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Abstract. A hybrid computer method to solve nonlinear partial differential equations de-
scribing the flow of fluids in underground formations is described. Using finite difference
methods, the problems are first programmed by a flow chart for a pure digital computer solu~
tion. Because the ability of resistance networks to solve a set of simultaneous equations in-
stantaneously is recognized, major matrix inversion subroutines in the digital flow chart are
replaced by analog resistance network hardware. Incorporation of analog hardware drastically
reduces the computation time involved in inversion of large matrices. The resistance net-
work constructed on an analog computer patch board allows an unparalleled flexibility not
available in a digital computer. (Key words: Computer; ground water; hydrology ; non-

linearities; simulation)

INTRODUCTION

In hydrologic systems analysis an engineer
often encounters the problem of solving non-
linear partial differential equations with irreg-
ular boundary conditions. For example, prob-
lems involving the flow of water in both the
saturated and unsaturated zones of Earth’s
geological formations fall in this category.
Stream flow routing and reservoir routing prob-
lems also involve this type of differential equa-
tions.

A systematic look at the differential equa-
tions occurring in hydrology, as well as the
basic equations in such diverse fields as aerody-
namics, solid mechanics, and heat transfer,
indicates that all these areas are intimately re-
lated to each other by three equations known
as:

1. Continuity equation (The law of conserva-
tion of mass) ;

2. Newton’s second law (The law of con-
servation of momentum) ;

3. First law of thermodynamics (The law of
conservation of energy).

When these conservation laws are formulated
as general mathematical equations, the results
are highly nonlinear second-order partial dif-
ferential equations, which are often called the
Navier-Stokes equations. There is no known

general solution, nor is there any approach to
solve these equations analytically, except in
some specialized cases. The ability to get a
reasonable solution in the general case con-
stitutes a special challenge to the physicist and
the engineer.

The classical alternative is to resort to num-
erical techniques to obtain a solution in the
time domain with the help of either an analog
or a digital computer. Analog methods are com-
plicated, because such problems generally have
two or more independent variables, whereas
analog computers are restricted to only one in-
dependent variable: time. The application of
digital computer techniques leads to uneconom-
ically long computer runs if reasonable ac-
curacies are required. The purpose of this paper
is to demonstrate that a novel automatic com-
puter approach, termed hybrid computation
[Karplus, 1964], representing an attempt to
combine the speed of an analog computer with
the accuracy of a digital computer, appears to
be ideal to solve problems involving nonlinear
partial differential equations. Even though
this method is applicable to a majority of prob-
lems in other areas, including weather forecast-
ing and meteorology, magnetohydrodynamics,
nuclear reactor systems, ete., the interest in
the present paper is confined to the study of
problems in ground water hydrology.
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MATHEMATICAL BACKGROUND

A mathematical expression governing the
flow of water through porous mediums can be
determined from the equations of motion, con-
tinuity, and the laws of thermodynamics. If
the flow is laminar and if the inertia force can
be neglected, Darcy’s Law follows from Navier-
Stokes equations, and one can write

V = K(z, 9, 9)F ¢))

where V is the velocity of water, F is the applied
force, and K(z, y, 2) is a proportionality con-
stant, depending upon the medium as well as
on the fluid, given by

K(z, y,2)

= (Cd’pg/n) = [k(z,y,2pg/n] (2

and is often called the coefficient of permeability.
In (2), the so-called specific permeability %(z,
y, 2) = Cd2 is strictly a property of the medium
alone, wherein the constant C is determined by
such factors as porosity, packing, size, shape,
and distribution of the grain, whereas d stands
for the average grain diameter, p for the density,
7 for the viscosity of the fluid flowing through
the medium, and g for acceleration due to gravity.
The force F is equal to the negative gradient
of the hydraulic head &

F= —grad b &)

Because viscous fluid flow is a mechanical
process, friction is a dominating factor, and all
such flows are accompanied by an irreversible
transformation of mechanical to thermal en-
ergy. In potential theory, this mechanical en-
ergy per unit mass is termed the potential of
the fluid. Following Hubbert [1940], this po-
tential ¢ can be written (neglecting kinetic
energy term) as

¢=gz+f:%2 @

where p is the pressure at the point in ques-
tion whose elevation above a datum is z, and
p, is atmospheric pressure. For liquids (4)
further reduces to

