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Abstract

The design of distributed databases requires a configuration of the data such that
queries are satisfied by accessing a minimum number of locations and the
system load is equitably distributed among all locations. This problem is called
the File Design Problem. This problem is NP Hard and requires the
optimization over conflicting objectives. A genetic algorithm based on multi-
niche crowding combines heuristics with parallel processing to provide a
suitable approach to solve this problem. Performance of the algorithm is tested
using multiple data sets on different system platforms. The new method holds
promise in providing suitable solutions for this problem.

Keywords: Database design, multimodal functions, genetic algorithms,
heuristics, parallel processing, optimization

1. Introduction

Consider a distributed database system with multiple nodes, as shown in Figure
1, that contains all the data for a company-wide database comprising millions of
records. In order to use the resources equitably and efficiently, the data in the
database must be organized so that queries for database records are balanced
among all nodes. That is, all nodes must handle about the same number of
queries on average. Additionally, the information in the database must be
organized so that a query can be satisfied by accessing only a small number of
nodes. Minimizing the number of nodes accessed on a single query reduces
greatly the communication overhead on the network. This requirement asserts
that records with the same attributes should be placed together, if possible, at
one location. These two criteria must be balanced to obtain an optimal database
configuration. This problem is known as the File Design Problem (FDP).

The File Design Problem is known to be NP-hard. The goal is to find an
assignment of database records to files that minimizes the average number of
files examined over all single attribute queries. Techniques using Artificial
Neural Networks (Liang et. al., 1991) have been applied to this problem in the
past. In this work we describe a solution to the File Design Problem using a
Genetic Algorithm (GA, Holland, 1975). In particular we describe the
application of the Multi-Niche Crowding Genetic Algorithm (MNC GA;
Cedeño, 1995) to this problem. Our implementation of the MNC GA is written



in SISAL (Streams and Iterations in a Single Assignment Language; McGraw,
1985), a functional language that takes advantage of parallel architectures.
Using the portability and architecture independence inherent in SISAL a
parallel model of the MNC GA is defined that provides increased performance
without losing the convergence properties of the algorithm.

Additionally we introduce the use of heuristics in the crossover and mutation
operators used during the mating step. These operators prove to be essential in
finding optimal solutions to the FDP. The use of heuristics and the ability of the
MNC GA to search for multiple conflicting database configurations provides us
a promising hybrid approach for solving complex combinatorial problems.
Results with various test cases are shown. Performance of the algorithm is
shown for different computer platforms.

This paper is organized as follows. Section 2 presents an overview of the MNC
GA model used to solve this problem. Section 3 describes the File Design
Problem in detail and presents examples. Section 4 describes the heuristic based
genetic operators used for this problem. Section 5 defines the experimental setup
used to test the performance of the MNC GA. Section 6 describes the results and
the performance of the approach. Finally, Section 7 contains some comments
and discussion about the applicability of the method.

2. The Multi-Niche Crowding GA

DNA, the building block of every living creature provides organisms a way to
evolve and adapt to changing environments. Only organisms well adapted to
their environment can survive from one generation to the next, transferring on
the traits, that made them successful, to their offspring. Competition for
resources and the ever changing environment drives some species to extinction
and at the same time others evolve to maintain the delicate balance in nature.

The ability of organisms to evolve and adapt to their environment by means of
natural selection has provided mother nature with a diverse set of species. This
foundation, which is part of modern evolutionary thinking, was laid by Charles

Figure 1: Example of a distributed database system
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Darwin after the publication of his work “On the Origin of Species by Means of
Natural Selection”. Only organisms well adapted to their environment can
survive from one generation to the next, transferring on the traits that made
them successful to their offspring. Competition for resources between organisms
and the ever changing environment drives some species to extinction and at the
same time others evolve to maintain the delicate balance in nature. It is through
this interaction between nature and organisms, that species containing favorable
traits for a given environment emerge. In this work we apply the same
principles present in nature to create a genetic algorithm that evolves a
population of mathematical solutions containing different categories of solutions
adapted to niches in a multimodal environment.

