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INTRODUCTION

Numerical methods of solving partial differential equa-
tions (PDEs) using analog or hybrid computers fall
into three broad categories. Assuming, for concreteness,
that one of the independent variables is time and the
rest are spatial, the continuous-space and discrete-time
(or CSDT) methods envisage to keep the space-like
variable continuous and discretize the time-like vari-
able. Similarly, the terms discrete-space and continuous
time (DSCT) and discrete-space and discrete-time
(DSDT) approximations are self-explanatory. For a
one-space dimensional PDE, for instance, both the
CSDT and DSCT approximations yield a set of ordi-
nary differential equations while the DSDT approxi-
mations lead to a set of algebraic equations. Because
of the inherent need to handle a continuous variable,
both CSDT and DSCT approximations lend themselves
well for computation on analog or hybrid computers.
Indeed, several analog and hybrid computer implemen-
tations of all these three methods are currently in
vogue each method claiming to be superior in some
respect to the others. However, it was the CSDT
method that showed great promise and produced little
results. The purpose of this paper is to present another
alternative to this problem.

One of the fundamental advantages of the CSDT
method over others is its ability to handle moving
boundaries. This can be readily achieved by controlling
the analog computer’s integration interval since the
problem space variable is represented by computer-
time. A second advantage is that the analog hardware
requirements of the CSDT method are very modest
because a relatively small analog circuit is time-shared
to solve the entire problem. With the advent of modern
high-speed iterative analog and hybrid computers the
above promises of the CSDT method appeared to be
almost within the reach.!?
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In practice, however, considerable difficulties were
encountered in obtaining dependable results using the
CSDT method.?? The major difficulty is that the CSDT
methods are inherently unstable. Methods that were
proposed to circumvent this stability problem are
either conceptually wrong or impose additional compu-
tational burdens making their efficiency debatable. A
second difficulty with the CSDT methods is that the
basic spatial sweep from boundary to boundary, at
each discrete time level, yields a two point boundary
value problem (TPBVP) which in turn has to be solved
iteratively. It is not clear, at the outset, whether any
advantage gained by time-sharing of the analog hard-
ware is really tangible when compared to the price
paid in solving a TPBVP. A third disadvantage is that
the CSDT method is essentially limited to handle
problems in one space dimension only.

This paper suggests a new alternative which still
adopts the basic CSDT procedure but results in an
initial-value problem. By this formulation the first two
difficulties cited in the preceding paragraph are elimi-
nated. This paper still treats a one-space-dimensional
problem and no attempt was made here to extend the
concept to higher dimensions. However, it is not quite
inconceivable to extend this technique to higher dimen-
sions by using this in conjunction with an alternating
direction iterative method.

STATEMENT OF THE PROBLEM

Consider the simple diffusion equation

#U _ aU

. o = 1
i et = ) (1)
with the initial conditions

U(z,0) = Us(z) =f(z); 0<z<1 (2)
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and without loss of generality®? with the homogeneous
boundary conditions

U@©,t) =0
(3)
Uu1,t) =0

A CSDT approximation to (1), (2) and (3) can be
written, as usual, by using a backward difference ap-
proximation for the time-derivative. Specifically, at
time ¢ = #, using a simple difference scheme, Eq. (1)
can be approximated by

ot

LUx(z) = ()

(Uile) —Uhale)]; O<2=1 (4)
where LAd?/da? is a differential operator and (At) is
the size of the time step taken. With this approxi-
mation, the auxilary conditions (2) and (3) take the
form

Uo(z) = f(2) (5)
Uir(0) =0

(6)
Ue(1) =0

The classical method of implementing the CSDT
method is to solve (4) on an analog computer with the
initial condition (5) and the boundary conditions (6).
However, equations (4), (5) and (6) constitute a
TPBVP as such Ui(z) for 0 < z < 1 at any time level
t = #;, cannot be obtained in a single computer run;
an iterative procedure is required to determine Ux(z)
at each ¢ = #;. This iterative procedure is often per-
formed using either a trial and error procedure or by
using a search technique such as the steepest descent
method. Under such circumstances, scaling limitations
of analog computers place severe restrictions on the
region of search making them unattractive. Coupled
with the inherent instability of the analog computer
circuit solving (4), this necessity to solve a TPBVP
at each time level is therefore the major drawback of
the conventional CSDT method.

FORMULATION OF INTEGRAL EQUATION

The initial value formulation starts once again with
equations (4), (5) and (6). Instead of solving them as
a TPBVP, equations (4) through (6) are first trans-
formed into an equivalent integral equation of the
Fredholm type. The first step of this procedure, which
can be found in any standard work,*7 is to determine
a Green’s function of the differential operator L in (4)
that also satisfies the homogeneous boundary conditions
in (6). Specifically, a Green’s function for the operator

L = d?/dx* that satisfies the homogeneous boundary
conditions in (6) can be written as

z(1—n); 0<z<n<1
K(z,9) = (7)
nl—2); 0<n<e<1.