Y=g+ (» — p)/p

Because the water table is at atmospheric pres-
sure, for all points on the water table (4) re-
duces to the yet simpler form

Y=g
Defining the hydraulic head & as
h=1y/g=2 (%)

it is clear that the potential ¢ is nothing but
the hydraulic head in disguise, and the use of
h as a potential function is justified. Substitut-
ing (3) and (5) in (1)

V= —K(z, y,2) grad b (6)

If 0 is the water content of the soil on a vol-
umetric basis (that is, § is the ratio of the
volume of the soil water to the total volume of
the soil), and if the density of water is as-
sumed to remain constant, the continuity equa-
tion can be written as

—Div (V) = a6/d¢ )
Combining (6) and (7)

Div (K(z, v, 2) grad h) = 96/9t (8)
The dependent variable on the right-hand side
of (8) is @, whereas on the left-hand side it is
h. To make the equation consistent with respect
to one dependent variable a term S = S(z, v,
z), to represent the volume of water that a
unit decline in head releases from storage, is
introduced. Then 6 can be replaced by the
product Sh and (8) becomes

Div (K(z, y, 2) grad h)

= Sz, y,2 /3t (9)
This is the basic equation to be solved in the
study of unsteady flow in a three-dimensional
field. A variety of problems in ground water
hydrology reduce to one of solving (9) with
various initial and boundary conditions.
Unsteady flow in saturated aquifers. The re-
cent increase in usage and dependence upon
ground water resources throughout the world
has brought special significance and attention
to the theory of ground water movement.
Ground water aquifers are utilized in conjunc-
tion with surface water systems for, among
other things, municipal, industrial, and agricul-
tural water supplies; disposal of treated in-
dustrial and municipal waste waters; storage
of artificially recharged water.
In artificial recharge operations, a quantity @
= Q(z, y, t) of water of varying quality and
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composition is introduced into the aquifer and
mixing occurs between injected and indigenous
waters. This kind of mixing between two dif-
ferent bodies of water may occur either by
design, as in the case of artificial recharge, or
by accident, as in sea-water intrusion. It is
highly desirable, in any event, to be able to
predict the variations in the elevation h =
h(z, y, t) of the water table during these mix-
ing processes. Introducing the quantity Q(z,
y, t), which represents such diverse factors as
rainfall, recharge, extraction, and leakage as a
forcing function, (9) becomes

V- (K(z, y, 2) V)

= S8(z, y,2) oh/dt & Q(z,y,8)  (10)
A positive sign on @ corresponds to a net up-
ward flow and a negative sign to a net down-
ward flow. Utilizing the relation in (7), this
linear three-dimensional equation can be con-
verted into the following nonlinear equation in
only two dimensions

d oh lé) dh
2[xeunf]+ 5 [xe.00 3]
= S(z, y, ) 3—? + Q(z, v, ?) (€8))

Use of this equation is justified in ground
water studies because we are interested only
in the hydraulic head at the water table, and
this is the fundamental partial differential
equation to be solved with appropriate initial
and boundary conditions.

Studies in unsaturated flow fields. Problems
of estimating, quantitatively, the changes in
ground water regimes and water balance of soils
in the zone of aeration are of vital importance
in afforestation of arid zones to combat drought,
dry wind, soil erosion, and for storage of soil
moisture. Studies of ground water regime must
be carried out in liaison with studies of soil
moisture regime and water balancing studies
on the surface and in the aeration zone. Some
of the objectives of these studies are: 1. To ob-
tain a satisfactory model that could reasonably
duplicate field measurements in soil drainage
experiments; 2. To use this tailored model in
extrapolation and also to obtain evidence con-
cerning drainage problems for which field meas-
- urement is not possible; 8. To estimate drainage
in soils having diffusivities that differ from
those of the test soil.
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In unsaturated flow fields, it is not meaning-
ful to talk about the hydraulic head k as the
dependent variable. It is more desirable to
obtain solutions in terms of spatial distribution
of pressure or the spatial distribution of wa-
ter content. This problem is particularly dif-
ficult to solve, because the infiltration of water
in soils is a simultaneous flow of a mixture of
air and water through soil. This phenomenon
induces a vertical variation in the degree of
saturation. The hydraulic engineer, therefore,
is more interested in the vertical profiles
of pressure distribution. Considering only the
z-component of (8) and substituting for the
hydraulic head the sum of the pressure and
elevation heads (that is, h = p <+ 2), thus neg-
lecting the velocity head, the result is

