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Abstract

The physical mapping of DNA structure for
every human chromosome is a task that has occu-
pied many Genome labs for years now.  Progress
towards this goal can be accelerated with algo-
rithms that are less susceptible to noise in the data
and can present the scientist with various optimal
or near optimal solutions from the experimental
data.  Genetic Algorithms (GAs) have been applied
successfully to noisy environments and multi-
modal search spaces.  This paper describes a GA
model to sequence a set of overlapping clones from
restriction fragment data using genetic operators
suited for multi-modal function optimization.  The
performance of this model is compared against
other simpler GA approaches.  Utility of this model
for mapping parts of human chromosome 19 is
described.

1 Introduction

Mapping the entire human genome is a task
that has occupied many Genome labs for years
now (An excellent survey of the state of the art
can be found in a special issue of Los Alamos
Science, number 20, 1992, devoted exclusively to
The Human Genome Project).  The ultimate goal
is to obtain the DNA sequence (i.e., order of the
bases thymine, cytosine, guanine, and adenine) in
every human chromosome.  The DNA sequence
can be used to identify and locate genes more ac-
curately in the chromosomes.  Current technology
limits the direct sequencing of DNA to fragments
composed of approximately 0.5k base-pairs
(Istvanick et al. 1993).  In order to divide the DNA
into fragments up to this resolution level,
techniques using restriction enzymes are used.
The restriction enzymes cut the DNA at specific
locations which are uniformly distributed in the
chromosome.  Depending on the number of differ-
ent restriction enzymes used to obtain the frag-
ments the data is called single-digest (one en-

zyme), double-digest (two enzymes), or n-digest (n
enzymes) data.  Most mapping is done using sin-
gle- and double-digest data.  Scientists use differ-
ent restriction enzymes to obtain DNA fragments
of the appropriate size.

The Human Genome Center at LLNL is map-
ping human chromosome 19 which is estimated to
be approximately 60 million base-pairs long.  The
chromosome is divided into islands (contigs rang-
ing between 150k to 200k base-pairs) of overlap-
ping cosmid clones, where each cosmid clone is
approximately 40k base-pairs.  Each cosmid clone
is further divided using a single restriction en-
zyme (EcoRI) followed by fingerprinting
(recording the fragment lengths) into fragments
ranging from 0.5k to 15k base-pairs.  A pictorial
view of this process is shown in figure 1.  During
the process information about the relative location
of the islands, cosmid clones, and fragments in the
original DNA is lost.  Techniques using larger
clones are being used to order, orient, and connect
the islands in the original DNA (Olson et al. 1986;
Waterman and Griggs 1986; Branscomb et al.
1990; Stallings et al. 1990; Fickett 1993).

Figure 1: Pictorial view of DNA cutting.



The DNA Restriction Fragment Map Assembly
problem consists in finding possible locations of
the fragments in each clone, and the sequence of
the clones in the island so that the fragment over-
lap is maximized and the total error between the
overlapped fragments is minimized.  The problem
can be pictured in figure 1 as trying to assemble
the islands from the fragments and clones.  There
are other considerations, like the total length of
the mapping should be close to the islands original
size.  The problem is complicated further by the
uncertainty in the data and the possibility of data
loss (fragments of the same size are hard to
distinguish during fingerprinting).  In this paper
we only consider the problem of  finding the best
clone sequences from the fragment sizes on a set
of overlapping cosmid clones.

This problem is known to be NP-hard.  For ex-
ample, the case with 10 cosmid clones, there are
10! / 2 possible clone sequences.  The problem is
complicated further when the location of the
fragments within each clone must be determined.
Because each clone contains an average of nine
fragments, the number of solutions grows rapidly.
Exhaustive methods for solving this problem are
therefore time consuming.

Restriction-site mapping deals with the problem
of locating the fragments within clones using re-
striction digest data.  Most techniques being ap-
plied to restriction-site mapping make use of  sin-
gle- and double-digest data to determine the loca-
tion of the fragments within a clone.  Refer to the
following works for more information {Stefik
(1978), Pearson (1982), Krawczak (1988), Platt
and Dix (1993)}.

