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Abstract

In this paper, an analysis of a method proposed
for anomaly detection is presented. The method
uses a multivariate statistical method called
Principal Component Analysis to detect selected
Denial-of-Service and network Probe attacks
using the 1998 DARPA Intrusion Detection data
set. The Principal Components are calculated for
both attack and normal traffic, and the loading
values of the various feature vector components
are analyzed with respect to the Principal
Components. The variance and standard
deviation of the Principal Components are
calculated and analyzed. A method for
identifying an attack based on the Principal
Component Analysis results is proposed. After
presenting related work in the field of intrusion
detection using multivariate analysis methods,
the paper introduces Denial-of-Service and
network Probe attacks and describes their nature.
A brief introduction to Principal Component
Analysis and the merits of using it for detecting
intrusions are presented. The paper describes the
approach used to collect the various statistics and
how the data sets are created and used. The
results obtained using a proposed criterion for
detecting the selected intrusions are discussed.
The criterion can yield 100% detection rate.
Finally, the paper presents the conclusion of the
work done and proposes future enhancements to
the current method.

I. Introduction

With the growing rate of interconnections among
computer systems, network security is becoming
a major challenge. In order to meet this
challenge, Intrusion Detection Systems (IDS) are
being designed to protect the availability,
confidentiality and integrity of critical networked
information systems. Automated detection and
immediate reporting of intrusion events are
required in order to provide a timely response to
attacks.

Early in the research into IDS, two major
approaches known as anomaly detection and
signature detection were arrived at. The former
relies on flagging behaviors that are abnormal
and the later flagging behaviors that are close to
some previously defined pattern signature of a
known intrusion [1]. This paper describes a
network-based anomaly detection method for
detecting Denial of Service and network Probe
attacks.

The detection of intrusions or system abuses
presupposes the existence of a model [2]. In
signature detection, also referred to as misuse
detection, the known attack patterns are modeled
through the construction of a library of attack
signatures. Incoming patterns that match an
element of the library are labeled as attacks. If
only exact matching is allowed, misuse detectors
operate with no false alarms. By allowing some
tolerance in attack matching, there is a risk of
false alarms, but the detector is expected to be
able to detect certain classes of unknown attacks
that do not deviate much from the attacks listed
in the library. Such attacks are called
neighboring attacks.

In anomaly detection, the normal behavior of the
system is modeled. Incoming patterns that
deviate substantially from normal behavior are
labeled as attacks. The premise that malicious
activity is a subset of anomalous activity implies
that the abnormal patterns can be utilized to
indicate attacks. The presence of false alarms is
expected in this case in exchange for the hope of
detecting unknown attacks, which may be
substantially different from neighboring attacks.
These are called novel attacks.

Detecting novel attacks while keeping acceptably
low rates of false alarm, is possibly the most
challenging and important problem in Intrusion
Detection.
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IDSs may also be characterized by scope, as
either network-based or host-based. The key
difference between network-based and host-
based IDSs is that a network-based IDS,
although run on a single host, is responsible for
an entire network, or some network segment,
while a host-based IDS is only responsible for
the host on which it resides [3].

In this paper, a method for detecting selected
types of network intrusions is presented. The
selected intrusions represent two classes of
attacks; namely Denial of Service attacks and
network Probe attacks. The method uses
Principal Components Analysis to reduce the
dimensionality of the feature vectors to enable
better visualization and analysis of the data. The
data for both normal and attack types are
extracted from the 1998 DARPA Intrusion
Detection Evaluation data sets [4]. Portions of
the data sets are processed to create a new
database of feature vectors. These feature vectors
represent the Internet Protocol (IP) header of the
packets. The feature vectors are analyzed using
Principal Component Analysis and various
statistics are generated during this process,
including the principal components, their
standard deviations, the loading of each feature
on the principal components and Bi-plots to
represent a graphical summary of these statistics.
Based on the generated statistics, a method is
proposed to detect intrusions with relatively low
false alarm rates.

