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Abstract —Many problems of costemporary inforest are characterized by Fredholm type integral
equations of the first kind These equations are inherently ill.posed and dificult to solve. It s
customary to coavert the equation into a set of m algebraic equations A/ = g m m unknowns with
i mot necessarily equal to x. Then ane can solve these m oquations in a least square semse. Among
the class of vectors [ that minimize 1he Euchdean norm of the error, there exists a umigoe vector
A" ¢ which s of least norm where A* is the generalized inverse of 4. One method of finding the
generalized inverse of A is to reformulate the problem into an equivalent system of first ocder
ordinary differential equations with specified imitial conditions. The steady state solution of this
system is A* g, the required value of £ This procedure was implemented an an analog computer
and the results presented

INTRODUCTION
The Fredholm integral equation of the first kind
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occurs frequently in many branches of physical and biological sciences. The hapten binding
equation of immunology(1, 2], for example, is an equation of this kind. The problem of
locating tumors in a body using radiographic techniques[3] can also be formulated as an
integral equation of the first kind. The problem of deducing the structure of a planetary
atmosphere from satellite observations[4, 5] can be reduced to a mathematical problem
similar to equation (1). Indeed equation (1), and variations thereof play a central role in
many experimental sciences whenever physical data are gathered by indirect sensing devices
as in the case with many types of remote sensing experiments[6-8). The convolution type
integral equation
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which is a special case of equation (1) plays a central role in many problems of electrical
engineering.
Usually, the situation can be briefly described as follows:
(a) A function g(v), which is usually obtained experimentally, is given.
(b) The kernel K(x, y), which is a function of two variables, is usually known.
(¢) We wish to find or compute a function f(x) which satisfies equation (1) or, equiva-
lently, equation (2).
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For certain types of kernels, equation (1) is ill-posed (not ill-formulated) from analytical
~ as well as numerical points of view. That is 1o say, even if the integral equation is derived
from sound physical principles, the problem is complicated primarily because the solution
J{x) is extremely sensitive to the presence of noise such as measurement errors or rounding
errors. Nevertheless the practical importance of this problem prompted many to try
various approaches in order to obtain approximate solutions which are acceptable from
a physical point of view. For instance, Bellman et al.[9] treated this problem using dynamic
programming in conjunction with a successive approximation technique. While agreeing
that no one technique can satisfactorily resolve the fundamental problem of obtaining
sensible solutions from ill-conditioned systems, the authors strived to point out that a
reasonable compromise is to combine various techniques such as dynamic programming,
successive approximations, extrapolation and smoothing. In a discussion of the difficulties
involved in solving equation (1). Phillips{10] demonstrated that the existence of errors
converts the problem from one with a unique solution to one with infinitely many solutions.
To pick one out of many solutions, it is necessary 10 impose constraints on the problem.
One suggested constraint has been to pick a solution that exhibits a minimum second
difference over the family of solutions. Following this lead, Twomey[11] formulated the
problem as a constrained optimization problem using Lagrange multipliers. One common
feature of both the above methods is that they require a matrix inversion which is generally
a time consuming operation. To overcome the storage and time restrictions, Hunt[12)
used fast Fourier transforms (FFTs) to solve the convolution type integral equation. As
pointed out by Hunt himself, the transform method lacks the generality of the method
suggested by Phillips and Twomey.

THE ANALOG COMPUTER PROCEDURE

The purpose of this paper is to present an analog computer method, or an initial-value
mcthod, of solving Fredholm integral equations of the first kind.

A first step in the new procedure is 1o replace. as 1s usually done in conventional methods,
the continuous variable y with a finite set of mesh points y,, ¥s, ..., ¥,

asy, <y;<...<y,sh
and to write
glyy) = fmx. yohf(x)dx
' 3)
gyl = rK(.\'. Yo S (x)Mdx.
In experimental sciences g(y) & g, i = 1.2,... . m, generally correspond to m experiment-
ally observed data points.

