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Abstract

Transmission lines are terminated with a load to match the
line's characteristic  impedance.  Matching  signal
characteristics with filter parameters is the idea behind
matched filters. Why not match images to the wavelet filters
for best coding? Experiments conducted by compressing
images through wavelet filters and integer wavelet
transforms suggest that the filter performance indeed is
image dependent. It is observed that no wavelet filter
outperforms others uniformly while compressing sample
images drawn from a large population. In fact, a detailed
analysis of the results reveals that certain wavelets perform
better on cerfain classes of images. This experimental
observation leads to the hypothesis that for best results, in
both lossy and lossless compression, the most "appropriate"
wavelet filter should be chosen to match the image being
coded.

1. Introduction

In recent years as the world is getting digitally connected
and new classes of multimedia services arc becoming
available in the home and office, the need for storage with
greater capacity, lower cost, and greater density is
increasing. Despite significant advances in storage
technology, uncompressed text, graphics, audio and video
data require considerable storage capacity. Similarly for
multimedia communications, data transfer of uncompressed
images and video over digital networks require very high
bandwidth. For example, an uncompressed still image of
size 512 by 512 pixels with 24 bit of color requires about
6.29 Mbits of storage. An uncompressed full-motion vidco
(512 by 512 framesize, 30 frames/sec) of 1 minute duration
needs 11.32 Gbits of storage and a bandwidth of 188
Mbits/sec. Even if we assume that there is enough storage
capacity available, it is impossible to transmit large number
of images or play video (sequence of images) in real time
due to insufficient data transfer rates as well as limited
network bandwidths. So, at the present state of technology,
the only solution is to compress multimedia data before its
storage and transmission, and decompress it at the receiver
for play back.

Modern image and video compression techniques offer a
solution to this problem by reducing the storage
requirements and transmission bandwidths. Compression
ratios of 16 to 32 are quite common and ratios higher than
this can be achicved but at the expense of the image quality.
Image compression is achieved by exploiting the spatial and
spectral redundancy or irrelevancy present in the image
data. Video compression techniques exploit in addition to
the spatial and spectral redundancy, the temporal
redundancy as well. There are many compression
techniques that are in part competitive and in part
complementary. However, the most important compression
technique for still images, the topic of this paper, is the
transform coding based on the Discrete Cosine Transform
(DCT). This is known as the JPEG standard.

In the past few years, wavelet transform has become a
cutting-edge technology in signal processing in general and
in image data compression in particular. A wide variety of
wavelet-based image compression schemes have been
developed. Some of these include the Laplacian Pyramid
[1], Shapiro’s Embedded Zero Tree (EZW) [2], and Said
and Pearlman’s SPIHT coding [3]. More complex
techniques such as vector quantization, free encoding and
edge-based coding using wavelets have also been
developed. Although none of these is part of the standard
yet, in the upcoming JPEG-2000 standard, the top
contenders are all wavelet-based compression algorithms.

Wavelet-based image coders arc typically comprised of
three major components: a wavelet filter bank decomposes
the image into wavelet coefficients which are then
quantized in a quantizer and finally an entropy encoder
encodes these quantized coefficients into an output bit
stream (compressed image), as shown in Fig. 1. Although
one has the freedom to choose each of these components
from a pool of candidates, it is often the choice of the
wavelet filter bank that is crucial in determining the
ultimate performance of the coder. If the performance of the
wavelet filter bank is poor in the first place, the schemes for
quantization and entropy encoding, however clegant they
are, cannot generally provide adequate compensation to
maintain significant picturc quality. This observation
becomes even more relevant in lossless coding because
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there is no quantization stage and the filter bank's role in
any performance loss is more pronounced. In short, the
wavelet filter used plays a significant role in both fossless
and lossy image coding schemes. In this paper we
demonstrate the nced for adaptively selecting the most
appropriate wavelet filter (for lossy compression) and
integer wavelet transform (for lossless compression) in
wavelet based image coding schemes while keeping other
components unchanged. The methodology for adaptive
wavelet filter selection is the topic of another paper [6].

Input—ged Wavelet I.» . Entropy  {—gme-Compressed
Image Transform Saacy Encoder Image

Fig. 1 A typical wavelet-based image coder

1.1 Wavelet Selection

Most of the well known wavelet based lossy image coding
algorithms developed so far [2,3,4]. usc a specific filter
bank chosen from a pool of filters designed and developed
by researchers over more than a decade. Due to limitations
of space, we don’'t want to go into the details of how these
have been designed, but in section two we will look into
some of the wavelet features that arc important for image
compression. Once a filter bank is chosen, the coeflicients
are hard coded into the algorithm. As a result, the same
filters are used for coding and decoding all types of images
whether it's a natural image, synthetic image, medical
image, aerial image, scanned image, compound image or
any other image for that matter. The same is also true in
lossless compression context where of course an integer
transform derived from the corresponding wavelet filters is
used. So far no systematic study has been done to see if
using different wavelets for different image classes
improves the coding performance. In fact, most of the
published results on experiments in lossy image coding
used only a few well-known wavelet filters and a few
popular test images most of which are natural images such
as ‘Lena’. As shown in this paper, this static approach of
filter (or integer transform) selection may not always give
the best quality of service (image quality or compression)
from the viewpoint of a specific application.

