
Strategy Games, Infrastructure Security and 
Computational Intelligence 

 
 

V Rao Vemuri  

University of California, Davis 
rvemuri@ucdavis.edu 

  

Abstract. 

 
Advancements in information technology are, ironically, impacting the 
international security agenda. With the advent of the Internet, globalization, 
increasing privatization of state functions, and the openness ethic that is 
pervading societies, a new type of threat, dubbed "asymmetric threat" appears 
to be emerging.   In this new threat environment the world governments are 
faced with a number of low-intensity conflicts characterized by less 
discriminate attacks on civilian populations, infrastructures and the like. This 
paper considers the issue of using smart software agents to play simulated 
strategy games, particularly in the context of asymmetric warfare simulations. 
Brute force specialized programming typically  result in poor performance. 
What is needed is a powerful general-purpose artificial intelligence (AI)-
based design methodology that avoids excessive game-specific AI 
programming, so the design can be applied to a wide range of games. The 
paper describes an effective and personality-rich AI for a very complex 
strategy game. The AI architecture combines machine learning ideas such as 
neural nets, fuzzy logic, black box encapsulation, and interrelated needs- and 
traits-based personality modeling with deep look-ahead to hypothetical future 
game states. The AI programmers did not have to know or consider many of 
the details of the game, and many of the game rules can change without 
needing to touch a single line of AI code. 

I. Introduction 

The purpose of this paper is to explore the role of artificial intelligence (AI) 
techniques in computer simulations of specially designed strategy games to 
study decision-making aspects of asymmetric warfare. To fix the context, the 
focus is on the design and development of an effective, unpredictable, and 
personality-rich AI for Hexagon Interactive’s Cyberwar XXI strategy game 



(designed as a board game by Joseph Miranda).  In this game, human players 
are pitted against believable software agents that come close to mimicking the 
capabilities of humans than currently existing models.   

II. Asymmetric Conflicts and Infrastructure Security 

Asymmetric conflicts are not new. The civil disobedience movement led by 
Gandhi against a colonial power is a benign example from yesteryears.  
Terrorism is a more realistic example of contemporary relevance. Asymmetric 
warfare is a conflict between two unequal parties where one side's 
comparative advantages are pitted against its enemy's relative weaknesses. 
Typically, in an asymmetrical context one party is a government, a 
multinational corporation, or an international organization and the other party 
is some sort of an extremist group. Typically the extremist group (or a 
coalition of groups) uses weapons and tactics in ways that are unplanned or 
unexpected. Their battle spaces are cities and towns. Their targets could be 
critical national infrastructures. Their targets are both physical and 
psychological. The psychological impact resulting from an attack that brings 
down the cell phone network or the e-commerce of any technologically 
advanced nation would be grave indeed. Although the affluent countries seem 
to be a natural target, ethnic cleansing, guerilla wars, airplane hijacks and the 
likes, are also examples of asymmetric wars.  
 
There are three categories of weapons one encounters in an asymmetric war. 
In the first category are weapons of mass destruction (WMD) such as long-
range ballistic or cruise missiles. In the second category are cyber or cyber-
based weapons, high-tech sensors, communications and weapons systems. A 
talented person with a PC and access to the Internet potentially can wreak 
havoc on the infrastructure of a country. The third category is the choice of 
the theater of operations; if one side attacks a power plant with a cruise 
missile, the other side responds with an attack on a metropolitan shopping 
mall with a suicide bomber. Such is the nature of asymmetric war. 
 
Among various weapons of asymmetric warfare, the so-called "information 
operations" have a special relevance. Information operations can be defined as 
offensive, defensive and investigative actions taken in support of objectives 
that influence decision makers by adversely impacting the opponent's 
information systems while protecting ones own. These operations can be 
carried out essentially on four fronts: conventional air systems operations 
front, conventional battle systems operations front and the somewhat new and 
esoteric information warfare (cyber war) front and the economic warfare 
front.  



 
Offensive information operations fall into three categories: attacks on 
infrastructure, deception and psychological operations. As most of the 
infrastructure is controlled by computers, attacks on infrastructure necessarily 
involve the information warfare front.  Activities on this front might include 
not only the detection and prevention of unauthorized intruders into our 
infrastructures but also methods of softening the enemy's defenses on these 
fronts. 
 
Operations on the economic warfare front might include the creation of a 
database and the attendant data mining and knowledge management 
techniques to track the flow of money that finances terrorist activities, thereby 
creating nodes and links to other groups, peoples and their activities. Such a 
database would be drawing on worldwide information sources.  After the 
creation of such a database, one can study the nature, relationships and links 
between agents of terrorism. This, in a nutshell, is the nature of asymmetric 
threat. There is no well-developed theory to address these issues. 

