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Abstract—Adaptive critic and chemotaxis algorithms are used to control a cart-pole system.
Performance of these two methods are compared with earlier results obtained by using the functional
link outerproduct method, as well as two other variations of the classical adaptive critic. This work is
expected to shed light on biologically plausible adaptive control methods used to control and maintain
the postural stability of the human musculo-skeletal system.

INTRODUCTION

Balance and posture of the body is essential to most human locomotion. Because humans are
bipeds with two-thirds of their body mass located at about two-thirds of their height from the
ground, the mechanism controlling their posture is critical [1]. As the average life expectancy
of our population continues to increase, afflictions of the aged are becoming increasingly more
important. The balance control degenerates with age and the fear of falling is a major deterrent
to the mobility of the elderly. Thus, there has been a heightened interest in postural control and
its disorders in the elderly [2]. People suffering from Parkinson’s disease are also severely afflicted
with postural control problems.

Extensive biomechanical work has shown that modeling the human body as a linked group of
rigid bodies is a reasonably accurate first approximation for kinesiological research. The simplest
mechanical analog belonging to this category is the problem of balancing an inverted pendulum.
Progressively complex models belonging to this family are single-link inverted pendulum, a pen-
dulum mounted on a cart, the so-called cart-pole or broom balance problem, and the double-link
inverted pendulum. The relation between the inverted pendulum problem and postural control
was recognized early. By constraining an inverted pendulum with abstract springs and dash pots,
it is possible to model cartilage and ligamental behavior [3]. Here, we investigate various artificial
neural network controllers to be used in the complete (mechanical and control components) pos-
tural model of the human. This work is expected to shed light on biologically plausible adaptive
control methods used to control and maintain the postural stability of the human musculo-skeletal
system.

This paper reports some preliminary results of our experiments with a variety of neural network
based adaptive control algorithms on two models of human posture. Specifically, the focus of this
paper is on two adaptive control algorithms that rely on methods that fall outside the realm of
supervised learning. This line of research is motivated by the observation that many biologically
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plausible learning and control mechanisms do not rely on the existence of a teacher. The learning
schemes often found in biological systems are either of the self-organizing or reinforcement type.
Although it is hard to put the two methods under consideration in strict categories, it is safe to
say that one of the methods, chemotaxis, has some self-organizing characteristics, whereas the
other method, adaptive critic, is believed to be a reinforcement learning method.

Here, we compare the performance of artificial neural networks (ANNs) that use the adaptive
critic and chemotaxis algorithms to learn and maintain control of a dynamic system. The methods
discussed here have direct bearing on a wide range of problems involving the balance and stability
of flexible structures, such as space-borne structures, two-legged walking robots, aiming of rocket
thrusters, and so on. The power of classical adaptive control techniques to solve these problems
is limited because they work best when the system parameters are known and when the dynamic
equations are linear and deterministic. Recent studies indicate that ANNs can play an important
role when:

(a) the system dynamics are nonlinear,
(b) the system is operating in a nondeterministic environment, and
(c) the system parameters are hard to estimate [4].

ANN control implementations (neurocontrollers) fall into one of the following categories: super-
vised control, direct inverse control, neural adaptive control, and adaptive critic control [5].

The Adaptive Critic (AC), proposed and promoted by Barto [6] belongs to a category that
is somewhere between supervised learning and unsupervised (or self-organized) learning. In this
method, a teacher or an oracle inspects the system’s (or the network’s) response and simply
provides a qualitative evaluation of that response with such comments like “good” or “bad.”
Based on this type of qualitative judgmental feedback, the controller makes temporally local
decisions in order to optimize some temporally global objective (or utility) function.

Chemotaxis, a method similar to that used by primitive organisms to search for food, has
been proposed by Bremmerman and Anderson [7] as a potential learning method. It uses no
teacher. This algorithm essentially implements a biased random search in weight space. The
search direction is biased (i.e., not truly random) because favorable directions are rewarded. In
general, weight changes that improve performance are kept, while others are discarded. The act
of rewarding favorable directions may be construed as a reinforcement signal. As in the adaptive
critic, the utility of a decision taken at a given time step may not become evident until a sequence
of steps (or control actions) have been taken. In spite of these apparent similarities, fundamen-
tal differences exist between these two methods. A more detailed description of chemotaxis is
provided below. This paper summarizes efforts to understand the operational similarities and
differences between these methods.