K 8’p/d2® + 3K /dz (9p/d2)
+ 0K/dz = 96/at  (12)

This equation, as it stands, is difficult to solve
analytically, because the coefficient K is a func-
tion of both @ and p. Because K is more sensi-
tive to the variations in p, it is convenient to
modify (12) by considering both K and @ as a
single function of p. This is achieved by writing
(12) as

’p , 9K (a;;)z dK dp 96 9p

02 dp \0z 7 dp 9z ap.()t (13)
where the z coordinate is measured positively
upwards. Dividing throughout by 96/dp results
in

D 9°p/d2" + B-0p/d2(0p/dz + 1) = dp/dt
(19
where D and B are defined as

D= Kap/d8 B =0K/a0  (15)

Equation 14 is the fundamental partial differ-
ential equation governing one dimensional un-
saturated flow.

THE HYBRID COMPUTER METHOD

The two cases leading to the nonlinear equa-
tions 11 and 14 of the preceding section are but
two representative occasions, and equations
like (11) or (14) or modified forms thereof
occur very often in nonlinear hydrology. The
nature of the nonlinearities and the irregu-

larity of the boundaries often render the prob-
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Fig. 2. A typical node point [ and its neighbors used to derive the finite diﬁ'érence approxi-
mation in (17).

In general the z-coordinate will be bounded
at = 0 and 2 = X (where X is the total
linear dimension of the one-dimensional field
under study), whereas variable ¢ starts at zero
and proceeds to infinity. Every point in this
finite difference grid corresponds to a specific
point in space at a specific instant of time. It is
often convenient to choose a regular grid of
square or rectangular shape, but this is by no
means the only way. Sometimes irregular, asym-
metric [MacNeal, 1953] grids may prove to be
more useful.

A typical point within this finite difference
grid is now selected arbitrarily and denoted by
the subscript 0 (Figure 1). The coordinates
of this point are assumed to be (z, &). The
field potential occurring at this point at a time
At later than t, is denoted by subscripts 1, 2, 3,
7, and 8, whereas the field potentials at the
point in question and at the neighboring points
that occurred at a time At earlier than £, are
denoted by the subscripts 4, 5, 6, 9, and 10.

One-Dimensional Diffusion Equation

To solve a one-dimensional diffusion equation,
for example

3’p/8z" = (1/0)-0p/dt (16)
by this method, a set of boundary conditions
and one initial condition at each point of the
grid are required. This equation may represent
the flow of water in a narrow tube filled with
sand, in which case the potential function stands
for the hydraulic head. This equation may also
represent the flow of heat along a rod whose
ends are kept at prescribed temperatures, in
which case the temperature ¢ is the scalar po-
tential. The boundary conditions in the former
case may be interpreted as the head maintained
at both ends of the tube. The initial conditions
may represent the initial temperature of the
rod or the initial head in the tube at various
points at the beginning of the experiment. Typi-
cally, then, the field potentials (say, the tem-

perature) at the initial time ¢, are given, and
the field potentials at later times ¢, + n(At),
forn=1,2,3,...,aresought.

Referring to Figure 2, the finite difference
approximation to a second space derivative at
a typical node point [ can be written as

0°0/02" s s

=~ (Saz—l = 201 ¢z+1)/(A5”)2 (17)

In approximating time derivatives by finite
difference expressions two possibilities exist,
namely, ‘backward difference’ and ‘forward dif-
ference’ approximations [Richtmyer, 1957]. For
instance, using (17) and backward time differ-
ences, (16) becomes

(§0z—1, e 2¢zi o ¢1+1i)/(Ax>2

~ (o) — /™) /a(AD) (18)

where At is the size of the step taken along the
timelike axis (see Figure 1) to make the solu-
tion march forward in time, and the superscript
j indicates the time level at which the approxi-
mation is written. In backward differencing,
as performed above, dp/dt is approximated by
the first difference between the value of ¢
measured at the present time level j and the
value of ¢ at the previous time level j — 1. Simi-
larly using a forward difference scheme, the
finite difference approximation to (16) becomes