III. Role of Artificial Intelligence 

Our goal in developing software agents is not so much in creating lifelike 
animations using physical laws and bio-mechanical modeling techniques. 
Rather, the goal is to achieve realism in cognitive modeling, a step beyond 
behavior modeling. The agents should react appropriately to perceived 
environmental stimuli and exhibit goal directed behavior. The cognitive 
models govern what an agent knows, how that knowledge is acquired, and 
how it can be used to plan actions. These agents are vulnerable to common 
human foibles like emotion and stress. The objective is in achieving increased 
realism in the cognitive and emotional behavior of the game-playing agents 
and in capturing social situations. Finally the agents interact with each other 
to facilitate the simulation of group behavior. Such cognitive models are 
capable of directing the new breed of highly autonomous, intelligent agents 
that are beginning to find use in interactive computer games. 
 
The design emphasis is on human-like behavior in a decision-making 
environment, not on the computational power. Although IBM's Deep Blue 
defeated Kasparov by evaluating 200 million chessboards every second, it is a 
fact that an expert human player, who could hardly analyze more than a dozen 
variations per move, stood up to the power of a computer's "millions of 
instructions per second." Yet, everything Deep Blue did was programmed into 
it. The next step is to endow the game-playing agent with learning capabilities 
of the pattern recognition and decision making skills of a human! Can an 



algorithm learn competent strategies (by playing the game several times) 
without possessing a detailed knowledge of the game it is playing? 
 
The essence of conventional implementations of game playing on computers 
is search. The most straightforward way of selecting the best move is to 
explore all possible consequences (exhaustive search) of any action that can 
be taken in a given state. On a 3 x 3 board of tic-tac-toe, for example, with 
two players, this results in the need to explore 9! = 362,880 variations - not a 
formidable number for a computer. If one can think of the operations on a 
battle space as a board game resembling tic-tac-toe on a 100 x 100 grid, then 
10,000! variations would result - surely a challenge even to the fastest of the  
computers.  
   
It is true that AI search methods do not do exhaustive search; they are a lot 
smarter than that. For example, inherent symmetries in the problem can be 
exploited to reduce the search burden. In complicated and realistic games this 
may not be possible. Other ingenious tricks and compromises are possible. In 
any event, the strength of classical search techniques hinges on our ability to 
perform a depth analysis and on the quality of static evaluation function we 
choose.  
 
In minimax search, for example, player A associates a "value" to each 
possible state of the game and then seeks to minimize this value while player 
B seeks to maximize the same evaluation function. This approach suffers from 
two drawbacks:  
 
(a) Assigning values to states is not a trivial exercise; needless to state 

that the search result depends on how these values are assigned.  
 
(b) The assumption that B is a rational player whose value system is the 

same as that of A, and therefore always chooses the "best" defense as 
A interprets it.  

 
In asymmetric games, this may not be a valid assumption. One way to 
overcome this difficulty is to make the evaluation function of B different from 
that of A. Indeed modeling the opponent's evaluation function is in itself a 
research topic. A natural way to do this is to observe a player's behavior 
during the course of a game and use it in conjunction with any prior 
knowledge about the player. 
 
There are other issues that need further attention. An action by one player may 
lead to alternative states - each with a different probability of occurrence. That 
is, the evaluation function will attain its value only with a certain probability. 



This forces one to consider the issue of using probability distributions to 
describe the consequences of a move. Classical game theory techniques can 
be invoked to some extent to address this problem. 

IV. Merits of Learning-based Game Playing Simulations 

Unless the evaluation function predicts the state values reliably, the search has 
to be carried deep into the search tree with the attendant cost of computation. 
As asymmetric war games are characterized by imperfect information (as in 
card games like Bridge) and random components (as in dice games like 
Backgammon), deep searches are not feasible, nor are they likely to be 
rewarding. 
 
Ways to address these issues are through instruction, advice taking, pattern 
recognition and generalization; in short, via learning. What cannot be captured 
through precise rules can possibly be learned from examples. 
 
There are several approaches to learning. One possibility is to keep the 
essence of tree-based search in tact and apply a layer of learning on the top 
such that when the learning parameter is set to zero, the method degenerates 
to one of the classical tree search methods.  
 
Indeed, machine learning in all its facets has emerged as one of the main 
research areas in AI. Learning, and its spin-off field of data mining and 
knowledge discovery, is emerging as one of the fastest growing application 
areas. Mining documents on the WWW, detecting fraud in daily transactional 
activities [Fawcett and Provost, '97] and tuning the evaluation functions 
[Tesauro, '95] used in search methods are three relevant examples. 
 