In this Section we describe the MNC GA, a computational metaphor to the
survival of species in ecological niches in the face of competition. The MNC GA
maintains stable subpopulations of solutions in multiple niches in multimodal
landscapes. The algorithm introduces the concept of crowding selection to
promote mating among members with similar traits while allowing many
members of the population to participate in mating. The algorithm uses worst
among most similar replacement (WAMS) policy to promote competition
among members with similar traits while allowing competition among members
of different niches as well.

The benefits of an approach that can locate multiple optima and maintain them
throughout the search are many. Consider, for example, a dynamic environment
where the optima are constantly changing, a technique that can locate and
maintain multiple optima can inform the user when the current configuration is
no longer the best based on the parameters in the environment. More details can
be found in Cedeño (1995), Cobb & Grefenstette (1993), Dasgupta & McGregor
(1992), Goldberg & Smith (1987), and Ng & Wong (1995). In other cases
abnormal situations may cause changes in the current configuration; having
viable alternatives at hand can allow for a more smoother transition to the new
configuration. An approach that can use a set of solutions to locate multiple
optima is more practical for these types of environments. Additionally, there
exist many problems where the location of the best K optima are needed in order
to compare different answers and point out further experimentation. The
benefits of the MNC GA have been already shown in applications to problems in
DNA mapping (Cedeño, Vemuri, and Slezak, 1995) and aquifer management
(Cedeño and Vemuri, 1996)

Figure 2 shows an overview of the MNC GA. Initially, all the individuals in the
population (size n) are created at random and evaluated in parallel. Once the
initial population is created, the operations of selection, mating and mutation,
and replacement are applied for a given number of generations. In each
generation all individuals in the population are selected for mating and their
mates are chosen in parallel using crowding selection. Then in parallel, all n
pairs participate in mating producing 2n offspring. The 2n offspring undergo
mutation and those different than their parent are allowed to participate in
replacement. The offspring left are then inserted, one at a time, into the



population using WAMS replacement. These steps are repeated for the specified
number of generations.

Generate initial population of size n at random.

Evaluate initial population.
For gen = 1 to MAX_GENERATIONS
  Use crowding selection to find mate for all individuals
  Mate and mutate all pairs
  Insert offspring in population using WAMS replacement

Figure 2: Overview of parallel application of the Multi-Niche Crowding GA.

In the MNC GA both the selection and replacement steps are modified with
some type of crowding (De Jong, 1975). The idea is to eliminate the selection
pressure caused by fitness proportionate reproduction (FPR) and allow the
population to maintain diversity throughout the search. This objective is
achieved in part by encouraging mating and replacement within members of the
same niche while allowing some competition for the population slots among the
niches. The result is an algorithm that (a) maintains stable subpopulations
within different niches, (b) maintains diversity throughout the search, and (c)
converges to different local optima. No prior knowledge of the search space is
needed and no restrictions are imposed during selection and replacement thus
allowing exploration of other areas of the search space while converging to the
best solutions in the different niches.

2.1 Crowding Selection

In MNC, the FPR selection is replaced by what we call crowding selection. In
the parallel application of crowding selection used in this work each individual
in the population gets a chance for mating in every generation. Application of
this selection rule is done in two steps. First, each individual Ii from the
population is selected as a parent for mating. Second, its mate Ij is selected, not
from the entire population, but from a group of individuals of size Cs (crowding
selection group size), picked uniformly at random (with replacement) from the
population. The mate Ij thus chosen must be the one who is the most “similar”
to Ii. The similarity metric used here is not a genotypic metric such as the
Hamming distance, but a suitably defined phenotypic distance metric.