2. Filter Bank Features

When deciding on a filter bank for image compression,
there are many variables to take into account. First of all,
there are two well-known wavelet filter families used in
wavelet-based image coders viz. orthogonal and
biorthogonal wavelets. Orthogonal wavelets are the family
of wavelets that generate orthonormal bases of La(R").
Among them the most important ones to image coding are
compactly supported orthogonal wavelets. In the discrete
wavelet transform (DWT), compactly supported wavelets
correspond to finite impulse response (FIR) filters and thus
lead to efficient implementations. The popular Daubechies
family of compactly supported wavelets is parameterized by
an integer that is proportional to the length of the wavelet

filter. For compactly supported wavelets, the length of a
wavelet filter is related to the degree of smoothness and
regularity of the wavelet, which in turn can affect the coding
performance. The main attraction of biorthogonal wavelets
on the other hand is linear phase of FIR filters (symmetric /
anti-symmetric impulse response). One can choose, for
cxample, to build filters with similar or dissimilar lengths
for decomposition and reconstruction, or which are nearly
orthogonal. Linear phase (symmetric) FIR filters are widely
used since such filters can be easily cascaded in pyramidal
filter structures without the need for phase compensation.

Subband decomposition comes in several varieties, as these
can either have uniform-band splits, octave-band splits, or
more generally, non-uniform-band splits. Furthermore,
these can be perfect reconstruction (PR), such as many
biorthogonal filter sets or conjugate quadrature filter banks,
or near-perfect reconstruction like the quadrature mirror
filter bank (QMF). Regularity and smoothness of the filters
are the other important factors to be decided upon. In
summary, the following are the key features that distinguish
one wavelet filter from the other, and need be considered
while making a choice for image compression.

Orthogonality

Linear phase (Symmetric)

Length of the filters

Smoothness (Number of zero moments)
Regularity measure (Holder regularity)
Order of the filters

Energy compaction (Coding gain)
Wavelet coefficient distribution statistics

The following wavelet filters have been used to compress
various images in this experiment.

e  Orthogonal filters
e Haar - Orthonormal linear phase filter with
two coefficients
e Daubechies Orthogonal filters of order two,
four, and eight with four, eight, and sixteen
coefficients respectively.
e Adelson’s symmetric
coeflicients
e Biorthogonal filters
e Cohen, Daubechies, and Feauveau (CDF)
biorthogonal filters e.g. CDF-9/7, CDF-9/11,
CDF-13/3 filters
e Villesenor biorthogonal filters e.g. Vill-18/10,
Vill-13/11 and Vill-6/10 filters
e Odegard biorthogonal filter with 9/7
coefficients
e Brislawn 10/10 biorthogonal fifter

filters with nine

3. Image Features
A spatial domain analysis of various images show that in
general, images from different categories tend to have



different characteristics. For cxample, it is a common
observation that most of the natural images are continuous
in tone compared to the synthetic images most of which are
of discrete tone (dynamic range of the pixel bit depth is
under utilized). Such images gencrally have some numerical
structures that are not well represented by smooth basis
functions. Many medical images like MRI or CT scan
contain significant low-intensity (black) regions along
image boundaries. Compound images with significant
amount of text are a mixture of binary and continuous tone
data. Even within a particular category, images vary in
many ways with widely varying first and second order
Markov statistics. Whereas some are relatively flat, others
are very busy having more edges and contours in them.
Some are darker and others have more sharpness. So, a
spatial domain analysis of thesc images shows different
characteristics like mean, median, standard deviation as
shown in Fig. 4. To summarize, the following are the key
features that may distinguish between various categories of

images.

e Spatial Features — Mean Median, Mode, Variance,
Dispersion, Average Energy, Entropy etc.

e Transform Features - Mean Deviation, Average
Energy, Histogram and Cooccurrence Signatures

o Edge and Boundary Information, Image Activity Code

o Texture
Higher Order Statistics

Test images in our experiment include natural images
(Lena, Barbara, Baboon, and Airplane), synthetic images
(Teradata, Ball), binary/compound images (Bengali,
Cmpndl, and Cmpnd2), medical images (mri, nervecell, us,
and usl), acrial images (Aerial, Airl, and Air2) and
miscellaneous images (camera, couple, seagull, and Finger).