Gaining insights into the opponent's evaluation function is a fruitful area of 
research. Typically one views the evaluation function as one that is comprised 
of several components. Evaluation of these components and combining them 
in "some fashion" to reflect their relative importance appears to be a fruitful 
area to pursue. It is possible to visualize a library of routines that compute 
important properties of the current "board position" (to use a board game 
metaphor). The size of the territory controlled, the number of pieces available 
for action, the number of opportunities to act, etc. are some of the attributes of 
a board position. What is not known is how to combine these pieces of 
knowledge (weighted average, probability distributions, etc.) and how to 
quantify their relative importance.  
 



There are many styles of learning: book learning, learning from examples, 
learning from mistakes, learning from simulations, evolutionary learning and 
so on.  
 
In supervised learning, the agent learns from examples gathered from past 
activities - either historical or simulated. In comparison learning, pairs of 
agents are pitted against each other (perhaps in a round-robin fashion) over a 
given collection of training positions. In reinforcement learning (RL), the 
agents are allowed a sequence of moves to completion and then they are 
simply told whether they "won" or "lost" the game. The temporal difference 
learning corrects one of the weaknesses of reinforcement learning. In RL, one 
error in the final end game is sufficient to "lose" a game - disregarding a 
sequence of otherwise good moves. Effects caused by stress, fatigue or other 
emotional states of the game-playing agent can alter the final outcome. RL 
can take into account this "unfairness" by performing the weight adjustments 
on the evaluation function more intelligently. However, RL also suffers from 
a drawback; it strips the game playing agent the ability to adapt in a domain-
dependent fashion, by taking advantage of the background knowledge of a 
given situation. This ability is crucial in complex domains.  
 
The process of using evolutionary algorithms to evolve neural networks to 
represent strategies in the game of checkers was demonstrated recently  
[Chellapilla and Fogel, 01].  These networks, representing various strategies, 
were pitted against each other and a score was assigned to represent the 
quality of play of each neural network. Networks with the highest scores were 
then used as parents and offspring networks were created. This procedure 
demonstrated that such networks were capable of learning the strategies and 
play against a human opponent. 

V. Simulated War Games and Features of Cyberwar XXI 

Conflict simulations are models of military confrontations and can serve as a 
test bed for studying the learning behavior of AI agents because of the 
following reasons. 
 

• Availability of large amounts of crucial background knowledge. 
• Diversity of the underlying models will pose a challenge to the 

generality and adaptability of the AI agents. 
• Utility of intelligent computer opponents for military training and 

strategic decision-making. 
• Scalability of the system. 



 
In broad strokes the decisions made during conflict simulations are not too 
unlike the actions taken by players at  board games like Monopoly and 
Backgammon or a card game like Bridge. Whoever "controls more points" are 
essentially "in charge" of the situation.  
 
In Cyberwar XXI, the game under study here, the rules of the game call for 
actions and interactions of numerous agents in four “spaces” of modern 
warfare: Information, Air System, Battle and Economic Spaces. 
 

• "Information Space" is where cybernetic, intelligence and special 
operations forces conduct combat using computer viruses, electronic 
warfare, and media manipulation. 

• "Air System Space" is where air power is pitted against national 
infrastructure. 

• "Battle Space" is where conventional ground and sea forces clash.  
• "Economic Space" is where information about the financial transactions 

of the opponents are tracked to gain better insights on the participants 
or where punitive actions like sanctions are used to coax the opponent 
to a different point of view.  

 
Without delving into the details of the game, a brief synopsis of the nature of 
the game is provided here. In this study it is assumed that the game is played 
by four players (a player may represent an individual, a group or a nation), say 
the United States, Gulf States Coalition, Iran and Iraq. Each player gets a turn, 
in sequence, to play. Any or all of these players can be replaced by an AI 
entity, called the game-playing AI agent, or agent for short. The goal of the 
project, on which this paper is based, is to define the architecture of this AI 
agent so that it can be imparted with the personality of any of the players. 
 
The sequence in which the turn rotates among the four players is determined 
at the beginning of the simulation by a random draw. During the lifetime of a 
game, each player goes through a series of eight steps, called phases. Figure 1 
shows a skeletal outline of the principal activities  during  these phases. A lot 
of detail is omitted for brevity.   During the “mobilization” phase of the game, 
for example, each player is asked to choose a random number of strategy 
cards (typically 1 to 4 cards) out of a stack of some 40 cards. Fig. 2 shows  a 
sample strategy card. The selection of the strategy cards requires a number of 
considerations, at least for the final goal implementation, because it should 
really involve planning the entire turn. This is an example of a “decision 
point” at which the game simulation seeks the assistance of the AI agent. 
 