It is important to note that the Green’s function
has one form for z < 7 and another for » < z and that
in each semi-interval it has a structure of the product
of a function of z alone and a function of 5 alone. Such
a structure is called semi-degenerate, which can greatly
simplify the problem. If the Green’s function K (z, n)
obtained is not degenerate or semi-degenerate, it can
always be approximated, to any desired degree of accu-
racy, by a semi-degenerate kernel using standard tech-
niques.”” Therefore, the procedure presented here is
not good for any nondegenerate kernel.

Solution of the TPBVP described by (4), (5) and
(6) can now be written in terms of the Green’s function

(7) as

1 1
Ui@) = o5 fo K(z, &) Usa(8) d

1 1
S /0 K(z, £)Ux() di  (8)

or

Us(a) = fia@ +2 [ K@ DU & (9)

where fi_;(z) is the first term on the right hand side
of (8) and can be explicitly evaluated because Ux_. ()
represents a solution obtained at the preceding time
level t = #;_;. The terms \ and ¢ in (9) are defined by

1

2 5 e

and are introduced merely for convenience and
generality.

Equation (9) is a Fredholm integral equation of the
second kind in its most familiar format. In (9), fi(2)
is called the free term, \ the parameter and U (z, £) is
called the kernel. Without going into the details of a
proof, let it be stated that for a well-posed problem,
the solution U (z, t) of the given PDE can be approxi-
mated by the sequence of functions U(z) which are
indeed the solution of the above integral equation.

This procedure of transforming the given PDE into
an equivalent Fredholm type integral equation was ap-
parently suggested also by Chand in a recent paper but
he adopts an iterative procedure to solve the integral
equation.
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SOLUTION OF THE INTEGRAL EQUATION

The next computational step is to solve the integral
equation presented in (9) for Ux(z). Classical methods
of solving (9) are essentially iterative in nature® and
so are not suitable for real-time operation. Further-
more, analog computers are ideally suited for solving
problems with prescribed initial conditions. It, there-
fore, is logical to search for methods of transforming
integral equations into sets of ordinary differential
equations with prescribed initial conditions. Such a
method was recently suggested by Kalaba.!

Kalaba’s method is essentially one of treating the
interval of integration (0, ¢) as a variable rather than
as a constant. By regarding the solution at a fixed
point as a function of the interval of integration (now
being treated as a variable), a set of ordinary differ-
ential equations with a complete set of initial conditions
can be obtained. With a knowledge of the solution for
one interval length, it is now easy to generate solutions
for other interval lengths or for any interval length
using this equation as a vehicle. Furthermore, the set
of ordinary differential equations with prescribed initial
conditions can be solved very easily on an analog
computer.

Equation (9) is the starting point for the formulation
of the initial-value problem. Treating the interval (0, ¢)
as a variable, (9) can be rewritten as

Uslat, ) = a(®) + [ K@, DUt 7) 5
0

<<z (10)

It is assumed that (10) has a solution for 7 < ¢. For 7
sufficiently small and

0<z<r+ (11)

the solution Ux(zx, 7) of (10) can be proved (see ap-
pendix) to be identical to the solution of the set of
equations defined by (12) through (20).

Gir) 5 & =) sl (12)
dr(r
N (O, (13)
de(r
D 5 GO + (= e
>0 (14)
with the initial conditions at » = 0 given by
r(ir=0)=7r(0)=0 (15)
e(r=0) =e0) =0 (16)

and
ﬂ% =GP d D) TS (17)
LT Lfos) + @ V) 5 7> 218)

with the initial condition at r = z given by

Jlo, r=2) el = v)idier (o) (19)
and
Ur(z, 7 = x) = fea(z) = ze(x) (20)

COMPUTATIONAL PROCEDURE

Equations (12) through (20) can now be solved
using an analog computer or a hybrid computer. The
various computational stages are indicated below.

Step 1. Solve (13) and (14) on an analog computer
over the interval 0 < 7 < z by treating 7 as computer
time. Initial conditions for this computer run are given
by (15) and (16) respectively.

Step 2. After integrating until time r = z, the analog
computer is placed in HOLD mode and the solutions
rand e, at = 2, obtained in step 1 are used to evaluate
the expressions in (19) and (20). These values will be
useful as initial conditions while solving (17) and (18)
in the next step.

Step 3. At time r = x, and after (19) and (20) are
evaluated equations (17) and (18) are adjoined to the
original set (13) and (14) and both sets are integrated
over the interval < 7 < ¢ by putting the analog com-
puter back in COMPUTE mode. During this phase of
integration, the initial conditions of the additional set
are the values of J and Uy evaluated not at 7 = 0 but
at + = z. This is precisely the reason and purpose of
the computation in step 2.

Step 4. The output of the integrator solving equa-
tion (18) in Ux(x, r) and this is the solution of (9) at
the argument z. This is also the solution of the PDE
(1) at a particular time level ¢ = #.