Other techniques can also be used to sequence
larger DNA regions.  Branscomb et al. (1990) de-
veloped a greedy ordering algorithm to get the
most probable clone sequence using overlap prob-
abilities between the clones.  The algorithm works
well when a large amount of overlap between the
clones exists and the fragment data has small
errors.  This approach  is prone to getting stuck in
local minima and does not use all the available
data gathered at great expense.

Cuticchia et al. (1992) constructed maps using
simulated annealing techniques.  In their work
clones are ordered according to a measure of simi-
larity between them given by the presence or ab-
sence of  specific sequences.  A signature is as-
signed to each clone and the algorithm uses it to
minimize the error between the actual length of

the contig and the given length by the hypotheti-
cal clone ordering.  Matching signatures are also
used to order the clones.  In their work they only
considered the relationship between consecutive
clones.

This paper describes a GA that uses single-di-
gest restriction data on a set of overlapping clones
to find multiple solutions for the clone sequences.
The application uses genetic operators suited for
multi-modal function optimization (Cedeño &
Vemuri 1992) to determine solutions to the prob-
lem from the fragment data sizes.  A mating op-
erator based on Genetic Edge Recombination
(Whitley et al. 1989) is used to preserve adjacency
information and improve convergence towards
multiple solutions at the same time.  Results are
given for two data sets of overlapping clones from
human chromosome 19.

Section 2 of the paper describes the GA model
used for this problem.  Section 3 defines the ge-
netic operators for this problem.  Section 4 shows
the results obtained on different data sets.
Section 5 gives comments and conclusions about
the approach and section 6 describes future work.

2 GAs for Multi-modal Search

Genetic algorithms (Holland 1975) are a search
technique based on the principles of natural se-
lection and genetic recombination.  GAs have been
shown to work well in noisy environments and
complex search spaces and have been applied to a
wide variety of problems ranging from scheduling
to aircraft design (Schaffer 1989; Belew & Booker
1991).  In this section a GA suitable for multi-
modal function optimization is described.

The GA model used has the ability to converge
to multiple solutions at the same time by encour-
aging competition between individuals within the
same local optima.  The following pseudo-code
summarizes the salient features of the method:

1.Generate initial population of N individuals

2.For gen = 1 to MAX_GEN

3. For i = 1 to N

4.  Select mates using crowding selection

5. Mate and mutate

6. Insert offspring in the population using

worst among most similar replacement.

If we use fitness-proportionate reproduction in
step 4 shown above and replace the lowest fitted
individuals in the population (step 6) with the



newly generated offspring, this model corresponds
to a steady-state GA (Whitley 1988; Syswerda
1989).  In contrast with the most common
generational GA, offspring are available for
mating as soon as they are generated, and good
individuals can survive for many generations (a
generation is every N mating operations in this
model).

What makes this model useful in multi-modal
search spaces is the use of crowding selection and
worst among most similar replacement.  In
crowding selection individual i is selected from the
population.  It's mate is selected as the most
similar individual from a group of CSS (crowding
selection size) individuals chosen at random from
the population.  Crowding was introduced by De
Jong (1975) where offspring replaced similar indi-
viduals from the population.  In this model crowd-
ing selection is used to promote mating between
individuals within the same local minima.  In
worst among most similar replacement (see figure
2) each offspring is likely to replace a low fit indi-
vidual from the same niche.  Form CF (crowding
factor) groups with CS (crowding size) individuals
taken at random from the population.  Identify
the individual most similar to the offspring in
each group.  Select from those the individual with
the lowest fitness to die.  A similar technique
called enhanced crowding (Goldberg 1989) has
been used before, but there the most similar indi-
vidual out of a group of worst candidates is re-
placed.