The next step of the discretization process is 1o replace the continuous variable x by a
finite set of mesh points x,, x;, ..., x, such that

asSxX <Xy <...<x,sh
To carry out this step, cach of the integrals in equation (3) is replaced by a suitably chosen
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numerical quadrature formula to yield

g = ¥ wKix, v f(x)

i1

4)
gyl = Z‘ w,K(x;, 32 f(x)
J.
where w,, w;, ..., w, are the weights associated with the quadrature formula. Equation (4)
in vector-matrix notation is

Ex A (5)

where g = (203} £00:) - 800", S = [flx,), S (x50, .., f(x)]" in which the superscript
T denotes the transpose and A is an (m x n) matrix given by

wi KXy, 0y waKixy, vy w Kix,, )

le(xh."l) W;K(x,. ";,"'“’.K(-'.' h)
A= :

Wy K(xl * y.) W}K‘xlv "n’ et W.K(xu )'-’

Solution of equation (5) is beset with difficultics primarily because of the poor condition-
ing of matrix A. While equation (1) s ill-posed, the matrix 4 in equation (5) is ill-conditioned.
Equation (1) is sensitive to measurement errors and sampling crrors. If one attempts to
choose m and o larger and larger in an effort to avoid discretization or sampling errors. the
condition of A will correspondingly deteriorate. It can be shown that as m - x and
n =, then A indeed approuches the Hilbert matrix, which is often cited as a classical
example of an ill-conditioned matrix. That is to say that large n tends to make A more and
more ill-conditioned. Making n too small is not desirable either as it tends to make the
approximation very crude.

While solving equation (5), the system may exhibit one of three characteristics: (a) the
system may be infeasible (Le. no solution may exist), (b) the system may have an infinite
number of solutions, or (¢) the system may have & unique solution. Regardless of the nature
of the system, a reasonable approach is 1o minimize the error (4f ~ g) in a least square
sense. Among the class of vectors f that minimize the Euclidean norm of the error, there
exists a unique vector A g which is of least norm where A” is the generalized inverse of
A[13, 14]. Thus the problem of solving the integral equation (1) is equivalent to solving
equation (5), which in turn is tantamount to finding the gencralized inverse of 4. This
observation is the point of departure between the conventional methods and the new
method.

There exist many elegant iterative methods of determining the generalized inverse of an
arbitrary rectangular matrix(15]. However, for an initial-value formulation, the task of
finding A" is made possible by the following two theorems[16, 17].

T heorem 1
For any arbitrary, real (m x n) matrix 4 the generalized inverse is given by
AT - !i_%((u + ATA) AT (6)
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Proof of this theorem can be found elsewhere[17).

Theorem 2
For any real, finite (m x n) matrix A and column vector g, the system
d—ﬁ'—’ = —ATAf(r) + A"g
f(0) =0 ™
his a unique asymptotic solution given by
Jim f(0) = A"g (8)

Theorem 2 can be readily proved by taking Laplace transforms on both sides of equation
(7) and applying the Final Value Theorem:

Fis) = ;(sl + ATA) ATy 9
lim f() = lim sF(s) = lim (s + ATA) AT (10)

Use of equations (10) and (6) give the desired result in equation (8).

Thus, if equation (7) is programmed, say, on an analog computer, and if the computer
is allowed to reach steady state (iLe. until the integrator outputs become sufficiently constant),
the value of /(1) obtained at the output of each integrator constitutes a solution of the given
integral equation.

The result shown in equation (10) can also be obtained by & different route. Note that
A" A is at best positive semidefinite. Therefore an unforced version of equation (7) is not
necessarily stable. The forced system, however, is stable due to the form of the forcing
function A7g. Since A"g cannot be programmed exactly anyway (due to several factors,
not excluding the measurement errors in gl equation (7) can be slightly modified to ensure
stability.

df

e —(sl + ATA) + A'g

where s is a small positive scalar, If 5 is small compared to the nonzero cigenvalues of 474,
then the error introduced is small, The limiting process indicated by the right side of
equation (10) also suggests that 5 be small. In practice, a nominally small value of s can
be chosen first and as the solution reaches its asymptotic value, the value of s can be reduced
in stages until no further improvement in the solution is apparent.

