Differential Equations and Dynamical Systems, Volume 8, Number 1, January 2000, pp. 29 - 49.

Solution of the Linear Diffusion Equation on
a Nonuniform Grid in Three Dimensions

A. Komashko, D. Laney, M. Prasad and R. Vemuri

(Submitted by: V. Sree Hari Rao)

Abstract

The point source problem for the linear diffusion equation was
solved numerically on a nonuniform mesh in 3D using Galerkin‘s
finite element method. The hexahedral computational mesh was
constructed with random recursive subdivision. It was shown that
despite irregularity introduced by the grid, the numerical solution
still possesses important symmetry properties and remains good
approximation to the analytical solution.

1 Introduction

We describe here the 3D finite element solution of an exactly solvable
diffusion equation on highly distorted meshes and compare it to the cor-
responding analytical solution. Such distorted meshes are typical of La-
grangian hydrocode simulations such as DYNA3D [4] and it is particu-
larly important that the diffusion solver be robust and accurate on such

OReceived on January 12, 2000.
0OAMS (MOS) 1991 Subject classifications: 65N30.
0

An International Journal for Theory & Applications.

30 A. KoMASHKO, D. LANEY, M. PRASAD AND R. VEMURI

meshes.

We show here that the finite element method indeed offers a robust and
accurate solution of the diffusion equation on 3D distorted meshes. In
particular, we use linear finite elements for the spatial discretization and
an unconditionally stable fully implicit backward Euler time differenc-
ing. On distorted meshes the condition number of the finite element
stiffness matrix can become quite large. For this reason we used the pre-
conditioned incomplete Cholesky conjugate gradient (ICCQG) iterative
solution for the implicit equations ([7], [5]). It is a well known empirical
fact that ICCG is a particularly robust method for solving ill-conditioned
systems.

The paper is organized as follows. In Section 2, the problem to be solved
is stated along with the initial and boundry conditions and it’s exact
solution is presented. In Section 3, we derive the linear system using
the Galerkin method. We then present the basis functions in Section
4 and the mesh generation method in Section 5. Section 6 describes
the conditions under which the numerical experiments were conducted
and the results are summarized. The appendices provide details on the
method of ICCG, and the Mathematica script we used to visualize three
dimensional data.

2 Problem Statement

The linear diffusion equation is typically used for description of heat or
particle transfer. It is given by:

o7,) =% =¥ (DEHDTU)b oo =557} € Sad)

where u is an unknown function (temperature or density), € is the
problem domain and D, f, « are functions specified by the problem do-
main. The initial condition is u(7,t = 0) = wue(7). The equation has
to be provided with a boundary condition. Typically this is either the
Dirichlet condition ,

wr i) =gt} Tel, (2)

LINEAR DIFFUSION EQUATION ON A NONUNIFORM GRID 3l

where I' is boundary of 2 and ¢ is some given function defined on I'; the
Neumann condition |,

where 7 is unit vector orthogonal to the I'; or the mixed condition ,
D7 i -Nul7, 1)) +eu(F, t) = g(r’ 1), (4)

where ¢ > 0. In general, equation (1) has to be solved numerically,
but for some cases it is possible to obtain an analytical solution. For
example, when the problem domain 2 is three dimensional space, the
conductivity D and capacity « are equal to one, the source f is zero and
the initial condition is uy(7) = @ - §(7), where the Dirac delta function,
the solution is well known [2] and is given by

e pyle %%W - (”Z%) . (5)

This is the so called instantaneous point source problem. It can be used
for a description of heat transfer after some amount of energy equal to
(is deposited instantly at the origin.

It was already mentioned that the goal of this paper is to solve (1) on a
nonuniform mesh using the Galerkin method. As a benchmark the point
source problem was used. Since, it is impossible to represent an infinite
domain on the computer, the problem was solved inside a cube with a
source in the corner and the Neumann boundary condition everywhere
on the cube faces. If the elapsed time in the problem is not big, so that
temperature spread is less than cube size, equation (5) should be good
approximation of exact solution.

3 Galerkin finite element scheme with ex-
plicit time stepping

In this section the Galerkin method [8] and time discretization are briefly
described. Let us first discuss time discretization.