The similarity between two individuals is de-
termined by measuring their proximity in the de-
coded parameter space (phenotype).  The smaller
the value, the closer are the two solutions for the
problem.  An example of such a metric is the
Euclidean distance for function optimization.
Measuring distance between decoded genes in-
stead of the genes themselves has been shown
(Goldberg & Richardson 1987; Deb 1989) to give
better results for multi-modal function optimiza-
tion.  An example of the use of this function dur-
ing replacement is shown figure 2.
               CF    Sim Most Similar Individual
  POP    FIT Groups  val of each group Replaced
10101010 89 11111000 10    11111000    10111001
00010010 65 00000111 20
11111000 53
00100111 45 11100011 30    00011011
00000111 90 00011011  5
10111001 23
11100011 12 00000111 20    10111001
00011011 11 10111001 24

Figure 2: Overview of worst among most similar
replacement with CF = 3 and CS = 2.

Other approaches for multi-modal function opti-
mization do exist.  De Jong (1975) used crowding
to improve convergence of the GA in multi-modal
functions.  In crowding offspring are inserted in
the population by replacing the most similar indi-
vidual from a group taken at random from the
population.

Goldberg & Richardson (1987) used the sharing
concept (Holland 1975) to divide the population
into niches according to a similarity measure be-
tween them.  In sharing, the individuals fitness is
degraded according to the presence of other indi-
viduals in the same niche.  Deb (1989) applied
mating restriction to sharing methods.  Mating
restriction only allows individuals within the
same niche to mate.  Yin & Germay (1993) intro-
duced cluster analysis to sharing in order to re-
duce it's complexity.

Mahfoud (1992) introduced deterministic crowd-
ing. In this approach all individuals are allowed to
mate in every generation and offspring competed
with their parents for slots in the population.  The
two parents are paired with the most similar off-
spring and the individual with the lowest fitness
dies.

Beasley et al. (1993) applied traditional GAs to
multi-modal function optimization by using a fit-
ness derating function to prevent convergence to a
known local optima. In their approach the GA is
applied iteratively to the problem and every solu-
tion found in previous iterations is used to derate
the fitness of individuals near them.

The approach used here has been successful in
locating and maintaining multiple solutions in
many generations for function optimization and
combinatorial problems (Cedeño 1992).  The com-
plexity of the algorithm is not increased substan-
tially.  No prior knowledge of the search space is
needed and niches get formed naturally. The idea
is to maintain diversity by encouraging competi-
tion between members from the same niche.  To
improve convergence lowest fitted individuals are
likely to be replaced by offspring belonging to the
same niche.  No restriction is imposed during
mating to allow the exploration of other regions of
the space.  In the same manner an offspring may
replace an individual from another niche, thus al-
lowing competition within niches as well.
Survival of the fittest is applied during the re-



placement step allowing the GA to converge to
better solutions within each niche.

3 Problem Representation

In this section the problem's genetic operators
are defined.  First, we will examine the encoding
for the chromosome to describe how clone se-
quences are represented.  Second, we describe
how the fragment sizes are used to define the fit-
ness function for the problem.  Third, the edge re-
combination mating operator is described.  And
last, the function that measures similarity be-
tween two clone sequences is described.

Before going into the details about the opera-
tors, it is important to show how the data for the
problem is presented to the GA.  Figure 3 shows
fragment sizes obtained from fingerprinting  for a
set of overlapping cosmid clones.  Some of the
fragments from different clones have similar sizes
since some of them come from the same original
DNA and are obtained using a single restriction
enzyme.  The data for this problem consist of the
M cosmid clones with their fragments and the
tolerance measure E which is use to determine if
two fragments are of the same size.  That is, two
fragments F1 and F2 are considered to be of the
same size if  | F1 - F2 | < E.
ALLELE CLONE
NUMBER  ID    FRAGMENT SIZES (k base-pairs)
  0     5154  16.55 4.4 1.68 1.07 4.81 8.5
  1     7442  .79 .79 2.6 4.35 8.24 2.7 6.9 5.16
  2    21230  .96 1.68 1.08 4.77 8.47 1.44 2.37
              6.29 0.62
  3     8131  .92 3.73 19.8 4.43 1.69 1.25 4.68
              5.63
  4    18993  .96 6.31 5.48 8.61 7.29 .81 .81
              2.6 4.36 1.92
  5     5435  2.89 8.24 2.7 6.9 5.14 5.14 2.89
              1.54
  6     7255  1.04 8.21 2.69 6.89 5.12 5.12 2.88
              1.94 2.42 1.37 3.33
  7    12282  4.52 5.13 5.13 2.87 1.94 2.42 1.39
              3.35 5.41
  8    27714  6.69 5.07 5.41 2.88 1.92 2.32 1.4
              3.35 5.46 17.65 1 10.49 .58 1.74
  9    10406  2.03 1.43 2.34 6.28 5.46 8.58 7.27