Crowding selection promotes mating among members having similar traits and
allows all the members of the population to participate in mating. This allows
members of the same niche to participate in mating more often and preserve
those traits that define their species. At the same time mating between different
species may occur giving rise to new species. Unlike mating restriction (Deb
and Goldberg, 1989) that only allows individuals from the same niche to mate,
crowding selection allows some amount of exploration to occur while at the
same time looking for the best individual in each niche.



2.2 Worst Among Most Similar Replacement

During the replacement step, MNC uses a replacement policy called worst
among most similar (WAMS). The goal of this step is to pick an individual from
the population for replacement by an offspring. Implementation of this policy
follows these steps. First, Cf “crowding factor groups” are created by picking
uniformly at random (with replacement) s (crowding group size) individuals per
group from the population. Second, one individual from each group that is most
similar to the offspring is identified. This gives Cf individuals that are
candidates for replacement by virtue of their similarity to the offspring. The
offspring will replace one of them. From this group of most similar candidates,
we pick the one with the lowest fitness to die and be replaced by the offspring.
Figure 3 shows a pictorial view of this replacement policy.

...
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(Cf ) groups

Group 1 with
s individuals

Individual 1
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individual
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to offspring
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Individual Cf

...
...
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Figure 3: Worst among most similar (WAMS) replacement policy

After the offspring becomes part of the population it competes for survival with
other individuals when the next offspring is inserted in the population. In
WAMS replacement offspring are likely to replace low fitness individuals from
the same niche. It can also happen that it replaces a high fitness individual from
the same niche or an individual from another niche. This allows a more diverse
population to exist throughout the search. At the same time it promotes
competition between members of the same niche and between members
belonging to different niches. A similar technique was used by Goldberg (1989)
in classifier systems but he replaced the most similar individual out of a group
of low fitness candidates.

Worst among most similar replacement promotes competition among members
with similar traits belonging to the same niche while allowing competition
among members of different niches as well. This replacement technique
accomplishes two things. First, by promoting competition among members of
the same species in a niche it applies the survival of the fittest rule that is so
prevalent in nature. Only those that are fit to their environment can survive for
many generations, thus allowing the species to evolve to their best potential
within their niche. Second, by allowing competition between different species as



well, those species that are a better fit for their environment tend to occupy more
slots in the overall population.

Both the selection and replacement steps in the MNC are primarily based on a
similarity metric. Fitness is also considered during replacement to promote
competition among members of the same niche. Competition among members
of different niches occurs as well.

3. The File Design Problem

The File Design Problem is an NP-hard problem; that is, the number of possible
solutions increases exponentially as the problem size increases linearly. It arises
in the context of database design for a distributed system.

The problem is defined as follows. Given a set of N records, and each is
characterized by a single attribute A that takes h different values { a1, a2, ..., ah}.
There are ni records corresponding to attribute ai, i.e., n1 + n2 + ... + nh = N. The
assumption is made that queries for records of any given attribute are equally
likely. The query distribution is used only during the calculation of the fitness
function, as we will show in Section 4.4. Other, more practical, distributions can
be applied easily by modifying the fitness function accordingly, without
affecting the behavior of the MNC GA. We also have K files of size b such that
K * b = N. Different file sizes can also be accomodated to represent realistic
configurations. The approach presented here is not limited by the simplifications
made to the problem. The constants K, b, ni, N, and h are all positive integers.

The problem is to find an assignment of the N records to the K files such that
the average number of files (ANF) accessed over all possible single-attribute
queries is minimized. In other words, an assignment of the records to the files
must be found such that (on average) queries for the records with the same
attribute can be satisfied by reading from as few files as possible.

Table 1: Possible configurations for 12 records in 2 files of size 6. The attributes values
are {B, C, F, V} and have {2, 7, 1, 2} records respectively.