We applied the following scheme to solve the diffusion equation. Label

32 A. KoMASHKO, D. LANEY, M. PRASAD AND R. VEMURI

the time steps by n. Define "1 and " to be the time respectively at
time steps n — 1 and n. Let ™! and u" be the corresponding solutions
at these time steps. Let f*~! and f™ be the values of function f at these
time steps. For simplicity, D and « do not depend on time. Then the
following equations will linearly interpolate these variables between time
steps n — 1 and n:

fo=f"11-0)+f"0, up=u"""(1-0)+u"0 (6)
where the interpolating factor is given by

b

B
At

6

The diffusion equation, namely equation (1), in terms of the new variables

is,
2B un—l
b V.(DVug) + fo. (7)
When 6 = 1 this is the implicit scheme. The explicit scheme is given by
= 0. When # = 1/2 it is called the Crank-Nicolson scheme. In our
calculations the implicit scheme was used. Although it has first order of
accuracy in time, it is simple and unconditionally stable. Rearrangement

of equation (7) gives the following result:

n

al‘& ~ v.(DVu) = f, (8)

where f* = f* + a%i.

Now Galerkin‘s method can be applied. This method can be described
as follows. First, we choose some set of linearly independent functions
¢; (") and expand our unknown function u(7) over this set,

upe(7) = Y u;; (M), (9)

where u; are expansion coefficients and subscript fe stands for finite
element. Obviously u.(7) is not equal to u(7), but if we have reasonable
choice of ¢, which are often called basis functions, us. will be a good
approximation of u. This method allows to reduce the original partial
differential equation with unknown function u(7) to a set of algebraic

LINEAR DIFFUSION EQUATION ON A NONUNIFORM GRID 38

equation with a vector of unknown u;. The question is how this reduction
should be done.

After substitution of expression (9) into equation (7) one may define the
residual as,

U u
il e n n
Rlure] = ol - v.(DVu},) - /. (10)

Now, uy, is said to be finite element solution of diffusion equation if the
residual vanishes with respect to the basis functions, that is:

/Q@R[ufe]dr"': 0. (11)

Substitution of equation (10) into (11) gives the following system of equa-

tions,
uTL

g~ [6V (DVup)d7 = [¢:fdr (12)

For convenience the index fe will be dropped from now onwards. Apply-
ing the formula V.(ufVv) = uV.(fVv) + fVu.Vv and Gauss’ theorem,
equation (12) is reduced to,

(67

u” - n\ = ; 7o e en g
/Qa—A—t@-dr—l—/QD(Vd)i-Vu \dr /FqﬁlDVu .ndS—/Q@f d7. (13)

Using equation (9), equation (13) is transformed into set of ordinary
algebraic equations,

=2

U =
— 4+ Ad" =F"
MAt+ o (14)

where 4" is a vector of unknown coefficients u;. M is a mass matrix
given by

Matrix A is called stiffness matrix and equals to
A= [D(V6:-Vo;)dr+ [45(7)dS, (16)

where 1);; = 0 for Neumann and Dirichlet boundary conditions, v;; =

co;¢; for the mixed conditions. Finally, 13, which is called load vector, is
defined as:

o /Q $oart /I;§id5+ /Q a@%da (17)

34 A. KoMmasHKO, D. LANEY, M. PRASAD AND R. VEMURI

where & = 0 for Dirichlet and Neumann boundary conditions and &; =
¢;g for the mixed boundary condition. It is easy to see that the final
matrix A + M/At is symmetric and it can be proved to be positive
definite. For any general set of basis functions this matrix will be dense.
A good decomposition of the problem domain coupled with compactly
supported basis functions can reduce the CPU time needed to solve the
resulting linear system. For the point source problem, a hexahedral mesh
was chosen. Each corner (node) of each hexahedron is assigned a global
node number. There will be one continuous basis function associated with
every node and it will have the same index as the node. These functions
are equal to zero everywhere except inside the hexahedra that have this
node as one of their corners. The total number of basis functions is equal
to number of nodes and the basis functions are linearly independent.
Each hexahedron in the mesh has 26 nearest neighbors. The resulting
matrix will be sparse and have 27 diagonals (each node is coupled to
itself). This will allow us to solve equation (14) using iterative techniques
[1]. The method used in our calculations is described in Appendix A.

In some cases, the mass matrix M is replaced with a diagonal lumped
mass matrix,

Miumped = 0ij ;za@dﬁ (18)

where §;; is Kronecker delta. There is empirical evidence that calcula-
tions using a lumped mass matrix tend to be more accurate. We used a
diagonal lumped mass matrix in this work.