At this point the AI should take into consideration several factors. 



 
• The selection of the prescribed number of (say M) strategy cards (at the 

beginning of the game) from a deck of N, for each phase of the game. 
Given a limited number of strategy cards, each player has to decide on 
the optimum mix of assets to accomplish his/her goal.  

 
• Each strategy card contains a list of certain combinations of assets. By 

“playing” a strategy card, a player can utilize, optionally, certain number 
of opportunities (called “impulses”) to use those assets in a given phase 
of the game. If an action during one phase removes a requirement of a 
card chosen for a later phase, then that card will not be playable during 
that phase, even though it was selectable during the Mobilization 
(strategy card selection) phase. 
 
For example, the United States, say, chooses the AirLand Battle strategy 
card belonging to the BattleSpace. (see Figure 2 for a copy of the 
contents of this card). However, during the Information and Air/Systems 
Warfare phases, all US C4I infrastructure is disabled. The C4I 
(Command, Control, Communication, Computers and Intelligence) 
infrastructure is a requirement for the AirLand Battle card. Under these 
circumstances, the United States will not be able to play the chosen 
AirLand Battle card during the BattleSpace phase.  

 
• The selection of missions in each phase from the set of allowed missions, 

and deciding how many of the available resources to allocate to each 
mission. 

 
In the course of one complete play of the entire game, there are about 30-40 
such decision points. Each decision point is associated with a list of 
parameters, considerations and heuristics. See Figure 1, under Mobilization 
Phase. 
 
Whenever the simulator reaches these decision points, it asks the AI agent for 
recommendations. The AI agent makes these selections with the intention of 
"maximizing" one's own perceived "value" or utility. Although this perceived 
utility may differ from individual to individual, experience suggests that a 
"safe" way of playing the game is to work toward the goal of maximizing the 
overall “InfoWar points” one can control, in terms of gaining information 
dominance in the InfoWar space. So actions that maximize InfoWar point 
gain with the least loss in units (in the Battle Space and Air Space) are 
considered desirable. In the design presented here, these "agents", are merely 
computer programs that draw upon conventional AI techniques like search 
and learning, soft computing techniques such as neural nets, fuzzy logic and 



evolutionary programming techniques as well as methods of cognitive science 
to impart believable behavioral traits. 

VI. Treatment of Personality, Stress and Emotion 

The AI engine is expected to simulate the effects of stressful inputs on 
emotional states of the players and the potential impact of these emotional 
states on the quality of decision-making.  Critically, the simulation can 
capture not merely the actions of the real world players, but also can provide 
mechanisms for understanding their underlying maneuvers and objectives. It 
does so by quantifying factors such as political support and the "chaos" of 
transnational target audiences. The computer simulation can advance this 
understanding by its utilization of artificially intelligent, motivated "actors." 
 
A Personality Engine (PE) is being designed to simulate the personality for a 
game-playing agent (see Figure 3).  The PE works in two phases: (a) Pruning 
the options available to the agent before they are considered by the agent's 
static evaluation function. This is tantamount to an agent not even considering 
an option due to its emotional state. (b) Modifying the weights assigned by the 
agent's evaluation function.  
 
Personality is modeled using two of the major psychological theories that 
describe human personality: (a) Trait theory and (b) Needs-motivation 
approach. The structure of the PE consists of 4 main modules: Traits module, 
Needs-Motivation module, Physical module, and Learning module. The traits 
module emulates personality by assigning the agent a value within the range 
defined for each of a set of opposing traits and having these traits influence 
the agent's decisions. The needs-motivation module works by assigning the 
agent certain values of need for a number of defined factors (i. e., economic, 
religious, political, etc.). These values influence the agent's decisions by 
motivating it to satisfy its needs within the World State of the given game.  
The physical module models the physical state of the agent viewed as a 
human being. This feature will allow the agent's physical state (tired, angry, 
stressed, etc.) to influence its decisions. The learning module analyzes past 
game situations and predicts the opponent's personalities and strategies and 
uses feedback in the decision-making process. 



VII. Architecture of the AI Agent(s) 

An examination of the rules of the game reveled that the decision problem is 
fairly complex.  As decision making by humans is not always rational, the 
behavior of believable decision making agents is also not necessarily rational 
and predictable. This characteristic makes it difficult to depend on a rational 
agent or an agent that depends on systematic search methods to locate a goal 
state. Furthermore, given the potentially large number of players, the large 
number of options available to each and the fact that the "opponents" actions 
are not only hidden from general view but also  may include random actions 
makes the alpha-beta approach less attractive.  
 