(‘Pt—lf s 2€0zi = <Pl+1i)/(Ax)2

=~ (‘Pzi+1 = ﬁozi)/U(At) (19)
Knowing the value of the potential ¢ at the
time level j, the value of the unknown potential
at the (j + 1)* level can be computed by a
simple algebraic procedure, because in (19)
¢’ ** is the only unknown wvariable. Since
¢’ ** is obtained explicitly, methods employing
forward time differences are called explicit
methods. Computationally this is a simple
process, but by repeated application of (19)
round-off errors (that is, errors committed by
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the digital computer owing to its inability to
carry the computations beyond a certain num-
ber of significant digits) committed in the
solution process will grow and make the solu-
tion meaningless unless the inequality

(A2)°/a(At) = 2 (20)

is satisfied [Richtmyer, 1957]. The quantity on
the left-hand side of (20), however, depends on
the nature of the difference approximation used.
Some representative difference approximations
to (16) along with the required stability condi-
tions are available in the literature [Karplus
and Vemuri, 1967]. To traverse a given time
domain T, condition 20 makes it necessary to
make many more steps in time, that is, to make
At much smaller than in the application of the
backward difference equation 18. Moreover,
when the field parameter ¢ is a function of the
field potential ¢, the appropriate value of Af
generally cannot be chosen in advance. For
these reasons, the implicit approach or the
method of backward time differences is gen-
erally preferred.

Equations employing backward time differ-
ences are solved implicitly, a process that is
computationally stable. In implicit methods
employing (18), only the potential at time level
j — 1 is known, and all other potentials at time
level j are unknown. Thus the unknown po-
tentials at a given time step are contained in a
system of simultaneous algebraic equations. If
the space domain has been replaced by N
finite difference grid points it becomes neces-
sary to invert an N X N matrix at each time
step to solve the above system of equations.
The presence of nonlinear parameters makes it
further necessary to iterate at each time step,
that is, to invert the said N X N matrix several
times until a specified convergence condition is
satisfied. It is this matrix inversion that oc-
cupies about 90% of the digital computer run-
ning time and occupies a considerable amount of
storage space, making it necessary to use ex-
pensive high speed computers with large
memories.

The above discussion points out that digital
methods suffer either from problems of com-
putational instability or from prolonged running
times, and analog methods suffer from the lack
of accuracy. The discrete space-discrete time
(DSDT) hybrid computer represents a hybrid-

ization of the analog and digital methods. This
method represents an attempt to combine in
one system the accuracy, memory, decision-
making capability, and programmability of a
digital computer with the speed and flexibility
of an analog computer.

In the so-called digital computer oriented hy-
brid methods [Karplus, 1965], the problem to
be solved is first programmed by a flow chart
for a conventional digital computer solution,
The flow chart is then examined for any loops
involving matrix inversion subroutines. Taking
advantage of the well known ability of electri-
cal resistance networks to solve simultaneous
equations [Liebmann, 1950], these matrix in-
version loops are replaced by the corresponding
resistance networks. This concept of using ana-
log hardware as subroutines in a digital com-
puter solution would result in an appreciable
reduction in the over-all computation time.

To illustrate the hybrid method, equation 18
is considered once again. Allowing the subscript
1 to run through the values 1,2, - - | N — 1,
the following set of equations, representing the
finite difference approximations to (16) at vari-
ous grid points at a given time level (that is,
for a specific value of j), is obtained:

‘Po, "’2€01i+¢2i+0+ i
= k(‘hi oS ¢1i—l)
0+¢’1i T 2§02i+¢2i pasicl

T k(ﬂﬁN—l' R ‘PN—I’-I)

Here & stands for (Az)?/o(At) and ¢,’ and ¢x’
are the given boundary values ¢,/ "% I = 1,
2,..., (N — 1) are the values of ¢ obtained
from the calculations at the previous time level
and are known. Rearranging these equations
with all the unknowns on the left-hand side and
known values on the right-hand side, the fol-
lowing equations are obtained:

—(2+k)¢1i+¢2i+0+ sicies <1 )
= '_ﬁooi s k‘l’xi_l
o — @+ 8o o'+ 0
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S i
o k§02 (22)

................................

................................