After evaluation of the mass and stiffness matrices and the load vector
advancing in time begins.

Once ﬁ, M, and A have been evaluated we use equation (6) to advance
the time variable. There is no requirement on At from stability condi-
tion. Thus, At may be modified every step depending on how fast the
solution is changing.

4 Basis Functions

In this section we will give a short description of our choice of basis func-
tions, how it affects the calculation of matrix elements and how it was
related to mesh construction.

LINEAR DIFFUSION EQUATION ON A NONUNIFORM (GRID 35

We have already specified general properties of basis functions. In prac-
tice the diffusion equation is often solved with the so called hat functions.
These are defined on the unit cube as follows:

j (taitefyds ah, bosblrs) 9;

1 (19ddidipa-sbpa-tddo) (i)l =) nei)/8

2 (- H+B{EL Y (38 = 9)(1 — 0)/8

3 (ke soslbieiis) AL+ Lm0 /8 (19)
= S vk e - (1 =N LT)78

5 L L L (1 —€ L~ il £ a0

6 { wd bpderlionds) (1+&(1—)(1+0)/8

7 e s o bt e L N DT+ 0)/8

8 il sibnlisrad w) (it E)(Art-h) (L +)/8,

where 7 is a local node number, &,, 6 are coordinates of the location of
cube nodes, ¢; in the third column are basis functions. It is easy to see
that the basis functions are equal to unity at the corresponding nodes
and zero on the opposite faces of the cube. This choice of functions will
give us second order accuracy.

The mapping from the problem space z,y,z to the parametric space
&,1, 0 is accomplished by the following equations:

’F(.’L',:lj,Z) o 28: F]QS](gﬂ w:g)
i (20)
W) e z u;p;(€,v,0),

where summation is done over the nodes of the hexahedron we are map-
ping, 7; contains the z,y, z coordinates of node j and u; is value of the
function w at node j. This transformation is called isoparametric map-
ping and it simplifies the calculation of matrix and vector elements of
the equation (14). Each integral in equations (15,16,17) is evaluated in
&,1,0 space. This procedure is described in Appendix B.

36 A. KoMASHKO, D. LANEY, M. PRASAD AND R. VEMURI

5 Mesh Construction

The construction of the mesh is dictated by the specifics of the problem.
The point source problem has a symmetric solution. This allows us to use
a simple cubic domain with one corner situated at the origin of the coor-
dinate system. The mesh in Figure (1) was generated by a randomized
subdivision process. Regular connectivity was retained between nodes,
giving the following expression for the global node number of each node:

i=k+I(N+1)+m(N+1)(N+1), (21)

where 7 is global node number, k,I,m are indices along axes. k,I[,m
correspond to the z, vy, z axes in Figure 1. All of them are changing from
0 to N, giving (N + 1)® global nodes.

The mesh was constructed recursively by subdividing each hexahedron
into eight random hexahedrons. This is accomplished by adding a new
node at a random location along each edge of the hexahedron. A 13th
node is added at a random location inside the hexahedron. Finally, these
new nodes are connected to form eight new hexahedra. Since calculations
in z,, z space could be difficult, the parametric map of each node was
used. Nodes are generated according to the formula:

tlg — Stl -+ (1 = S)tg,
s = F+(1=2f) rendem().

(22)

where t is £,9 or 0, t; and t, are nodes connected by and edge, 12 is
the new node on that edge, random() is a subroutine generating random
numbers uniformly distributed from 0 to 1, and f controls the amount
of randomness in the resulting mesh. It is easy to see that if f = 0.5 the
grid is structured and the more it deviates from 0.5 the more random
is our mesh. In the Figure (1) we present pictures describing mesh that
was generated with this method.

£ can not deviate too much from 0.5. The parametric mapping (20) must
establish a one-to-one relation between points in different spaces. This
requirement can be violated if the grid is distorted. Two dimensional tri-
angular and quadrilateral elements can be checked for unstable numerical
behavior by insuring that the Jacobian is positive at the nodes. How-
ever, [6] shows that there is no such simple test for the 3D case and even

LINEAR DIFFUSION EQUATION ON A NONUNIFORM GRID 57

more elaborated tests do not give absolute assurance. The good news
is that requirement of positiveness of the Jacobian at the nodes works
approximately in 99% of the cases. We used this test in our calculations
and it showed that the parameter f could not deviate from 0.5 more
then approximately by 0.1. See Appendix B for a description of how the
Jacobian was calculated. The mesh shown in Figure (1) is produced with
a limiting value f = 0.39.

