2 Z ( g Ok)
k€outputs
1 0
= 52 _Oj)a—oj(tj — 05)
= —(t; —05)
For the 2nd term:
80j . 0 1
Onet;  Onet; 1+ e~ "¢
= 0j(1—0j)

~
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/ Training Rule for Hidden Units \
OF, B Z OF,; Onety
onet; Onety Onet;

k€ Downstream(y)
Onet
onet;
k€ Downstream(y)
Onety 00;
-y
do; Onet;
k€ Downstream(y)
0o;
- w2
Z KWk onet;
k€ Downstream(y)
= Z —drwi;05(1 — 05)
k€ Downstream(y)
OFq
_anetj = 5j = Oj(l — Oj) Z 5kwkj
keDownstream(y)

N /
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Convergence typically means the output of the desired unit is > 0.9

Some Practical Issues

(if correct output is 1) or < 0.1 (if correct output is 0).

Choice of initial weights impacts the convergence rate. One good

heuristic when N is large is to choose weights randomly between
(—1/N,1/N) where N is input size.

Larger 1 can produce faster convergence, but may cause instability.

It is usually useful to add a momentum term to the weight

adjustment rule
Aw;ji(n) < alAwji(n — 1) +ndjxj;

Choice of network topology (e.g. number of hidden units), input

encoding, learning and momentum rates etc. are all important.

/
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Learning the Encoder Function

4>
4>
, | | Mhidden | g N outputs
N inputs :
units
4> .
Examples: N=4, M =2
N=8 M=3

Can we make M to be small enough to force the network to

“discover” a clever encoding?

N
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Hidden units “discover” binary encoding!
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Error

Learning the Encoder Function
4-2-4 Encoder Problem for Various Momentum Rates

5 | | |
'mse-curve-0.0 ——
45T 'mse-curve-0.5" i
'mse-curve-0.9" -
4 + i
35} .
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1.00
0.00
0.18
0.23

Is it possible to learn 4-1-47

0.99 0.00 0.11 0.07
0.00 0.93 0.31 0.14
0.01 0.08 0.26 0.12
0.01 0.02 O.%i_ 9.%?

Number of epochs
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Batch vs. Incremental Backpropagation

Comparing Batch and Incremental Backpropagation

'8-3-8-batch’ ——

ittt S _

1000 2000 3000 4000 5000 6000

Number of epochs
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Some Practical Successes of Backpropagation
Learning pronounciations of English words (NETTALK).
Handwritten character recognition of postal zip codes (AT & T).

Driving an autonomous land vehicle (a Ford truck) at highway
speeds (ALVINN).

Recognizing spoken words (isolated speech) (Lang, Waibel, Hinton).

Adaptive Optics (Arizona State).

/
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