Figure 3: Sample fingerprinting data set.
3.1 Chromosome Encoding

The encoding for this problem is very simple.
Each allele in the chromosome has a value be-
tween 0 and M-1 corresponding to one of the cos-
mid clones.  No two alleles have the same value
and mating and mutation will preserve this con-
straint.  Using the data in figure 3, an allele with
value 0 corresponds to clone with ID 5154 and an
allele with value 9 to clone ID 10406.  The clone

sequence (5154, 21230, 10406, 7255, 12282, 27714,
8131, 18993, 7442, 5435) is represented by the
chromosome (0 2 9 6 7 8 3 4 1 5).  The initial
population is generated by picking at random
values between 0 and M-1 without replacement
for each individual.
3.2 Fitness Function

To calculate the fitness of an individual the
number of fragment matches and the error be-
tween the fragments is considered between all
consecutive clones.  The fragment sizes are repre-
sented using integer numbers by multiplying
them by 100.  All values are computed using inte-
gers to accelerate computation of the fitness func-
tion.  Prior to the execution of the GA two matri-
ces are calculated; one containing the number of
fragments that match within tolerance E between
any two clones, the other containing the total er-
ror between those fragments that match.   Figure
4 shows both matrices for the data in figure 3.
The error between two clones is given by the sum
of the errors between all fragments that matched.
For example, between clone 8131 and 5154 there
are two pairs of fragments, 169 with 168 and 443
with  440 that match within tolerance.  The total
error between both pairs of fragments is 1 + 3 = 4
which is the value shown in the matrix (row C3,
col C0).
        Number of matches between clones
      CLONE  C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
 C0:   5154:  6  1  4  2  1  0  1  0  2  1
 C1:   7442:  1  8  0  1  4  4  4  1  1  0
 C2:  21230:  4  0  9  3  2  1  3  2  5  3
 C3:   8131:  2  1  3  8  2  0  0  1  2  0
 C4:  18993:  1  4  2  2 10  1  3  2  3  4
 C5:   5435:  0  4  1  0  1  8  6  3  2  0
 C6:   7255:  1  4  3  0  3  6 11  7  7  3
 C7:  12282:  0  1  2  1  2  3  7  9  7  4
 C8:  27714:  2  1  5  2  3  2  7  7 14  3
 C9:  10406:  1  0  3  0  4  0  3  4  3  7

           Total error in the matches
      CLONE  C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
 C0:   5154:  0  5  8  4  4  0  3  0 13  8
 C1:   7442:  5  0  0  8  5 12 17  3  9  0
 C2:  21230:  8  0  0 14  2 10 20 10 23  5
 C3:   8131:  4  8 14  0 11  0  0  9 13  0
 C4:  18993:  4  5  2 11  0 10 19  9  6 10
 C5:   5435:  0  2 10  0 10  0 10  4  8  0
 C6:   7255:  3  9 16  0 19 10  0  7 26 23
 C7:  12282:  0  3 10  9  9  4  7  0 20 26
 C8:  27714: 13  9 23 13 11  8 26 20  0 10
 C9:  10406:  8  0  5  0 10  0 23 26  5  0