6 Simulations

We investigated how the Galerkin method reproduces analytical solu-
tions, how numerical error changes with discretization, and what is most
important for problems in physics - conservation of general properties
like symmetry. The point source problem has been chosen to investigate
the above properties. The analytical solution (5) has spherical symme-
try. Thus, the source was placed at the origin, in the corner of a unit
cube with side length equal one. The boundary condition was of Neu-
mann type everywhere. In this case the cube represents one eighth of the
original problem. The numerical solution should be well behaved if the
diffusion is calculated over a short time period. This ensures that the
spreading is less than the cube size. Under this condition, we can com-
pare the numerical solution with the analytical solution given in equation
5

The initial condition was described by the function ug (). This function
was non-zero at the origin and zero everywhere else. The value at the
origin set to some number ¢. When the numerical and analytical so-
lutions were compared, parameter @ of the analytical solution (8) was
calculated as 8 [uo(7)dF. The results were compared using /> norm :

cube
| ulle= /Z u
J

The point source problem is a difficult test since initially the solution has
derivatives with large magnitude, so it was necessary to let the temper-
ature (or density) spread a little bit before any comparisons.

Three dimensional calculations are compute intensive. The largest meshes

38 A. KOMASHKO, D. LANEY, M. PRASAD AND R. VEMURI

used in this work had 35937 nodes which corresponds to N = 32. This
has prevented us from tracking how numerical error approaches zero with
growth of number of nodes, but we did see that increasing N from 16 to
32 changed the error approximately two times. This is consistent with
the accuracy expected of the Galerkin method: second order local and
first order global.

After the testing we concluded that Galerkin method performed very well
indeed. It allowed us to reproduce the analytical solution with decent
accuracy and conserve it’s important properties even on a nonuniform
mesh.

To illustrate this, pictures describing the results of simulation on the grid
with parameter f = 0.39 are presented. The mesh itself is presented in
Figure (1). Part (a) of the figure shows grid lines on the faces of the
cube. part (b) shows grid surfaces when some of the indices were fixed.
Since the process of mesh construction is random there are an infinite
number of meshes with the same magnitude of distortion characterized
by parameter f. This one is presented because the next pictures show
calculations on this particular mesh. The initial condition was ¢ equal
to 30, which gave “energy” @ = 6.41-10~* after integration.

Figure 2 is a graph of the numerical solution at time ¢ = 0.021 along
coordinate axes z,vy, z. We see that these curves lay on top of each other
and it is an indication of solution symmetry.

Figure 3 is a plot of the numerical and analytical solutions along axis
z at time ¢t = 0.021. The error is 6.31%. This error is only .30% more
than the same simulation conditions on a uniform mesh. The greatest
difference between the solutions is at the origin, attesting to the difficulty
of handling point sources in numerical calculations.

7 Visualization

Figures 3-6 are two and three dimensional contour plots. This type of
data visualization was not built into the tools available to us. A Mathe-
matica program [9] was developed to cope with 3D data. The technique
we used is described in appendix C. To illustrate mesh distortion, con-
tour plots are presented in klm space also.

o

o
i

LINEAR DIFFUSION EQUATION ON A NONUNIFORM GRID 39

Figure (4) is similar to Figure (2), but these are overlayed two dimen-
sional contour plots on some of the cube faces. Figure (5) is of the same
type as previous one but it shows also how contour lines look in space of
indices.

Figure (6a,b) is three dimensional contour plots in k,I,m and z,y,z
spaces. One can clearly see that the solution possesses spherical symme-
try. The small deviations for the outer surface is due to the influence of

the boundary condition.

These results are very important since one of the basic principles of com-
puter simulations is that numerical solution has to have the same general
properties as the analytical solution even if the numerical error is large.
Only in this case may one hope to get the correct picture of physical
processes.

8 Conclusion

We presented simulations of point source problem on nonuniform hexa-
hedron meshes in three dimensions with up to 36937 nodes in a unit size
cube using Galerkin’s finite element method. Grids were generated with
random recursive subdivision of the cube. The linear algebraic system
obtained after applying Galerkin’s method was solved using the incom-
plete Cholesky conjugate gradient iterative technique. Visualization of
the data was created in Mathematica by creating a small program for
that purpose.