The rest of the paper is organized as follows:
Section II discusses related work in intrusion
detection using multivariate statistical
approaches with emphasis on those using
Principal Component Analysis. Section III
provides an introduction to Principal Component
Analysis and its applicability to the field of
intrusion detection. Section IV describes Denial
of Service and network Probe attacks with
emphasis on the attacks selected for this study.
Section V details the process of data collection
and preprocessing and the creation of feature
vectors. It also describes how the various
statistics are generated using Principal
Component Analysis results. Section VI
discusses the results obtained using this method
and suggests a method of detecting intrusions
using these results. False alarm rates are also
discussed here. Finally, Section VII provides a
conclusion of the work presented in this paper
and recommendations for future work.

II. Related Work

IDS research has been ongoing for the past 15
years producing a number of viable systems,
some of which have become profitable
commercial ventures [5].

There are a number of research projects that
focus on using statistical approaches for anomaly
detection.

Ye et al [6], [7] discuss probabilistic techniques
of intrusion detection, including decision tree,
Hotelling’s T2 test, chi-square multivariate test
and Markov Chains. These tests are applied to
audit data to investigate its frequency property
and its ordering property.

Taylor et al [8], [9] present a method for
detecting network intrusions that addresses the
problem of monitoring high speed network
traffic and the time constraints on administrators
for managing network security. They use
multivariate statistics techniques, namely,
Cluster Analysis and Principal Component
Analysis to find groups in the observed data.

DuMouchel et al [10] discuss a method for
detecting unauthorized users masquerading as a
registered user by comparing in real time the
sequence of commands given by each user to a
profile of the user’s past behavior. They use a
Principal Component Regression model to
reduce the dimensionality of the test statistics.

Staniford-Chen et al [11] address the problem of
tracing intruders who obscure their identity by
logging through a chain of multiple machines.
They use Principal Component Analysis to infer
the best choice of thumbprinting parameters
from data. They introduce thumbprints, which
are short summaries of the content of a
connection.

Shah et al [3] study how fuzzy data mining
concepts can cooperate in synergy to perform
Distributed Intrusion Detection. They describe
attacks using a semantically rich language,
reason over them and subsequently classify them
as instances of an attack of a specific type. They
use Principal Component Analysis to reduce the
dimensionality of the collected data.



III. Principal Component Analysis

Principal component analysis (PCA) [12] is a
well-established technique for dimensionality
reduction and multivariate analysis. Examples of
its many applications include data compression,
image processing, visualization, exploratory data
analysis, pattern recognition, and time series
prediction. A complete discussion of PCA can be
found in several textbooks [13], [14]. The
popularity of PCA comes from three important
properties. First, it is the optimal (in terms of
mean squared error) linear scheme for
compressing a set of high dimensional vectors
into a set of lower dimensional vectors and then
reconstructing it. Second, the model parameters
can be computed directly from the data - for
example by diagonalizing the sample covariance.
Third, compression and decompression are easy
operations to perform given the model
parameters - they require only matrix
multiplication.

Multi-dimensional hyper-space is often difficult
to visualize, and thus the main objectives of
unsupervised learning methods are to reduce
dimensionality, scoring all observations based on
a composite index and clustering similar
observations together based on multi-attributes.
Summarizing multivariate attributes by, two or
three variables that can be displayed graphically
with minimal loss of information is useful in
knowledge discovery. Because it is hard to
visualize multi-dimensional space, PCA is
mainly used to reduce the dimensionality of d
multi-attributes to two or three dimensions.

PCA summarizes the variation in a correlated
multi-attribute to a set of non-correlated
components, each of which is a particular linear
combination of the original variables. The
extracted non-correlated components are called
Principal Components (PC) and are estimated
from the eigenvectors of the covariance or
correlation matrix of the original variables.
Therefore, the objective of PCA is to achieve
parsimony and reduce dimensionality by
extracting the smallest number components that
account for most of the variation in the original
multivariate data and to summarize the data with
little loss of information.

In PCA, the extractions of PC can be made using
either original multivariate data set or using the
covariance or the correlation matrix if the
original data set is not available. In deriving PC,

the correlation matrix is commonly used when
different variables in the data set are measured
using different units or if different variables have
different variances. Using the correlation matrix
is equivalent to standardizing the variables to
zero mean and unit standard deviation.