Figure 4: Match and Error matrices (E=10).
From the matrices we can observe that by look-

ing only at the number of fragment matches be-
tween the clones it is not sufficient to determine
which two clones go together in the sequence.  For



example, clone 5154 (Match matrix in figure 4)
has the most number of matches with clone 21230
(i.e., 4 matches, as shown by the entry in row C0
and column C2).  The next closest match for clone
C0 is with either clone 8131 or 27714 (see the
entry 2 in columns C3 and C8).  Using only the
number of matches between consecutive clones
was not sufficient to discriminate between clones
with the same count.  The problem is due to false
matches (by chance) between fragments of similar
sizes.  In this case clone 8131 is a better candidate
because it contains less error than clone 27714
(see entries in Error matrix, row C0, columns C3
and C8).  By incorporating the total error in the
matches the GA is able to discriminate further
between clones.  Detailed information of the use of
these matrices to calculate fitness is given by the
following expression:

i
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Count Ci

Error Ci Cl
Match Ci Cl E

Match Ci Cr
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Cl Cr
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From the fitness function note that not only the
number of fragment matches are used, but also
the percentage relative to the number of frag-
ments in the clone.  We did this because we
wanted to give a higher fitness to those clones
that match a higher percentage of their regions.
For example, clone 5154 has two matches with
clones 8131 and 27714 that have 8 and 14 frag-
ments respectively.  A higher value is given when
the clone 5154 is near 8131 since 2/8 is a higher
percentage than 2/14.  Dividing by the number of
fragments in the clone pushes clones with a
higher percentage of matches closer together.  The
error is used to reduce this count by the per-
centage of error in the matched fragments.
Higher error values will reduce fitness.

Before settling on this fitness function, others
were considered: a) adding the number of matches
alone, b) subtracting the error, c) combination of
both.  In those cases, the GA was not able to find
the correct solution, although parts of the
solutions were correct.  In future work the
number of matches and error between every three
clones can be added to improve the fitness meas-
ure.

3.3 Mating and Mutation Operators

The mating operator is based on the Genetic
Edge Recombination (Whitley et al. 1989) with
minor modifications.  This operator was applied
successfully to the Traveling Salesperson Problem
(TSP).  Just as in the TSP, the important infor-
mation in this problem is adjacency of the alleles,
not the order of the alleles in the chromosome.
The idea is to recombine the links (pairs of clones)
between two parents such that common links are
inherited by the offspring.  Figure 5 presents an
example of this operator.  First, those links that
are common between both parents are passed to
the offspring.  Those alleles that are not passed to
the offspring are randomly assigned to the avail-
able positions.

The differences between this operator and the
original work by Whitley et al. are in the number
of offspring generated and in the assignment of
alleles not transferred from the parent.  Here we
generated two offspring instead of one because the
location of the links in the clone sequence is
important to our problem.  In TSP the chromo-
some is circular thus the location did not matter.
We allow both parents to pass the location of the
links to their offspring.  To assign the other alleles
we select them at random from those clones not
passed by their parents.  In the original operator
the links are assigned from those present in any of
the two parents.  Alleles with fewer links are
assigned first to prevent from running out of links
for a given allele.
     Parent 1      Similar links    Offspring 1
(6 7 8 1 2 3 9 4 5 0)  (- 7 8 1 - - - - 5 0)  (3 7 8 1 4 6 2 9 5 0)

     Parent 2                       Offspring 2
(1 8 7 9 5 0 2 6 3 4)  (1 8 7 - 5 0 - - - -)  (1 8 7 3 5 0 6 2 4 9)

Figure 5: Mating operator for clone sequencing.
The mating operator used here is doing much

more exploration of the search space than the
edge recombination operator.  This extra work is
reduced somewhat by the fact that mates are se-
lected using crowding selection and therefore they
have common features between them.
Exploration is limited to a smaller region within
the entire search space.  Setting alleles at random
from unassigned clones allows links to reappear
which might not have happened if mutation alone
is used.