We have shown that the diffusion solver is robust and accurate on highly
distorted meshes. The ICCG algorithm provides a stable solver for the
ill-conditioned linear system produced by distorted meshes. Indeed, nu-
merical error on the distorted meshes was about the same as for the
uniform meshes. The numerical solution exhibited expected spherical
symmetry despite mesh irregularity.

40 A. KOMASHKO, D. LANEY, M. PRASAD AND R. VEMURI

Appendices

A. Numerical Solution of Equation A7 = b

Many numerical methods applied to equation (1) finally require solution

of linear system : i
Al 0. (23)

Matrix A in this case is quite special and has following properties :

- It is sparse. By sparsity we mean that the ratio of the number of
zero elements to total number of matrix elements approaches unity
as size of the matrix grows.

- Iiis'symmetriec (A = {ay), ay; = a5).

- It is positive definite ((&, AZ) > 0. This product is equal to zero
only i Z =0).

- It is ill-conditioned (Matrix is ill-conditioned when its condition
number ||A|| - || A7"|| is much greater then one).

It is also desirable that matrix A have the M property. Definition for an
M-matrix is

gl for i deiln =0 amd A U

Since solution of equation (1) is essentially positive (it is temperature or
concentration), one should try to have numerical solution with the same
property. This is possible if A is an M-matrix.

Typically this type of equation is solved by iterative methods [1], very
often it is the conjugate gradient method. This technique can be a per-
fectly good choice for problems on regular grids, but it turns out that
introduction of irregularity may significantly increase the condition num-
ber which defines the convergence rate [3]. This issue is often addressed
with a use of preconditioning. The idea is simple : the matrix is trans-
formed to some new coordinate system where the condition number will
be smaller. However it has to be an inexpensive procedure since our final
goal is solving equation (23) as fast as possible.

In our calculations incomplete Cholesky preconditioning [7] was used. It

LINEAR DIFFUSION EQUATION ON A NONUNIFORM GRID 41

is based on a factorization of the matrix into upper and lower triangular
parts. This algorithm was modified so that :

Ce=10) =~ A (24)

where D is a diagonal matrix with D;; = 1/Aj;; L is a lower triangular
matrix with L;; = 0 if A;; = 0 and the rest of the elements are evalu-
ated according to the original Cholesky method; L' is the transpose of
L. Usage of D is not required, but it allows us to avoid the evaluation of
square roots.

If we had used a complete factorization, this would have solved the prob-
lem, but it also would have been very expensive. Therefore, the elements
of triangular matrices are evaluated only if the elements of the original
matrix are non-zero. This also preserves sparsity of the matrix so impor-
tant for iterative techniques.

In this case algorithm for conjugate gradient as follows :

P = gy okdh,

RF1 = Rk _ okAdt Br = Ak,

dHl = C-1RM 4 gEGE @ = C-1RF, (25)
ol (RE CTIREY/(dE, AdY),

G5 srdials Gnerien 0 CRE R,

Vector R is called the residual and d is the search direction. The iterations
are repeated until the relative change || Z**1 —7*|| / || #*|| becomes smaller
than some number, which is usually about 10713,

B. Numerical Integration

All integrals were calculated in &, ¢, § space. For this purpose we evaluate
of Jacobian matrix :

0x/0€ Oy/OE 0z/0&
J=1|0z/0y By/OY 8z/0¢ |,
02/00 9y/00 02/00 |

42 A. KoMAsHKO, D. LANEY, M. PRASAD AND R. VEMURI

where z,y and z are calculated according to (20). The Jacobian is used
for the transformation of the gradient via Vo (z,y, 2) = JV@(E, 9, 6) and
for defining the differential space element via dzdydz = det(.J)d§dypdo.

Theoretically all integrals can be evaluated analytically. Analytic evalua-
tion using Mathematica gave very long expressions. Therefore they were
calculated numerically. One can do this if numerical error introduced by
integration is of the same order as Galerkin method. Hence Gaussian
quadrature of second order will suffice. All integrals are substituted by
the sum :

[1€, 0)dedid = 3 £(65.%.05),
il
where evaluation points are :
(§j7 Z/)j’ HJ) o (:*:1/\/5, :tl/\/ga il/\/g)

Since matrix A is symmetric, only half of its elements have to be evalu-
ated.