The PCA model can be represented by:

Where u is the m-dimensional projected vector
and x is the original d-dimensional data vector
where m << d.

It can be shown that the m projection vectors that
maximize the variance of u, called the principal
axes, are given by the eigenvectors e1, e2, …, em
of the data set’s covariance matrix C,
corresponding to the m largest non-zero
eigenvalues λ1, λ2,  … λm.

The data set’s covariance matrix S can be found
as:

and the eigenvectors can be found by solving the
set of equations:

After calculating the eigenvectors, they are
sorted by their corresponding eigenvalues and
choosing the m vectors with the largest
eigenvalues. The PCA projection matrix is then
calculated as:

Where E has the eigenvectors as its columns.

One of the motives behind the selection of
Principal Component Analysis for the detection
of network traffic anomalies is its ability to
operate on the input feature vector’s space
directly without the need to transform the data
into another output space as in the case of other
self-learning techniques. For example, in Self-
Organizing Maps, the transformation of a high-
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dimensional input space to a low-dimensional
output space takes place through the iterative
process of training the map and adjusting the
weight vectors. The weight vectors are typically
selected randomly which makes the process of
selecting the best initial weight vectors a trial-
and-error one. While in Principal Component
Analysis, dimensionality reduction is achieved
by calculating the first few principle components
representing the highest variance in the
components of the input feature vector, without
the need to perform any transformations on the
input space. Thereby, the input data is analyzed
within its own input space, and the results of the
transformations are deterministic and do not rely
on initial conditions.

IV. Denial of Service and Probe Attacks

In a Denial of Service (DoS) attack, the attacker
makes some computing or memory resource too
busy, or too full, to handle legitimate users’
requests. But before an attacker launches an
attack on a given site, the attacker typically
probes the victim’s network or host by searching
these networks and hosts for open ports. This is
done using a sweeping process across the
different hosts on a network and within a single
host for services that are up by probing the open
ports. This is referred to as Probe attacks.

Table 1 summarizes the types of attacks used in
this study.

Attack Name Attack Description
Smurf Denial of Service ICMP echo reply

flood
Portsweep Surveillance sweep through many

ports to determine which services
are supported on a single host

Neptune SYN flood Denial of Service on one
or more ports

IPsweep Surveillance sweep performing
either a port sweep or ping on
multiple host addresses

Table 1 : Description of DoS and Probe
attacks

Smurf attacks, also known as directed broadcast
attacks, are a popular form of DoS packet floods.
Smurf attacks rely on directed broadcast to create
a flood of traffic for a victim. The attacker sends
a ping packet to the broadcast address for some
network on the Internet that will accept and
respond to directed broadcast messages, known
as the Smurf amplifier. The attacker uses a

spoofed source address of the victim. If there are
30 hosts connected to the Smurf amplifier, the
attacker can cause 30 packets to be sent to the
victim by sending a single packet to the Smurf
amplifier [15].

Neptune attacks can make memory resources too
full for a victim by sending a TCP packet
requesting to initiate a TCP session. This packet
is part of a three-way handshake that is needed to
establish a TCP connection between two hosts.
The SYN flag on this packet is set to indicate
that a new connection is to be established. This
packet includes a spoofed source address, such
that the victim is not able to finish the handshake
but had allocated an amount of system memory
for this connection. After sending many of these
packets, the victim eventually runs out of
memory resources.

IPsweep and Portsweep, as their names suggest,
sweep through IP addresses and port numbers for
a victim network and host respectively looking
for open ports, that could potentially be used
later in an attack.

V. Data Collection and Preprocessing

The 1998 DARPA Intrusion Detection data sets
were used as the source of all traffic patterns in
this study. The training data set includes traffic
collected over a period of seven weeks and
contains traces of many types of network attacks
as well as normal network traffic.

This data set has been widely used in the
research in Intrusion Detection, and has been
used in comparative evaluation of many IDSs.
McHugh [16] presents a critical review of the
design and execution of this data set.