4. Analysis of Experimental Results

We have experimented with a large number of wavelet
filters, both orthogonal and biorthogonal with varying
lengths, regularity and smoothness, and a large set of
images with varying features. Analysis of comparative
results using 13 such wavelet filters, on a set of 20 test
images of various sizes, as mentioned above, are presented.
Test images from different categorics viz. natural images,
synthetic images, compound images medical images and
acrial images have been coded using a variety of wavelet
filters. An embedded quantizer and an adaptive arithmetic
cntropy encoder arc used. Up to five levels of
decomposition are used. Using the same filters to code an
image, the performance of the image coder at four different
compression ratios (8:1, 16:1, 32:1 & 64:1) is evaluated.
Duc to limitations of space, only a small subset (for
compression ratio of 16:1) of the results is presented and
analyzed here. Very similar results have been observed for
other compression ratios viz. 8:1, 32:1, and 64:1. Although
similar experiments have been performed in the lossless
context on a set of ISO test images using a8 number of
integer transforms implemented using the lifting scheme

[5]. those are not presented here. However, the observations
in lossless coding are very similar to those of the lossy
coding presented in this paper.

The results of the lossy image coding experiment are
plotted and shown in Fig. 2. The difference between the
worst and the best peak signal to noise ratio (PSNR) values
for compressing the same image using different wavelets, is
anywhere from 1.5 to 6 dB, which is significant. As we can
see, although there are a few wavelet filters, mainly
biorthogonal that perform generally well for many images
there is no single one that outperforms others for all images.
Fig. 3(a) through 3(d), where PSNR values using different
wavelets have been plotted for various image types
separately, give a clearer picture. For natural images (Lena,
Barbara, Baboon, and Airplane), biorthogonal filters like
the CDF-9/7, and Villasenor-10/18, perform better than
Haar and Daubechies® family of orthogonal filters as shown
in Fig. 3(a). It is also observed that, for both Barbara &
Baboon images, the PSNR values using the same wavelet
filter are lower than that of the Lena and Airplane images.
This is mainly due to the presence of more sharp textures
and cdges in those two images than Lena & Airplane. For
pure binary text image (Bengali) as well as for images
containing both binary data and gray scale images
(Cmpndl, Cmpnd2), Haar filters outperform the rest by
more than 3 dB as shown in Fig. 3(b). Fig. 3(c) shows the
PSNR values for the aerial images (Aerial, airl and air2)
where the performance of CDF-9/7, Odegard-9/7 as well as
Villasenor-10/18 and Villasenor-13/11 biorthogonal filters
arc very close. However, they all give better PSNR (by
about 2 dB) than the orthogonal filters. It can also be seen
that the plots of the images in various classes follow a
similar pattern. For example, in the case of aerial images in
Fig. 3(c), all three images show poor PSNR values using
both CDF-9/11 and Brislawn-10/10 filters. PSNR values for
four medical images (mri, nervecell, us (ultrasound), and
us1) are shown in Fig. 3(d). As expected, all four images
don’t perform the same, because of the different spatial
features for those images. For both ultrasound images (us
and usl), Haar filter gives the best PSNR outperforming
others by more than 2 dB. However, for mri and nervecell
images, the PSNR curves are similar to those of the aerial
images in Fig. 3(c) with CDF-9/7 and Villasenor-10/18
giving the best results. Apart from the best filters,
Villasenor-6/10 and Odegard-9/7 perform well for the
medical images.

Fig. 4 plots the three basic spatial domain features viz.
mean, median, and the standard deviation of the various
images used in our cxperiment. It is observed that, images
from different classes tend to show similar characteristics.
For example, for both natural and aerial images the
difference between the median and mean is small whereas
for images containing binary data viz. Bengali, Cmpndl,
and Cmpnd2, the difference is much larger. Also for such
images both median and mean are higher than those of the
natural images. In all these images the median is higher than
the mean which means that the image histograms are



negatively skewed. However, for medical images, the
histograms are positively skewed which implies that the
mean is always above the median. The standard deviation
for most images is close to or below 50 except for the
images containing binary data and the nervecell image
where it is much higher than 50. We feel that these
observations in the image characteristics are related to the
different coding performance using various wavelet filters.
In [6] we explore and link the coding performance with
these image characteristics.

5. Conclusion and Work in Progress

To conclude, it is observed that for both lossy and lossless
compression schemes, no specific wavelet filter or integer
transform has performed uniformly better than others on the
varicty of test images and the performance has been found
to be much more image dependent. In fact, detailed analysis
of the results as shown in this paper, reveals that certain
wavelets perform better on certain classes of images. For
example, images containing binary data (compound images)
as well as cerfain types of medical images (ultrasound
images) is compressed best using simple Haar wavelets.
Natural and aerial images on the other hand are compressed
best using different biorthogonal wavelet filters. Also not all
natural and aerial images are compressed best by the same
biorthogonal filter. Although not presented here, similar
observations are made in the case of lossless compression
using different integer wavelet transforms. These
observations lead us to conclude that for best results, in

both lossy and lossless compression, the most "appropriate”
wavelet filter should be chosen to match the image class
and the characteristics of the individual image being coded.
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Fig. 2. Lossy Compression Results — PSNR (in dB) for various images using different wavelet filters for a compression ratio
of 16:1.
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