C. Visualization

Since three-dimensional calculations are not quite typical because of their
computational requirements, there are not many packages allowing inter-
pretation and visualization of 3D data, especially on an irregular grid.
We decided to use Mathematica - a computer algebra system from Wol-
fram Research [9]. Although it does not have direct ability to work with
data on a nonuniform mesh, its unique handling of graphics and powerful
language made our goal feasible.

Mathematica’s graphical capabilities are organized in a highly modular
way. Any data, whether it is analytical or numerical, is initially trans-
formed to a set of display independent graphical primitives like point,
line, or polygon. These primitives are translated into an appropriate
graphical form, for instance Postscript. For the ordinary user these steps
are usually hidden, but if necessary it is possible to save the intermedi-
ate results. This feature is essential for our solution to the visualization
problem.

Now let us state clearly what we have and what we want to do. As a
result of the numerical calculations we have an array of data represent-
ing the numerical solution of the diffusion equation at the grid nodes.

LINEAR DIFFUSION EQUATION ON A NONUNIFORM GRID 43

This grid is a structured cubic mesh in the space of indices k, [, m, but
it doesn’t have this property in actual space x,y, z. Our purpose is the
construction of contour plots in z,y, z space.

Mathematica has built-in or loadable functions that can make contour
plots on a regular grid. Using them it is possible to generate necessary
graphs in k, [, m space and, if intermediate results are saved, this will give
us their representation in terms of graphical primitives. These primitives
use plot coordinates, but not display coordinates. For example, in a 3D
plot there is a line from the origin (0,0,0) to the point (1,1,1). In this
case it will be described in a following way : Line [{{0,0,0},{1,1,1}}].
Therefore, if we could substitute indices k, [, m by their respective x, v, z
coordinates in the graphics primitives, this would give us the desired
plot. It turns out that using the Mathematica language it can be done
in a rather elegant way.

Here we present the program used for producing 3D contour surface plots
in Figure (6). The same method was applied for making 2D contour plots
in the Figures 4,5. Here is the program. Verbatim environment

1 DataContours = { 10°-3, 10°-5, 10°-8 };
DataColors = { {GrayLevel[0.25]},{GrayLevel[0.55]},
{GrayLevel[0.85]} };

N

ud = ReadList["u.dat",Number];
grid = ReadList["mesh.dat",{Number,Number,Number}] ;

Number0fNodes = Lengthl[ud];
imx = NumberOfNodes~ (1/3);

© 00 N O U W

10 M = Compile[{j}, Floor[j/(imx*imx)] J;

11 L = Compile[{j}, Floor[(j - M[j]l#*imx*imx)/imx]];
12 K = Compile[{j}, (j - L[jl#*imx - M[j]l*imx*imx)];
iLE

14 X=Interpolation[Table[{K[i],L[i],M[i],grid[[i+1,1]]},
{i,0,Number0fNodes-1}]];

156 Y=Interpolation([Table[{K[i],L[i],M[i],grid[[i+1,2]]},
{i,0,NumberOfNodes-1}]11];

16 Z=Interpolation[Table[{K[i],L[i],M[i],grid[[i+1,3]]},
{i,0,Number0fNodes-1}]1];

17 U=Interpolation([Table[{K[i],L[i],M[i],ud[[i+1]1]1},
{i,0,Number0fNodes-1}]1];

44 A. KoMAsSHKO, D. LANEY, M. PRASAD AND R. VEMURI

18

19 TransformPoint[r_List] := { Apply([X,r], ApplylY,r],
ApplylZ,r] };

20

21 <<Graphics‘ContourPlot3D*

22 KLMplot = ContourPlot3D[Wil Al o alk @ dnsesatdy sa L@ pabnbe=illr s

{m,0,imx-1},
23 MaxRecursion->2,
24 Lighting->False,
25 Contours->DataContours,
26 ContourStyle->DataColors,
217 DisplayFunction -> Identity,
28 Axes->True];
29

30 XYZplot = KLMplot/.{p:_Polygon:>Map[TransformPoint,p,{2}1};
31 :
32 Save["output_data.m",KLMplot,XYZplot];

Numbers on the left are line numbers and are not part of the program.