Approach

Attack traces were identified using the time
stamps published on the DARPA project web
site. Data sets were preprocessed to create
feature vectors that were used to extract the
principal components and other statistics. The
feature vector chosen has the following format:

SIPx SPort DIPx DPort Prot PLen

Where



• SIPx = Source IP address nibble, where x =
[1-4]. Four nibbles constitute the full source
IP address

• SPort = Source Port number
• DIPx = Destination IP address nibble, where

x = [1-4]. Four nibbles constitute the full
destination IP address

• DPort = Destination Port number
• Prot = Protocol type: TCP, UDP or ICMP
• PLen = Packet length in bytes

This format represents the IP packet header
information. Each feature vector has 12
components. The IP source and destination
addresses are broken down to their network and
host addresses to enable the analysis of all types
of network addresses.

Seven data sets were created, each containing
300 feature vectors as described above. Four data
sets represented the four different attack types
indicated in Table 1. The three remaining data
sets represent different portions of normal
network traffic across different weeks of the
DARPA Data Sets. This allows for variations of
normal traffic to be accounted for in the
experiment.

One of the motives of creating smaller data sets
for representing the feature vectors is to later
enable studying the effectiveness of this method
for real-time applications. Real-time processing
of network traffic mandates the creation of small
sized databases that are dynamically created
from real-time traffic presented at the network
interface.

Principal Component Analysis was performed on
all data sets where each feature vector would be
represented by its 12 components. An
exploratory analysis and statistical modeling tool
called S-Plus [17] was used to generate the
required statistics for this study. The following
statistics were generated for each data set:

• Standard Deviation for each component
• Proportion of variance for each component
• Cumulative proportion of variance across all

components
• Loading value of each feature on all

individual components
• A Bi-Plot representing the loading of the

different features on the first and second
components

VI. Results

Figure 1 shows the loading and variance of the
first and second principal components for all data
sets. Normal 1, 2 and 3 represent 3 randomly
chosen data sets from normal traffic. IPsweep,
Neptune, Portsweep and Smurf represent data
sets for these attacks.

The principal component loadings are the
coefficients of the principal components
transformation. They provide a convenient
summary of the influence of the original
variables on the principal components, and thus a
useful basis for interpretation of data. A large
coefficient (in absolute value) corresponds to a
high loading, while a coefficient near zero has a
low loading [18].

The variance and standard deviation of a random
variable are measures of dispersion. The variance
is the average value of the squared deviation
from the variable’s mean, and the standard
deviation is the square root of the variance.

If X is a discrete random variable with density
function fX(x) and mean µX, the variance σ2 is
given by the weighted sum:

Figure 1: Component Loading and Variance
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In the results above, the first 2 principal
components consistently had their highest
absolute value loading from SPort and DPort
features across all data sets. This reflects the high
variance in both source and destination port
numbers for all data sets, except for Smurf at
which the highest variance was due to source IP
address components. Port numbers in TCP
connections vary from 0 to 65534 and represent
the different network services offered within the
TCP protocol.

It is observed that the loading values for the first
and second principal components in the three
normal data sets are equal, with a value of 0.7.
This represents the balance in variance in the
packets flowing between a client and a server
with respect to the source and destination ports.
In TCP, the data and acknowledgement packets
regularly flow between the client and the server,
each using a designated TCP port number for the
duration of the session.

For the four attack data sets, it is observed that
the loading values for the first and second
principal components are not equal, possibly
representing the imbalance in variance in the
packets flowing between a client and a server
with respect to the source and destination port
numbers.

In IPsweep attacks, one or more machines (IPs)
are sweeping through a list of server machines
looking for open ports that can later be utilized in
an attack. While in Portsweep attacks, one
machine is sweeping through all ports of a single
server machine looking for open ports. In both
cases, there is an irregular use of port numbers
that causes the variance in the principle
components to vary, with an associated
irregularity in the loading values.

In Neptune attacks, a flood of SYN packets is
sent to one or more ports of the server machine,
but from many clients with, typically, non-
existing (spoofed) IP addresses. The packets seen
by the server appears to be coming from many
different IP addresses with different source port
numbers. This is represented by the irregularity
in both loading and variance of the principal
components.