Mutation is applied on an individual basis.
After an offspring is generated it is mutated if a
biased coin flip is true.  When this happens a link



from the offspring is selected at random and all
alleles from that link to the last position of the
chromosome are reversed.  For example, the off-
spring ( 1 8 7 3 5 0 6 2 4 9) after mutation can re-
sult in ( 1 8 7 9 4 2 6 0 5 3) if the link between al-
lele 7 and 3 is selected to mutate.

The mating and mutation operator are compat-
ible with each other in the sense that they both
operate on links.  The building blocks of this prob-
lems are based on the links between clones in the
sequence.  The GA operates on these links so that
the most useful ones are passed from generation
to generation.
3.4 Similarity Function

The similarity function is very simple also.  It
counts the number of dissimilar links between two
individuals.  Using the parents from figure 5 they
have 6 different links corresponding to the five
alleles not assigned to the offspring.  This metric
measures proximity between two clone sequences
by the different links they have and not the
position of the alleles.  For example, the sequence
(0 1 2 3 4 5 6 7 8 9) and (9 8 7 6 5 4 3 2 1 0) have a
distance of zero since all the links are the same.
This metric captures the essential aspect of the
problem since both solutions are equivalent in our
problem.

4 Results

The results presented in this section were ob-
tained on a SGI IRIS 4D computer under IRIX
operating system. running the GA application
written in C.  The parameters for the GA are the
following:

Population size: 200
Mutation probability: 0.06
Crossover probability: 0.95
Crowding selection group size (CSS): 10
Crowding sub-population size: 10
Crowding factor (CF): 3
Maximum number of generations: 150
Tolerance E: 10

These parameters were picked after various trials.
The population size of 200 was sufficient for the
data submitted to the application.  Other sizes (in
multiples of 50) were tried, but higher sizes did
not provide new information about the problem
and lower sizes in some cases did not converge to
the best solutions seen before in the allowed
number of generations.  Mutation was set at 0.06,
therefore an average of 12 individuals were
mutated every generation.  This low value of

mutation was selected to avoid eliminating the
best of population frequently and allow faster
convergence within each niche.  On the other
hand the mating probability was set to a high
value of 0.95 because in our GA all individuals
have a higher chance of mating with a similar in-
dividual, therefore their similar traits will be
passed to the next generation.  The group size for
crowding selection and crowding sub-population
was set at 5% of the population size with a crowd-
ing factor of 3.  For each individual at most 5% of
the population were examined for selection and at
most 15% of the population were examined for re-
placement.  These values allowed a diverse popu-
lation to co-exist during the number of genera-
tions allowed and did not restricted competition
between individuals from different niches.  The
tolerance value E was set to 10 to minimize false
matches due to chance.  Higher values of E in-
creased the false matches more than true matches
and therefore more possible clone sequences were
found.

Figure 6: Performance of three GA models.
We compared the performance of the multi-mo-

dal paradigm with a generational GA and a
steady-state GA.  Crossover probability was set at
0.6 for the generational GA and the generation
gap was set to 10 in the steady-state GA.  Roulette
wheel selection was used to select both mates.
Figure 6 shows the best in each generation for all
three models for data set 2.  Similar results were
obtained in data set 1 with the exception that the
steady-state GA was able to find the global
solution.  In both cases the multi-modal GA was



able to find a superior solution faster and
maintain different solutions throughout the
search.
Following are some of the best sequences obtained
for two different sets of overlapping clones.  Data
set number 1 is shown in figure 3 and the data set
number 2 is not shown here.  The GA took an
average of 50 seconds for each run.  Figure 7
shows the actual sequence for the data sets and
the clone sequences (with their fitness) obtained
by the GA.  For data set 1 the GA was able to find
the actual clone sequence.  From the other se-
quences found, the fitness values of the next best
is 15 less than the actual sequence.  Similar gaps
exist between all the sequences show in figure 7
for data set 1.  From the solutions we can see that
the last four sequences are the result of a single
mutation from the actual sequence.
  Set 1 actual sequence:
(8131 5154 21230 10406 18993 7442 5435 7255 12282 27714)  752