THE ADAPTIVE CRITIC ALGORITHM

The family of Adaptive Critic (AC) methods evaluated here implement direct adaptive con-
trol [8]; they determine the control rule without forming an explicit model of the plant. There are
more complex AC methods [5] that rely on a system identification procedure to form an explicit
model of the system and determine the control rule from the model (indirect control).

The adaptive critic method has its origins in the associative search network [6]. The associative
search network (ASN) is capable of performing pattern recognition tasks. In doing so, this
network conducts a search for the output that maximizes a reinforcement signal based on context
input from the environment. The ASN combines two types of learning: stochastic optimization
(or hill-climbing) that solves the pattern recognition problem, and a stochastic automaton that
performs a search to maximize the reinforcement. Both the stochastic hill climbing and stochastic
automata searches are iterative procedures [9]. The stochastic nature of the ASN is provided by
a probabilistic neuron [10]. The adaptation of the weights in the ASN is proportional to the
change in reinforcement and the change in its action. This update algorithm is not capable
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of solving an associative search problem unless the reinforcement function implemented by the
environment varies smoothly over time [6]. This is due to the problem of context transitions that
occur in the pattern recognition phase when the pattern changes. The problem is exacerbated
by the quantization of state space when the algorithm is used in a control task. One of the
methods used to alleviate this problem was to introduce an element that would predict the
reinforcement [6]. The element was aptly called a predictor. When a predictor is included,
adaptation of the ASN weights is proportional to the change in the action and the difference
between predicted reinforcement and actual reinforcement. Weight changes in the predictor are
proportional to the difference between the predicted reinforcement and the actual reinforcement.
The predictor element and the ASN are the precursors of the adaptive critic element and adaptive
search element used in adaptive critic methods [11].

The AC method uses two functionally different elements: the Associative Search Element
(ASE) and the Adaptive Critic Element (ACE). The ASE is the decision maker; it constructs
associations between the input and the control output, under the influence of a reinforcement
signal. The decisions are stochastic in nature; they are determined based on a probability function
of the weighted inputs. Therefore, the ASE is functionally the same as the previously discussed
ASN.

However, the output of the ACE is much more than merely a prediction of the reinforce-
ment, as in the “predictor” element. The ACE implements a variation of the temporal-difference
method [12]; its output is called secondary (internal) reinforcement 7. It is the sum of the current
primary reinforcement r and the difference between the discounted current prediction v p(t) and
the previous prediction p(¢t — 1) of reinforcement

#(t) = r(t) + vo(t) — p(t — 1). (1)

Thus, the ACE constructs an evaluation function of performance that is more informative than
a simple reinforcement (failure indicator) signal.

The adaptations of the weights in both the ACE and ASE are a function of this secondary
reinforcement (proportional to the secondary reinforcement and an eligibility function). Ander-
son’s work [13] represents further evolution of the AC method and appears more complex than
the implementation of Barto et al. [11]. Yet, Anderson’s method is essentially the same with
the exception that the inputs are analog, not binary valued. The adaptation of the weights in
the ACE is essentially the same in both algorithms. However, the adaptation of the weights in
Anderson’s ASE includes a term not used by Barto et al. This term is the difference between the
expected action and the action taken. Thus, the adaptation of the ASE weights is proportional
to the secondary reinforcement and the difference between the action and the expected action.
The i*" weight elements of both the ACE and ASE are updated using a rule of the following
form:

wi(t + 1) = w;(t) + af(t)ei(t), (2)

where « is the learning rate and e;(¢) is the eligibility at time ¢. Equations defining the eligibility
function and the trace function used in the ACE and ASE updates, respectively, are defined in
Barto et al. [11]. These functions are used as a method to solve the “temporal credit problem.”
The temporal credit problem is stated as follows. “What was responsible for the current situation
(i.e., what control actions were responsible for the failure?).”

THE CHEMOTAXIS ALGORITHM

In the chemotaxis algorithm, the initial weights W are assigned random values between —0.1
and 0.1. The performance J(Wj) of the weight vector is determined. A random change vector
W, is drawn from a multivariate Gaussian distribution with zero mean and unit standard de-
viation. A new weight vector W is formed by adding the random change vector to the current
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weight vector:
W1 = W() + hWrc, (3)

where h is the step size parameter (adjustable during learning). The performance of the new
weight vector J(W7) is then calculated. If the performance of the new configuration is better
(smaller error) than the original configuration, then the new weight vector is retained. The values
of W are assigned to Wy and an additional step is taken along the random change vector W..
The step parameter h is then increased. The weight vector changes will continue along this
random change vector until performance improvement ceases. Therefore, the search will follow a
declining slope, if it finds one. If the performance of the new configuration is worse (larger error)
than the original configuration, the new weight vector is discarded. A new random change vector
is chosen and the process is repeated (W is formed and the performance is evaluated, etc.). If
after “several” trials, a successful direction is not found, then learning has stalled; the step size
parameter h is reduced and the search is continued. The parameters used in the implementation
of chemotaxis are:

hhstart = 0.08, hhsta]l = 075h7 hupdate = 1.50h.