In Smurf attacks, attackers utilize floods of
Internet Control Message Protocol (ICMP) echo
reply packets to attack a server. Using
amplifying stations, attackers utilize broadcast

addressing to amplify the attack. The packets
seen by the server appear to be coming from
many different IP addresses but to one source
port. Therefore, 99% of the variance for this data
set is represented by the first four principal
components and has their loading values
associated with SIP1, SIP2, SIP3 and SIP4,
instead of the source and destination ports as in
previous attacks.

Figure 2 shows the standard deviation for the
first and second principal components for all data
sets. In the case of IPsweep and Portsweep
attacks, the standard deviation of both source and
destination port numbers is almost similar. This
is due to the similarity in utilizing source and
destination port numbers in these attacks.

Figure 2: Standard Deviation Values for first
2 PCs

In Neptune attacks, the source and destination
ports vary differently where the source port
would have the highest variance. In Smurf
attacks, the first two components, namely SIP1
and SIP2, represent only a portion of the
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deviation value.

With these results, it is possible to use the
loading values of the features on the first and
second principal components to identify an
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be used to make such a distinction. In addition,
the decision could be further enhanced using the
standard deviation values for first and second
components. Whenever these values differ
significantly, an additional data point could be
obtained regarding the possibility of an attack.

Table 2 shows the results of a possible criterion
C for the detection of an attack based on the
loading values. This criterion is represented by
the following equation:

Where, l1 and l2 are the loading values for the
first and second principal components, and pv is
the cumulative proportion of variance for the
first and second principal components.

Attack
Data Set

Comp. 1
Loading

Comp. 2
Loading

Cum. Prop.
Of Variance

Attack
Criteria

Normal 1 0.707 0.707 0.999 0.00

Normal 2 0.709 0.705 0.998 0.40

Normal 3 0.708 0.706 0.997 0.20

IP Sweep 0.617 0.787 0.998 16.97

Neptune 0.723 0.69 0.999 3.30

Port
Sweep

0.221 0.974 0.998 75.15

Smurf 0.981 0.139 0.705 59.36

Table 2 : Attack Criteria calculation

If a threshold value of C = 1 is used given the
above data sets, we could achieve a 100%
detection rate using the selected criterion for
detection.

In addition to the calculation of the attack
criterion, Bi-Plots could be utilized to visually
interpret the loading values of the principal
components and to see which features had the
highest loading on a given principal component
value.

The Bi-Plot allows the representation of both the
original variables and the transformed
observations on the principal components axes.
By showing the transformed observations, the
data can be easily interpreted in terms of the
principal components. By showing the variables,

the relationships between those variables and the
principal components can be viewed graphically.

Figure [3] shows two sample Bi-Plots generated
for Normal 1 and Portsweep data sets.

Interpreting the Bi-Plot is straightforward: the x-
axis represents the scores for the first principal
component, the y-axis represents the scores for
the second principal component. The original
variables are represented by arrows, which
graphically indicate the proportion of the original
variance explained by the first two principal
components. The direction of the arrows
indicates the relative loadings on the first and
second principal components.

Figure 3: Bi-Plots for Normal 1 (top) and
Portsweep (bottom) data sets
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VII. Conclusion and Future Work

This paper presents a method for detecting
Denial-of-Service attacks and network Probe
attacks using Principal Component Analysis as a
multivariate statistical tool. The paper described
the nature of these attacks, introduced Principal
Component Analysis and described the merits of
using it for detecting intrusions. The paper
described the approach used to extract the
Principal Components and the related statistics.
It also discussed the results obtained from using
a proposed criterion for detecting the subject
intrusions. This criterion can lend 100%
detection rate. The paper presented a graphical
method for interpreting the above results based
on the Bi-Plots. Future work includes testing this
model to work in a real-time environment at
which network traffic is collected, processed and
analyzed for intrusions dynamically. This may
involve using a more comprehensive criterion
that accounts for other statistics including
standard deviation values of the Principal
Components. In addition, an enhancement may
be added to utilize Bi-Plots for visual
interpretation of data in real-time. In this case the
entire DARPA data sets will be used to qualify
the results.
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