  Best clone sequences found with their fitness:
(8131 5154 21230 10406 18993 7442 5435 7255 12282 27714)  752

 (8131 5154 21230 27714 12282 7255 5435 7442 18993 10406)  737
 (8131 5154 21230 10406 27714 12282 7255 5435 7442 18993)  729
 (8131 27714 12282 7255 5435 7442 18993 10406 21230 5154)  718
(8131 5154 21230 10406 18993 27714 12282 7255 5435 7442)  710

  Set 2 actual sequence:
(12595 6722 26999 29626 29064 18301 19811 29035 17755 28828 20235) 749

  Best clone sequences found with their fitness:
 (12595 26999 6722 29626 29064 18301 19811 29035 17755 28828 20235) 757
 (12595 26999 6722 29626 29064 18301 19811 29035 17755 20235 28828) 755
 (12595 26999 6722 29626 29064 18301 28828 20235 17755 29035 19811) 751
 (12595 26999 6722 29064 29626 18301 19811 29035 17755 28828 20235) 750
 (26999 6722 12595 26626 29064 18301 19811 29035 17755 28828 20235) 750
 (26999 6722 12595 29626 29064 18301 19811 29035 17755 20235 28828) 748
 (12595 26999 6722 29626 29064 18301 28828 20235 17755 19811 29035) 748
 (12595 26999 6722 29064 29626 18301 19811 29035 17755 20235 28828) 748
 (26999 12595 6722 29626 29064 18301 19811 29035 17755 28828 20235) 747
 (12595 26999 6722 29626 29064 18301 19811 17755 29035 20235 28828) 744

Figure 7: Sequences for data set 1.
The data for set 2 presented a more challenging

problem for the GA.  In this case the best se-
quence had clones 6722 and 26999 transposed
from the actual sequence.  The fitness for the ac-
tual sequence is 749, which is the fifth best score
when compared with all solutions found.  The ac-
tual sequence was obtained in some of the runs,
but did not survive until the last generation.
Another observation is that there is a difference of
13 or less in the fitness between all the sequences
found.  Some of the sequences are mutations of
others, but there is more diversity when compared
with the solutions for data set 1.

5 Comments and Conclusions

Among the things that were observed, two items
deserve further discussion.  Data containing
clones with fewer than five fragments were
normally sequenced in a wrong location by the
GA.  This is due to the lack of fragment matches.
In a clone the corner fragments will not match
with high probability their counterparts in the
preceding and succeeding clones.  For clones with
less than five fragments, it means that in the av-
erage, half or more of their region is not useful for
fitness and in some cases leads to more false
matches.  Clone with less than five fragments
were usually placed first or last in the clone se-
quence by the GA.

When large amounts of overlaps existed be-
tween 3 or 4 clones, the GA had difficulty deciding
the sequence between them.  An example of this
behavior was observed with data set 2.  We
believe that this is happening because the fitness
function is only looking for matches between the
clones to the left and to the right separately with-
out accounting for the fragments which are com-
mon between all three clones.  An improved fit-
ness measure is needed to account for fragment
matches between three or more clones.

Overall the GA worked well with the data pre-
sented to it.  Using the correct set of genetic op-
erators was very important to find a GA model
that will find good solutions to the problem.
Using a multi-modal approach was very useful for
this problem also since it prevented premature
convergence and at the same time explored the
search space in a more efficient manner.  Defining
the operators for mating, mutation, fitness, and
similarity measure to work with adjacency
information between the clones rather than clone
positions gave the GA the correct set of tools to
converge towards the most probable solutions.
More information must be incorporated into the
fitness evaluation to distinguish even further be-
tween the best clone sequences and other similar
ones.

6 Future Work

There are other things that we are planing to
try out in the near future.  Improve the fitness
function to account for matches between more
than two clones.  Account for the error between
the original island length and the one obtained
from the sequence found by the GA and include
clone signature information when available.



Compare results with other methods available for
larger regions.  Extend the application to present
a partial fragment map using the fragment data.
Measure the effect on the GA of different levels of
error in the data .
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