EXPERIMENTAL RESULTS
Example |
Consider
L'(x’ + P (xdx = (1 + )2 - Yl0sys L (12)
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This problem was first discussed by Fox and Goodwin[18]. Solution of this equation is
readily seen to be f(x) = x by direct integration of the lelt hand side. Fox and Goodwin
discretized this problem into an n x n (for two cases with n = 5 and 9) lincar system

Ax = b

using both Simpson’s and Gauss’s quadrature formulas. The results obtained from the
more powerful Gaussian quadrature are shown in Fig. 1. Note that the solution cor-
responding to the smaller discretization interval (1.e. n = 9) tends 10 oscillate more vigor-
ously supporting the carlier contention that larger n tends to deteriorate the condition of A.

This problem is solved once again by implementing equation (7) with n = 5 in conjunc-
tion with Simpson’s quadrature and with n = 6 in conjunction with Newton-Cotes
formula. Some analog integrator outputs are displayed in Fig. 2. These results are re-
plotted, f(x) vs x, in Fig. 3. As can be seen from Fig. 2, some of the analog integrator
outputs displayed an apparent steady state for a while and began to diverge slowly. This
behavior is due 1o terms like ¢, expl +a4), %, > 0 in the solution. These terms are due to
small errors such as truncation errors and errors arising out of approximating the kernel
Kix, y).

This problem is solved for the third time by implementing equation (11) with n = 11
and for various values of s. One particular result is shown in Fig. 4.

Example 2
As a second example, consider
55
I e-u-,l’“xl — 3x% +8x + ljdx = gh)dsys 1. (13)
o5

This problem is not given in the same form as the previous one. If one performs the integra-
tion, one readily gets

g0) = Polye 57" & P (3™ 4 PONISS -y - 105 —y)]  (14)

14r

i e ’ [

Fig 1. Solution of equation (12), for n = S and 9, using Gauvssian climination.
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1 |

Fig 2 Typécal ostputs of some integrators while solving equation (121 with & = 6, on an analog
computer using initial-value formulation. Each integrator output at sicady state corresponds 1o
fi = L a5, where fi. &, and g, are defined in equation (5)

where [(x), the error function, is defined by
I{x) = Jue"'du
[F]

and P,. P, and P, are certain polynomials in y. The values of gly) in equation (14) are first
evaluated for various values of y. This information is considered as measurement data on
equation (13) and f(x) is recovered.

This problem is solved with m = 10, # = 11 and with 5 = 0 and 5 = 005, The exact
solution f(x) and the computed solutions are shown in Figs. 5-7.

n«s

L . i : A a X $ :
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implementing equation (7).
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Fig 4. Solution of equation (12, for » « 11, using a smoothing techmique, ie. by implementing
equation (11).
DISCUSSION

This paper demonstrated the feasibility of solving some types of Fredholm integral
equations of the first kind on an analog computer. As analog computers ace ideally suited
for solving differential equations with specified initial conditions, one approach is to convert
the given integral cguation to an equivalent set of ordinary differential equations. Towards
this goal, the integral is first replaced by a summation to get Af = g where A is, in general,
a rectangular matrix. The next stage istosolve for fas f = A" g where A" is the gencralized
inverse of A, Instead of finding A * by iterative methods, the entries of 4 " g are then obtained
using an analog computer implementation. Some of the results are presented. Some more
resulis appear elsewhere[19],

The above type of reformulation allows one 10 use many of the powerful techniques
associated with ordinary differential equations. Just as 4 (or A" A) is often ill-conditioned,

fo
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Fig 5 Solution of eguation (13) with m = 10, n = 11 and = = 0 (ie. no smoothing) waing the
imitial valwe method.
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Fig 6. Solution of equation (13) with m = 10, s = 11 and s = (H05 using the indtial valee method.

the ordinary differential equations obtained after the reformulations tend to be unstable.
At this point, the well-developed theory of ordinary differential equations can be readily
usad to tackle the stability problem.
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Fig 7. Typical analog integrator outputs while solving equation (13)
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