DISCUSSION

Initial-value problems are conceptually simple, com-
putationally easy to solve and are susceptible for
simulation studies. Simulation inherently involves trial
and error experimentation in which the validity of a
model is verified ; sensitivity to environment is explored
and variation of performance due to parameter changes
evaluated. Such problems come under the classical
heading of inverse problems—that is, problems where
a system’s performance is known from a measured set
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of observations and the nature of the system is to be
determined. While solving such inverse problems by
using such search techniques as gradient methods, it is
often necessary to solve not only the dynamic equation
of the system, such as (1), but also an additional equa-
tion called the derived equation. This is not a mere
doubling of computational effort as it appears at first
sight. The computational effort required in the evalua-
tion of the gradient increases very fast if the derived
equation is an adjoint equation posed as a final value
problem. It is precisely in bottleneck situations like
this that an initial-value formulation comes in handy.

A second possible application of this method would
be in on-line control or identification of distributed
parameter systéms.

Implementation of this method, particularly when
the kernel has no simple structure requires some degree
of sophistication in the analog system. If the Green’s
function (or Kernel) contains, or is approximated by,
expressions that are sums of products of a large number
of terms then the analog circuit generally contains a
large number of multipliers. This may make the scaling
a little more difficult. Finally, computation from step
2 to step 3 requires a degree of sophistication in the
analog switching system. Many present generation
hybrid computer systems can indeed handle most of
these requirements.

No attempt was made in this paper to present a
procedure that can be applied to any partial differ-
ential equation. Similarly no assumptions were made
that would restrict the procedure to the simple case
presented. In the general case, an easy procedure is
required to obtain equations (12) through (20) from
(10). Material filling these gaps and results supporting
this procedure will be presented in a subsequent paper.
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APPENDIX
Outline of the initial-value formulation

Step 1: The proof starts with a realization that if
®(z, 7) is a solution of the integral equation

8(5,7) = K(a,;1) + [ K(z, (1) d
0

0 <z<7 (Al)

then
Wz, 1) & ®(2,7)U(r,7) (A2)

is a solution of the equation defined by

W) & K ulr, 1) + [ KO, OW(E 1) de

(A3)

A proof of this statement can be found in any standard
book on integral equations.’”

Step 2: To prove that the integral equation (10)
is equivalent to the set of differential equations (12)
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through (20), equation (10) is first differentiated with
respect to 7. Denoting derivatives with respect to = by
primes, this differentiation yields

Ui (@, 1) = K(t, D Us(r, ) + [ K(, UK (5 7)
0

(A4)

If Ui/ (z, 7) is identified with W (z, 7), equation (A4)
is identical to (A3). Therefore, the solution U'(z, 7)
of Eq. (A4) can be written as

Uitz ) — o0 UGo; 0 <7z (A5)
where ®(x, 7) is the solution of (Al).

Step 3: Directing attention once again on (Al) and
replacing the kernel K(z,7) by its semi-degenerate

approximation, namely

(x(1 — 7);
Kz 7 =i

0=z

IA

(A6)

(1 —2)7; 0L~

IA

x

equation (Al) can be written as

o(r,7) = r(1— ) + [ K@ Da(n) ds <

(A7)

= gli(a1); (A8)

where J (2, 7) is defined by the integral equation

I a -2+ [ K@peEnd (A9
0

Step 4: If J(x,7) can be determined, then using
(A8) the function ®(x,7) can be obtained which in
turn will aid in getting Ux(x, 7) from (A10). The pro-
cedure to get J(x, 7) is very similar to the one used
to get (A5).

Differentiating (A9) with respect to r and using the

same principle indicated in Step 1, one gets
J e, r) = ol vl ) (A10)

Step 5: In order to get J(r,7), one goes back to

(A9), from which

Jr) = =0+ [ K@nd(5ndg (A1)

0

-0+ [20-0IEd (A1)

=1-7)4+2-7(7)
where 7(7) is defined by

(A13)

e[ A-piEnd; 0<r (A1)

Step 6: The value of r(r) can be determined by
using, once again, a procedure similar to that used in
Step 2. Differentiating (A14) with respect to =

) = (=0T + [ (1= 007 g (A15)
0

Substituting (A10) in (A15)
) = A=) + [ 1= 0 DT dE
0

(A16)

The value of ®(¢, 7) from (A8) can now be substituted
in (A16).

#r) = U= D) +r [ (=0T, r) de
0

(A17)
using the definition of 7(r) from (A14)

() = (L= DI (r,7) + 7 (r, D7) =[G

(A18)
where G(r) is defined in (12)
Thus, the differential equation for r(7) is obtained.
The initial conditions for this differential equation can
be obtained readily from (A14) as

r(r=0) = r(0) =0,

The procedure to obtain other equations in the text
is similar. A more rigorous and elaborate proof can be
found in Reference 10.