CONTROLLER IMPLEMENTATIONS

The ultimate goal of this research is to develop an artificial neural network controller that is
capable of learning to maintain erect posture of a musculo-skeletal model of a standing human.
The family of AC methods and chemotaxis have been chosen for investigation because of their
biological plausibility in effecting the necessary control signal.

The cart-pole system has been chosen as the vehicle to test these methods; many researchers
have studied ANN implemented control using it. Some used supervised learning [14], oth-
ers genetic algorithms [15], while others implemented variations on the adaptive critic method
[11,13,16-19]. The equations of motion and system parameters used are those detailed by An-
derson [13]. In our earlier paper [18], the same system was used to study the properties of
two versions of the adaptive critic and the Functional Link Outerproduct (FLO) proposed by
Klassen et al. [20]. In all these studies, the problem solved is the same, but the methods are
different. Briefly, the problem involves a cart that is free to move back and forth along a finite-
length (2.4 meter) one-dimensional track. A pole attached to the cart is free to rotate within
a specific range (+12 degrees) in the vertical plane of the cart and track. The control problem
involves keeping the cart and pole within their bounds while exerting a fixed force (10 newtons),
at discrete instants of time (0.02 seconds), either to the left or the right on the cart. The output
of the problem generator is four state variables (position of the cart on the track z, angle of the
pole with the vertical 6, and their respective velocities) and a failure indicator r (used to signal if
the cart or pole had exceeded its bounds). The state variables are taken as inputs to the Artifi-
cial Neural Network (ANN) controller. They are used in the determination of the control action
applied to the cart-pole system at each time increment. In the AC and Chemotaxis methods the
inputs to the ANN controller are the state variables X, and the primary reinforcement r; the
output is the control variable u. The primary reinforcement is defined:

g, ift19] = 12 and ol <2 4
e ; (4)
—1, otherwise.

In the AC method, the ASE uses a stochastic processing element (probabilistic neuron) in the
determination of the control action on the environment. The probabilistic nature of the ASE is
provided in the following manner. The state representation vector is processed in the “normal”
manner of ANN (summed and passed through a sigmoid squashing function) and mapped into a
range from zero to one. A random number is generated between zero and one, and the two values
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are compared. If the random number is less than the mapped number, the fixed force is applied
to the left, otherwise it is applied to the right. In a probabilistic neuron, the weighted input
determines the probability of a specific control action output u. In a deterministic neuron, the
mapped value is compared to a threshold value, here 0.5, instead of a random number. Thus, the
weighted input determines the output. The importance of the probabilistic nature of the output
neuron will be illustrated.

- OUTPUT
o * INPUT To Critic and Acticn
T CRITIC Networks
O izer/ Q
173) (ACE) Quantizer.
(7] X Encoder >
s ST e ——
Q 1 of 162 [
E X2 ——— | encoder B
w I. ACTION P (onlyone }——onouvp
12 (ASE) TR LANT 7 equalilatal ... ot
e v e 0| U TGO
remaining
u Control Variables Xp o il 161 lines
x State Variables (Observable) equal zero) ik R
v Primary Reinforcement q
T Secondary Reinforcement 62
(a) A schematic of the adaptive critic. (b) AC-Box preprocessor.
INPUT ’
State Variables
X X, X3 X, OUTPUT
To Critic and Action
(Threshold) Networks INPUT OUTPUT.
v To Critic and Actior
& 1 Networks
% e State Variables o
& Functional X‘__o._>1
[l O X p|Link X2 2
al.2 1 Outerproducty,[— Og -
2] 5 s. o g

o 2 xyxa[ Os

»
o 3 XqX (o)
o—o—q—p—r———-{ : 35— 1%3] 6
E:_ X @ — X1 X4 7
4 P e
g. TR X 254 9
[ 4 X3 Xy] 613
] 1]
‘(‘_;2 05 —
B+l
|& |
DN 06 Threshold
b 2 -
N/
(c) AC-Bkp preprocessor. (d) AC-FLO preprocessor.