075 e Ot §0N—2i w2t k)ﬂal\’—li

¥ i =1
= —on — koy_1
In matrix notation this can be written as
—(2+k) T 0 il @i}
i —(24-8) 1 0 X
0 0 -+ 1 —2+8llev
e ) 5 —keoy o
0 "'kﬂaz
o e ; (23)
0 .
—¢n. —koy-1
or
Ao =8+ c (29

where o, 3, and c are vectors, and A is a matrix,
The matrix A in (24) is called the analog matrix,
and the vectors 3 and c are, respectively, the
boundary vector and the analog input vector.

The procedure here takes a major turn from
the conventional digital methods. Rewriting a
typical equation from (22)

ﬁﬂz-xi o (2 o k)ﬂoti i <Pz+1i = —kﬂozi—l (25)

and setting I = 2, 2+ k) = b and —key, =
¢(¢;) for convenience results in

‘Pli T bﬂozi = ¢3i T Ci—l(ﬁoz) (26)

Equation 26 has a close resemblance to Kirchoff’s
current law equation of electrical circuit theory.
Recognizing this formal similarity, one can rep-
resent (26) by a passive resistance network as
shown in Figure 3. Such a resistance network
representing a single equation of the system is
termed a node module. It is evident that as
many modules are required as there are equations
in the system of finite difference equations. To
solve a set of equations of the type (25) it is
necessary to interconnect several such modules
as shown in Figure 4. In Figure 4 each box rep-
resents one node module, and the inputs ci,
c, *** , cy-1 correspond to —kg, for I = 1,
2, »++ , N — 1, computed at the previous time
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level, so that at any stage of the computation
the vector ¢, whose components are ¢, ¢, *-* ,
Cy-1, is known. Because the values ¢;, ¢, **- ,
cy-1 are analog voltages, the vector ¢ is called
the analog input vector. The boundary condi-
tions are applied as voltages to the modules
at the boundaries. Consequently, the vector
whose components are the boundary values,
that is, the vector B, is called the boundary
vector. When the boundary and input voltages
are applied to the network of Figure 4, the
output voltages represented by o1, ¢z, =+ , ©n-1
yield the solution of the set of equations at the
indicated time level.

The iterative network method. Referring to
(26), it is seen that the coefficients b and ¢
are functions of %, which is in turn a function
of the field parameter o. In highly nonlinear
cases o will be, in general, a function of the co-
ordinates, the potential ¢, and perhaps of the
derivatives of ¢. It is conceivable, therefore, that
the values of b and ¢, in general, change from
time level to time level as the computation
progresses. This means that certain resistor
values in the passive analog computer (Figure
3) must change, in general, from time level to
time level. To perform these changes automatic-
ally would require sophisticated hardware. To
obviate this difficulty, an iterative method
[Russell, 1965] is adopted to solve the set of
simultaneous equations.

To facilitate the implementation of the iter-
ative method, equation 26 is rearranged as
follows: -

o — 30" + o =cle. ) + (b= e’

= 9(‘.02) (27)
where
g(ﬂoz) 5 C(‘Pzi_l) =t (b 7 3)S02i
¢ ' ¢ : ¢,
e o

Fig. 3. Node module for a passive analog circuit.
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Fig. 4. Schematic diagram showing interconnection of node modules.

Equation 27 is obtained from (26) by sub-
tracting 3¢’ from both sides of the equation.
Here g(¢.) is a function of ¢, evaluated at the
previous time level and also at the present time
level. Because ¢’ is the function to be evalu-
ated by solving (27), it is not possible to deter-
mine g(¢.) explicitly. Equation 27 has to be
solved, therefore, implicitly by starting with a
nominal value of g(¢.) and iterating until con-
vergence is achieved. The node module for
solving this equation is shown in Figure 5. As
in the previous case a set of simultaneous equa-
tions can be solved, by the iterative method, by
interconnecting several modules, as in Figure
4. The node module shown in Figure 5 differs
from that in Figure 3 in one important respect;
in Figure 5 all resistors are equal to unity, and
they do not change their values in the course of
a computer run. It is the nonlinear function g
that changes from iteration to iteration.