File 1 File 2 fex(B) fex(C) fex(F) fex(V) ANF

C C C C C C C B B V V F 1 2 1 1 1.25

C C C B V V C C C C B F 2 2 1 1 1.50

C C C C B V C C C B V F 2 2 1 2 1.75

C C C B B F C C C C V V 1 2 1 1 1.25

For example, consider a database with N = 12 employee records characterized
by their last name (here the last name refers to attribute A). Moreover, assume
that all records have a last name in the set A = {Blattner, Cedeño, Feo, Vemuri}
with n = {2, 7, 1, 2} records respectively. Here we have a total of h = 4 possible
last names (attribute values). These records will be placed in a database
consisting of K = 2 files of size b = 6. The problem now is to save the employee



records in the database such that queries for records with a given last name
(attribute value) access the minimum number of files (on average). Using the
first letter of each last name the first two columns in Table 1 shows some
sample configurations for this example.

The ANF for a configuration is given by the formula

fex a hi
i

h
( )

=
∑

1
,

where the function called fex(ai) returns the number of files that must be
accessed to retrieve all the records with attribute ai. From Table 1, the second
configuration has a value of 2 for fex(B) since both files contain a record with
attribute value B. The first and last configurations in the table are examples of
optimal solutions for this problem. Even though the ANF values are the same, in
some contexts the last solution is better because it has a more balanced
configuration. If requests for the attributes are distributed uniformly, file 1 and
file 2 will be accessed 25% and 100% of the time respectively in the first
solution, where as the last solution will be accessed 50% and 75% of the time
respectively. This idea is incorporated when evaluating solutions generated by
the MNC GA.

GAs have been successfully applied to a variety of optimization problems, such
as the Traveling Salesman Problem (Whitley et. al., 1989), Scheduling
(Syswerda and Palmucci, 1991; Michalewicz, 1992), and the Bin Packing
Problem (Falkenauer and Delchambre, 1992). In some cases better results were
obtained when the mating operator was designed to capture the essential
information in the problem. With this in mind, the mating operator for the File
Design Problem was designed using the “first fit” and “best fit” heuristics (to be
described later). Such heuristics, group records with the same attribute together.
The multimodal search space in the problem is explored in many directions by
using selection and replacement operators in the MNC GA that encourages
mating and replacement between solutions from the same extrema.

In this work we apply a parallel version of the generational MNC GA. The
intent is two fold. First, we want to show that the generational version of the
MNC GA exhibits the same properties as its steady state counterpart. Second,
we want to show the advantages of the parallel version of the generational MNC
GA, namely, the straight forward implementation on parallel architectures.
SISAL was selected as the language for the parallel implementation because it is
portable and easy to learn. The application can be ported to multiple platforms,
including SGIs, Crays, and SUNs. Performance can then be evaluated using
different number of processors. Additionally, SISAL is a deterministic
functional language which guarantees the same solutions on different platforms.

There are basically three parallel GA models (Gordon et. al., 1992) exhibiting
different degrees of parallelism; fine grain, distributed, and direct. In a fine
grain model (Davidor, 1991; Gorges-Schleuter, 1989; and Spiessens &
Manderick, 1991), each solution in the population is mapped to a processor with



genetic operators applied between nearest neighbors. In a distributed model
(Mühlenbein et. al., 1991; Tanese, 1989), processors are assigned
subpopulations, which converge locally and exchange genetic material among
them at fixed intervals. Direct models (Grefenstette, 1981), exploit the
parallelism inherent in the GA operators and the GA structure while having the
same properties of a sequential GA. Our SISAL implementation of the MNC
GA follows the direct model while having the localized convergence exhibited
in the other models.

The parallelism inherent in the generational MNC GA, and in the operators, is
easily exploited. Performance is enhanced while maintaining the necessary
computation for solving the problem. The best solution was found in all test
cases with a speedup of at least 2.2 with four processsors.

4. The Genetic Algorithm Model for the File Design Problem

The SISAL version of the MNC GA was designed to capture the parallelism in
the model while maintaining the search for multiple solutions. In this model,
multimodality is exploited by encouraging mating and replacement between
solutions from the same peak. Improved performance is obtained by creating the
offspring in parallel. The offspring are then inserted into the population
sequentially to preserve replacement between members of the same peak.