Figure 1. Schematic of adaptive critic. (Preprocessor—quantizer, neural network
layer or functional link outerproduct layer).

The AC methods used are essentially the same, differing primarily in how the state vari-
ables are preprocessed before being applied to the functional elements of the AC (Figure 1a).
Barto et al’s [6] method (referred to as AC-Box) preprocesses the state variables so that the
state space is partitioned (quantized) into 162 discrete boxes (see Figure 1b). The state of the
system is represented by a binary vector whose components are all zero except the one that
describes the position of the box that contains the state vector. Reducing the amount of a priori
knowledge required, Anderson’s [13] method (referred to as AC-Bkp) preprocesses the state vari-
ables in an ANN layer that uses backpropagation (see Figure 1c). Finally, the Functional Link
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Outerproduct (FLO) method (referred to as AC-FLO) preprocesses the state variables by adding
pairwise combinations of the state variables to the representation space (see Figure 1d [18,20]).
The learning equations used in these AC methods are recorded in the references [6,13]. The
parameters used are summarized below in Table 1.

Table 1. Adaptive critic algorithm parameters.

Algorithm Critic element (ACE) Action element (ASE)
Discount Learning Eligibility or Learning Trace or
rate rate preprocessing rate preprocessing
parameter parameter
AC-Box: e =01 O Bi—0:5 A=08 a = 1000 6§=09
AC-Bkp: %=0.9 = Br = 0.05 p=1.0 P =072
AC-FLO 9 =109 B=04 n/a a=10 n/a

The chemotaxis and adaptive critic methods (AC) have some similarities and differences. We
believe that the chemotaxis algorithm essentially uses only an ASE and not both an ACE and an
ASE as in the AC methods. We replaced the deterministic neuron with a probabilistic neuron in
the chemotaxis algorithm. Thus, the implemented chemotaxis method more closely resembles the
ASE. The AC implements a search with prediction, whereas the chemotaxis algorithm implements
only a search. The AC learns at each time step; yet, learning takes place only after each trial
in the chemotaxis algorithm. A trial begins with the cart-pole system in starting position and
ends with a failure or when the cart-pole system has been controlled for 180,000 time steps.
Therefore, the AC learns from success and failure, but chemotaxis learns only from failure. The
performances of the algorithms were analyzed to understand the impact of these similarities and
differences.

Learning and generalization of control were examined, as well as the statistics of a sampled
control run while using a probabilistic neuron in all algorithms. Learning ceased after the con-
troller learned to control the cart-pole system without failure for 180,000 time steps. After the
controller learned the task, adaptation of the weights was disabled and its ability to control the
cart-pole system was tested. One hundred attempts from equilibrium and one hundred from
random positions (bonds of random position: pole angle 4= 12 degrees, cart position + 1.2 me-
ters, pole velocity +115 degrees per second, and cart velocity £ 1.5 meters per second) than in
state space were tested. For a single control run from equilibrium, the cart and pole positions
were sampled every 2,000t" time step. The effect of the probabilistic neuron was investigated by
replacing it with a deterministic neuron in all of the algorithms, during both the learning and
control testing phases.

RESULTS AND DISCUSSION

The learning curves in Figure 2 illustrate how many trials it takes each algorithm to learn to
control the cart-pole system for 18000 time steps without failure. In terms of learning speed, the
AC-Box topped the list, followed by chemotaxis, AC-FLO, and AC-Bkp. In terms of ability of
the algorithms to control (after learning was ceased), the cart-pole system from an equilibrium
starting point, there was no significant difference in the performance of the four methods (see
Figure 3). However, the ability of the controllers to generalize the learned control rule (control
from random starting positions) differed. The chemotaxis algorithm generalized control the best
and the AC-Box method generalized control the worst. The performance of the other two methods
fell in between.

The goal of the control task was only to keep the cart and pole between the allowed bounds.
However, it was noticed that the chemotaxis algorithm maintains the cart closest to the equi-
librium position and has the second largest variability in control (see Table 2). In AC-Bkp
the average cart position deviates the furthest from equilibrium and has the largest variability
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Figure 2. Learning curves. Number of steps controlled vs. trial. The number of trials
required to control cart-pole for 18000 time steps are: 58 trials, AC-Box, 2257 trials,
AC-Bkp, 192 trials, AC-FLO, 69 trials, chemotaxis.
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Figure 3. Percentage of successful trials vs. learning algorithm.

in control. The variability of the position of the pole is less in the AC-FLO and chemotaxis
methods than in the other two methods. Although, the chemotaxis method had the smallest
standard deviation in pole position the AC-FLO method, on the average, kept the pole closest
to equilibrium.