To automate the iterative process completely
the analog resistance network can be connected
in a closed loop with a digital computer. The
digital computer is used to evaluate the non-
linear function g(¢.). The boundary conditions
are applied to all the boundary nodes and the
initial conditions to the rest of the nodes, and
the iterative computations are carried out until
the potential ¢, in two successive iterative

¢ ¢

=

Fig. 5. Node module of a passive iterative analog
circuit,

cycles fails to show any appreciable change.
The digital computer serves to test this con-
vergence [Karplus and Kanus, 1965] and also
to store the solution, namely, the potentials at
time (£, + At) at each node in order that these
data may be employed as initial conditions at
the subsequent time step. To translate the ana-
log voltages appearing simultaneously at the
output terminals of the node modules into a
serial digital form, a multiplexer (scanner) is
employed to sample in turn the potential at
each node. These d.c. voltages are converted
into a digital code by an analog-digital con-
verter and applied to the memory of the digital
computer, where they are stored. Subsequently
these data, or modified forms thereof, are read
out of the digital computer, reconverted to
analog form, and applied to the input terminals
of the node modules by means of a second
scanner called a distributor. This arrangement
is shown in Figure 6.

The entire iterative resistance network de-
scribed so far acts only as a subroutine in a
digital computer loop. This analog subroutine
performs the most time-consuming digital oper-
ation, namely, solving a set of simultaneous
equations. Thus the hybrid system takes ad-
vantage of the fact that a rectangular network
of electrical resistors relaxes automatically and
almost instantaneously to the solution of the
circuit equations as expressed by Kirchoff’s
node law. The total computation time for each
iterative subeyele is therefore determined by
the length of the time required to translate the
serial digital information into parallel analog
form and vice versa.

Ground water flow. The hybrid computer
method of solving (11) occurring in the study
of ground water flow is considered. The method
of solving (14), or for that matter any other
partial differential equation, is similar. The
first step in solving (11) is to select a set of
nodes within the basin under study. In two-
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dimensional problems with irregular boundaries
of this nature it is seldom practical to choose
a regularly spaced array of node points, since
this introduces errors at the boundaries, which
are almost always irregular. Also, it either
causes an excessive number of nodes to be em-
ployed or introduces excessive truncation error
at some portion of the field. Furthermore, the
historical data on water levels and the replen-
ishment-extraction data are seldom available
at regularly spaced intervals. Therefore, the
finite difference network is sometimes chosen to
be an asymmetric one. The result of discretizing
the space domain of (11) using an asymmetric
grid is [MacNeal, 1953]

> (= hy) Yyp

l

= ApSy 0hp/dt + ApQs  (29)

where
Yig = (JIBKIB)/LIB
and
‘Ap = area associated with the Bth node;

Y,z = conductance of the path between nodes
l and B;

K5 = value of K at the midpoint between
the nodes ! and B;

L5 = distance between nodes ! and B;

Jip = length of the perpendicular bisector
associated with the nodes I and B.

A typical node point, its neighbors, and the
associated polygonal zone are shown in Figure
7. The left-hand side of (28) is the summation
of subsurface flows between a given area and
its surrounding areas. The rate of change of
storage is given by the first term on the right-
hand side, and the second term represents the
surface flow rate from the ground surface into
or out of the zone of saturation of the given
unit area. If the polygon borders the basin
boundaries, any subsurface flow crossing the
boundary is usually included into AzQs.

Discretizing the time derivative in (28) by
backward (implicit) differences, one gets

Zl: (hzi T hBi) YZB

= [458:/(A0](hs' — hs'™") + A5Qs (29)

Here the superseript j denotes, as usual, the
time index, and the subseript ! denotes the set
of nodes adjacent to the node under question,

Sp = value of S associated with the polyg-  that is, node B.
onal zone centered at B; s B e T e
Qz = volumetric flow rate per unit area at straighforward if the values of the parameters
s B; Y.z and S are known beforehand. This is not
¢]+l
; ANALOG - DIGITAL
MULTIPLEXE s CONVERTER
A 4 [}
¢I 4’2 ¢N—l
AL A AMAF === —— AAN—
3
, > 3 Y
DIGITAL
COMPUTER
DR e -
| 9(#) [TDIGITAL - ANALOG
DISTRIBUTOR iy CONVERTER
NOTE

SH — SAMPLE & HOLD

Fig. 6. Schematic of a DSDT computer.
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the case in general; usually the elevation of
the water table above a certain reference and
the accretion to the water table are the known
quantities. But a good knowledge of the basin
parameters is necessary for predicting the
basin behavior for all future times and for
successful ground water management. The com-
putational procedure is therefore divided into
two phases; in phase 1 the values of the basin
parameters, namely K and S, are identified, and
in phase 2 the values of K and S determined in
phase 1 are used to predict the elevation of
future ground water levels.