Let us go through the text and explain its meaning. On the first two lines
lists of contour values and their respective intensities of gray are created.
The higher the value of the function the darker the surface. Next, two
ReadList commands are used for reading data from files. Values of the
function u are stored in the file “u.dat” as one column. Each number
represents function value at some global node. First number describes
node 0, next is node 1 and so on. The same is true for the file “mesh.dat”,
where the coordinates of the nodes are stored, except that there are three
columns : z,vy, z. After the data is read, the variable ud is a list of func-
tion u values and grid is a list of node coordinates (z,y, 2). In order to
minimize input to the program the number of nodes is calculated from the
length of data array (line 7). The variable imx represents the maximum
value for the local index k,[or m. On lines 10-12 we define functions for
calculating local indices from a global one. Directive Compile means our
functions will operate only on numerical input. This should speed up
their execution. Next, function Interpolate is used to construct func-
tions that will take indices &, [, m and give us point coordinates or the
value of the numerical solution. On line 19 we define the transformation
function TransformPoint that maps a point from k, [, m space to z,y, z.
After that, Mathematica package ContourPlot3D is loaded and one of its

LINEAR DIFFUSION EQUATION ON A NONUNIFORM GRID 45

functions is used to produce a plot of contour surfaces in k, [, m space
and save it as KLMplot. On line 30 this plot is mapped to z,y, z space
and after that we save both variables in the file “output_data.m”. Later
they can be loaded in again to Mathematica and redisplayed.

Since all the “magic” happens on line 30, it deserves a more thorough
description. Variable KLMplot is the graphics object containing a set of
graphics primitives plus options specifying how the plot should be dis-
played. Displaying this variable would give us the plot in Figure 6a.
Mathematica uses primitive Polygon for the presentation of surfaces.
Our purpose is to change the coordinates of these polygons by applying
the mapping described by the function Transform Point.

Before we explain how it happens let us mention the powerful and essen-
tial idea of an expression. There are many different objects in Mathemat-
ica, but they are all viewed as expressions. One may consider them as
some general objects that have parameters, like x,y in f [x,y] and tags -
f. These tags are called the heads of the ezpressions. Depending on what
head an ezpression has, it’s parameters may be viewed as arguments or
elements. In the first case, the whole ezpression is a function. In the
latter case, the ezpression can be a list and so on. Of course ezpressions
can be nested, so that function parameters are ezpressions themselves.
In this case we may think about levels in ezpressions.

An understanding of ezpressions is needed to make the command on
line 30. The notation XYZplot=KLMplot/.{ } means that Mathematica
has to apply to the object KLMplot some rule described inside of the
brackets {}. The result of this is assigned to the variable XYZplot. The
rule should be applied to any ezpression with the head Polygon which
is referred further with a name p (p:_Polygon). Once this object is
found, it should be transformed according to the function on the right
side of the command :> . This command means that the function should
be evaluated not before the search, but when the required ezpression is
found. This is necessary because transformation function has the input
parameter : p. The action it performs can be easily understood from its
name - Map. Since point coordinates k,l,m are on the second level of
nesting, there is a parameter {2} saying that TransformPoint has to be
applied on the second level of the Polygon object.

46

A. KomAsHKO, D. LANEY, M. PRASAD AND R. VEMURI

References

[

2]
3]

[4]

[9]

O. Axelsson, “ Iterative Solution Methods”, Cambridge University
Press, 1996.

E. Butkov, “ Mathematical Physics”, Addison-Wesley, 1968.

I. Fried, Condition of finite element matrices generated from nonuni-
form meshes, ATAA J. 10(1972), p. 219, 1972.

J.O. Hallquist and D.W. Stallman, VEC/DYNA3D users manual
(nonlinear dynamic analysis of structures in three dimensions), Liv-
ermore Software Technology Corperation Report 1018, 1990.

D.S. Kershaw, Incomplete Cholesky conjugate gradient method for
the iterative solution of linear equations, J. Computational Physics,
26(1978).

P.M. Knupp, On the invertibility of the isoparametric map, Comp.
Meth. in Appl. Mech. and Engg., 78(1990), 313-329.

J.A. Meijerink and H.A. van der Vorst, An iterative solution method
for linear systems of which the coefficients is a symmetric M-matrix,
Mathematics of Computation, 31(137), 1997.

Vidar Thomeé, “ Galerkin Finite Methods for Parabolic Problems”,
Springer-Verlag, New York, 1997.

S. Wolfram, “ Mathematica: A System For Doing Mathematics By
Computer”, Addison-Wesley, 1988.

A. Komashko, D. Laney, M. Prasad and R. Vemuri: Department
of Applied Science, University of California at Davis

P.O box 808 L-794 Livermore, CA 94550, USA.

Email: [komashko@wente, dlaney@, prasad1@, vemuril@].llnl.gov