Substitution of a deterministic neuron for the probabilistic neuron in the ASE during the
learning phase is detrimental for the AC and chemotaxis algorithms (see Table 3). The AC-
Box method gets stuck in a local optimum and is unable to learn after 6000 trials using the
deterministic neuron. The number of trials required to learn increased in the AC-Bkp (2557
to 5629) algorithm and dramatically increased in the AC-FLO (192 to 2985) algorithm. This
substitution improves the learning rate (decreases the number of trials from 70 to 15) of the
chemotaxis algorithm. After apparently learning a control rule, with learning ceased the AC-Bkp
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Table 2. Statistics of cart and pole positions (meters and degreés, respectively.)

: Cart Pole
Algorithm Range  Average  Std. Dev. Range  Average  Std. Dev.
AC-Box 0.889 0.735 0.179 19.945 0.339 4.695
AC-Bkp 1.831 —0.419 0.367 9.491 0.062 1.654
AC-FLO 0.915 —0.245 0.199 10.341 —0.002 1.514
Chemotaxis- 1.498 —0.028 0.280 6.582 0.018 1.354
probabilistic
Chemotaxis- 0.037 0.000 0.008 0.786 0.000 0.217
deterministic

algorithm is unable to control the cart-pole system from an equilibrium position or a random
starting point. Therefore, it does not actually learn a control rule that can be used. Although
the AC-FLO and chemotaxis algorithms could learn to control the cart-pole system using a
deterministic neuron, they could not generalize the learned control. When a probabilistic neuron
is used in the learning phase, there were only minor differences in the control test phase between
the use of a probabilistic and a deterministic neuron in the AC and chemotaxis methods.

Table 3. Impact of action determination unity type.

: : Trials to Control % Controlled from % Controlled from
Algorithm Learning e :
control test equilibrium random point

AC-Box P 58 12 95 21

B 58 D 100 18

D Unable D n/a n/a

D Unable P n/a n/a
AC-Bkp P 2557 B 100 46

P 2557 D 100 41

D 5629 D 0 0

D 5629 P 0 0
AC-FLO P 192 P 96 48

P 192 D 100 52

D 2985 D 100 0

D 2985 P 0 0
Chemotaxis {54 70 E 100 58

B 70 D 100 62

D 15 D 100 1

D 15 E 0 0

Deterministic (D)—Weighted sum determines output action.
Probabilistic (P)—Weighted sum determines probability of output action.

The substitution of the deterministic neuron in the associative search element of the AC algo-
rithm during learning exposes the importance of the probabilistic neuron in the method. This
reveals that the algorithm is primarily a stochastic automaton; it searches probability (action)
space for appropriate control actions. The original AC algorithms learn to maximize the proba-
bility of action (probability close to 1 or 0). This was revealed by substitution of the deterministic
neuron for the probabilistic neuron during the control testing (see Table 3). Initially, either action
is equally probable. As more of the state space is searched the probability of a particular action
is found to increase for a given point in state space. Thus, the probabilistic nature of control
gradually evolves to resemble deterministic control as learning progresses. These characteristics
were also seen in the chemotaxis algorithm that uses a probabilistic neuron.
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The use of a probabilistic neuron, inclusion of uncertainty, in the chemotaxis algorithm provides
a mechanism for the algorithm to avoid local minima. Thus, we have a method that explores
both parameter (weight) space and probability (action) space simultaneously. Inclusion of the
probabilistic nature in the algorithm makes it more closely parallel to the biological neuron. The
biological neuron activation is influenced by other cellular mechanisms besides the net level of
excitation.

All the above tested ANN algorithms have been used in the control of both a single and double-
link inverted pendulum simulation of a standing human subjected to a postural disturbance.
In scaling from the simplest to a more difficult control task, the time required to learn control
increased by more than 450% from the one-link inverted pendulum to the cart-pole system except
for the AC-FLO which increased 186%. Likewise, the time required to learn increased by more
than 100% from the cart-pole to the two-link inverted pendulum except for the AC-FLO which
had an increase of 63%. The smaller increases required by the AC-FLO could be due to the
explicit nonlinear nature of the signals applied to the ASE network. It should be noted that in
our two-link inverted pendulum simulations, two control signals were used, one for each joint.
We are conducting further analysis to evaluate the quality of the controller (control law learned)
in the one and two link simulations. :
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