In addition to these considerations, there is a need to operationally decompose 
agent architecture in terms of some primitive capabilities. These constituent 
parts, when composed together, should give a variety of agent behaviors.  
 
These considerations called for a design that is flexible, modular and scalable. 
Toward this goal it was decided to split the agent into three constituent parts: 
A CCU (Central Communications Unit), a PE (Personality Engine) and a bank 
of Advisors. The design of the CCU is very simple (mostly just a multiplexer) 
and the advisors would be comprised of simple-to-complex programs that 
compute a narrow aspect of the game, and each advisor would pass back to 
the CCU an advice on what it thinks the agent should do. It would then be up 
to the CCU to decide which advice to take (see Figure 4). This is not too 
unlike a couple of schemes published in the literature [Epstein, 94, Rahman 
and Fairhurst, 2000]. 
 
The CCU is the main interface between the game simulation and the rest of 
the AI engine (although the game's Database/Data structures may also be 
accessed by other components of the AI engine). The CCU receives requests 
from the main simulation loop whenever there is a need for decision-making 
assistance from the AI side of the game. This request should include the 
context (the stage of the simulation where a decision is to be made) of the 
simulation. Upon receiving this information, the CCU  asks the bank of 
advisors for suggestions on what to do. For instance, if the CCU receives a 
signal requesting assistance in picking the strategy cards for the game, the it 
passes this signal to all the advisors. The strategy cards will then be picked 
considering the suggestions of all advisors.  
 
For example, the advisors in the InfoWar Space will have to make the 
following decisions: 
 

• Strategy card selection 



• Play space selection  
• Mission selection 

− Decide on targets 
− Decide on missions 
− Decide on Units to carry out missions 

 
The PE can be thought of as a high-level advisor. It Looks at the list of 
individual recommendations, and associates with them a weight (0 to 1).  The 
weight is calculated by taking a multitude of factors into consideration: 
factors determined by the world state of the game as well as personality 
factors that characterize the personality of the player.   
 
Within this design there is great deal of flexibility, both in terms of the scope 
of problems it can handle, and in terms of development. By forcing the 
advisors to focus on small enough areas, they should be efficient enough to 
run within the lifetime of the universe.  The combination of their advice (by 
using the trust values) will generate a fairly realistic (but probably not 
optimal) agent. 
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Figure 1. An Overview of the Role of AI in Various Phases of the game 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phases in a Turn (A sample description) 
 
1. Chaotic Events 
   No decisions by AI 
 
2. Initiative Determination 
   No decisions by AI 

 
3. Mobilization (Selection of Strategy Cards) 

Each agent selects some of strategy cards (SC) to use. 
3.1 Parameters: (number of cards that may be chosen, list of 
legal cards to choose from, game state that influences the 
value of the selected card) 
3.2 Considerations: (actions/impulses granted by the card and 
in what space, reinforcements received, limitations on the 
placement of reinforcements, cascading effects, Information 
Warfare cost incurred, history of opponent SC selection, etc.)  
3.3 Heuristics: Do not select cards whose requirements cannot 

be met. Select cards with the intention of using them in a 
specific way. Consider look-ahead planning at this stage. 

3.4 AI Ideas: Assess the value for each potential card 
combination and action/impulse sequence, develop a set of 
rules to guide the selection of cards. 

4. Information Space Warfare 
… 

5. AirSystems Space Warfare 
  … 
6. BattleSystems Space Warfare 

… 
7. Economic Conflict 
   … 
8.    Reconstitution 



 
 
Figure 2. A Sample Strategy Card 
 
 
STRATEGY CARD (BattleSpace) 
Name: AirLand Battle  

Actions: The player can initiate three Impulses on the 
BattleSpace level. 

Reinforcements: None. 
Modifiers: Gain a +1 die roll modifier for all the player's 
Maneuver attacks.  

Cascading Effects: Normal.  
Infrastructure Requirement. C4I Infrastructure 
required.  

IW Cost: Lose 20 IW Points 
Chaos Level: Raise Chaos Level by 1 die roll upon play. 

Other: Only the United States can play this card. May 
not be combined with any other BattleSpace or Aerial 
offensive card.  
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Fig. 4. Agent architecture diagram. 

 
 
 
 



 
 
 
 
 
 
 
 
 
Fig. 3. Personality engine architecture diagram. 
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