Phase 1 (identification phase). This phase
may be regarded as the crux of the whole prob-
lem, and it is in this phase that the versatility
of the hybrid computer is uniquely demon-
strated. An analog resistance network to solve
(29) is constructed as shown in Figure 8§,
wherein only the configuration of the resistors
is shown. The values of these resistors are
functions of the unknown parameters Y,;» and
Sz, which in turn depend, perhaps nonlinearly,
on the value & to be determined by solving (29).
The voltages at each point of this network cor-
respond to the elevation of water table at the
corresponding point in the basin. During phase
1 the parameters K and S are repeatedly ad-
justed (by adjusting the resistors representing
Y.» and S;) until the computed water levels
(that is, the voltages at each node of the re-
sistance network) match the known historical
water level records. The simplest way to do this
adjustment is by trial and error, perhaps with
the help of a cathode ray tube display, or by
using a combination of steepest descent and
random optimization techniques.

At each time level j all the resistors are
adjusted, independent of each other, until the
measured response of the network at each node
matches the observed response of the basin.
The values of the set of resistors that give the
best match at each time level are noted and
the whole procedure repeated for the next
time level, namely j + 1. By this method any
local nonlinearity in T and S is quickly de-
termined. The values of 7 and S at each node
as functions of h are stored in the digital com-
puter for future use in phase 2.

Phase 2 (computational phase). After the
identification of the nonlinear parameters the
mathematical model of the basin is subjected to

various operating conditions corresponding to
future pumping, artificial recharge, expected
rainfall, or any other pertinent situation to
predict the future water level trends. During
this phase it may be more convenient to use the
iterative network setup than the special net-
work of Figure 8 used in the identification
phase.

To demonstrate the capabilities and advan-
tages of the hybrid computer method, a 19-
node model of the San Fernando Valley ground
water basin is at present under investigation at
the Hybrid Computer Laboratory of UCLA.

§ oA
: hg= ?B' Qg
Fig. 8. Analog resistance network for an iterative
process using an asymmetric grid.



Hybrid Computer

Advantages and disadvantages of the hybrid
method. One of the major advantages of the
hybrid computer method is its flexibility; an-
other is the speed gained by the use of analog
hardware for matrix inversion. :

If an electronic analog computer is used dur-
ing phase 1, the replenishment-extraction flow
data must be simulated using diode function
generators with one function generator at each
node. This either makes phase 1 an expensive
and time-consuming operation, or it restricts
the number of nodes to be used in the problem.
The price paid by the engineer in either case is
the accuracy of the solution. In the hybrid com-
puter method, the replenishment-extraction flow
data (as obtained from rainfall-pumping rec-
ords) are approximated by piecewise-linear
curves, and their turning points are stored in the
digital memory. With a reasonable number of
line segments in the function generation can be
made quite accurate without the use of expen-
sive analog function generation hardware. Hence
the hybrid computer is more economical and ac-
curate than the analog computer.

In digital computer methods [Tyson and
Weber, 1964], the matrix inversion operation
not only takes a major portion of the computer
running time but also heavily taxes the digital
computer storage space when a large number
of nodes (more than 100, for example), are
used. The resistance network on one hand saves
a considerable part of the computer time and
on the other hand makes the storage require-
ment more or less independent of the size of
the matrix to be inverted. Thus a hybrid com-
puter facility using a small and relatively in-
expensive digital computer becomes competi-
tive with a large digital computer facility. This
is one case where increasing the size of the
problem decreases the cost per unit accuracy,
thus making it very attractive from an engi-
neering point of view.

Some of the other advantages of a hybrid
computer are procedural. The present tendency
of operating large digital computer facilities on
a closed shop basis is making it very difficult
for the engineer to assist the computer with his
engineering judgment by interfering with the
solution process. The inexpensive hybrid com-
puter allows the engineer to play around with
various design alternatives and to see immedi-
ately the way he is influencing the solution.
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This is an advantage that cannot be expressed
in dollars and cents.

On the debit side are the errors introduced
owing to quantization and analog-digital conver-
sion [Vidal and Karplus, 1965; Karplus, 1966],
and methods are being developed either to mini-
mize or to compensate for these errors.
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