The solutions in the initial population are created in parallel by assigning
records to files at random. There are K files with b slots each for a total of N
slots. The slots are uniquely numbered with a value between 1 and N. Each
record is then assigned a slot number corresponding to a unique position in a
file. The constraints of the problem are easily maintained without the need for
counters for each of the files. The fitness, a measure of “goodness” of a solution,
is then calculated for each member of the population.

The algorithm is executed for a fixed number of generations. Each generation
consists of creating all the offspring and inserting them into the population.
Three steps are involved to create two offspring: select the parents, apply the
mating operator to the parents, and calculate the fitness to the offspring.
Mutation is applied by the mating operator as part of the mating process. Each
offspring is inserted sequentially in the population by selecting an existing
solution to die.

To create the offspring each solution in the population is selected as a parent.
This allows every individual in the population to mate at least once in every
generation. All the mates for the parents are selected in parallel using crowding
selection. After selection, mating produces two offspring and their fitness are
computed. The number of offspring created can be up to two times the number
of solutions in the population. We create a total of n (population size) mating
pairs and each pair produces 2 offspring with probability χ (crossover
probability). All offspring are created in parallel with a given crossover and
mutation probability.



The offspring are inserted one at a time in the population using the worst among
most similar (WAMS) replacement policy. Replacement is applied sequentially.
After an offspring is inserted in the population it immediately becomes a
candidate for replacement and must compete with the other solutions in the
population to survive. Some offspring are indeed replaced in the same
generation before getting a chance to reproduce. As in selection, the
replacement operator is biased toward solutions within the same extrema.
Convergence is improved by the replacement operator which eliminates
solutions with lower fitness.

The following sections describe the encoding and genetic operators for the File
Design Problem. They were designed to preserve the constraints of the problem
and take full advantage of the implementation of SISAL arrays.

4.1 Chromosome Encoding

A chromosome represents a valid solution to the problem. It consists of an array
of N alleles corresponding to each of the records in the problem. Each allele
may assume a value between 0 and K - 1 inclusive, indicating the file containing
the record. A valid encoding is a N digit number in base K where all digits
appear exactly b times. An example is shown in Figure 4 for the records defined
in Table 1. To make clear that the chromosomes are not binary we selected in
this case K = 3 files of size b = 4.

Record number:  1  2  3  4  5  6  7  8  9 10 11 12
Record attribute:  B  B  C  C  C  C  C  C  C  F  V  V
Chromosome 1:  0  0  0  0  1  1  1  1  2  2  2  2
Chromosome 2:  0  0  1  1  2  2  2  0  0  1  1  2

Figure 4: Encoding for the file design problem.

4.2 Similarity Metric

Similarity between two solutions is measured from the number of records
assigned to the same file. An example is shown in Figure 5 using the data from
Table 1. As in the previous section we have 3 files of size 4. Each digit indicates
the file where a record is located. In this example we have a similarity value of
8, that is 8 records have been assigned to the same file.

Records: B B C C C C C C C F V V
Chromosome 1: 1 0 2 2 0 1 0 1 1 0 2 2
Chromosome 2: 2 0 1 2 0 1 0 1 2 0 1 2
Similar assignments:    1   2 3 4 5 6   7   8

Figure 5: Using similarity to select a mate during crowding selection.

4.3 Mating Operator

The crossover operator for the File Design Problem creates two offspring and
was designed with two goals in mind. First, the characteristics expressed in both



parents will be expressed in the offspring, thus preserving the schemata in both
solutions. Second, fitness should be improved when combining two similar
solutions. “Best fit” and “first fit” heuristics (described later) are used for this.
Incorporating these features in the mating operator improves convergence of
solutions from the same extrema. When two solutions from different extrema
mate, offspring from other extrema can be created. This way the operator is not
restricted to small areas in the search space.

The first step in the mating operator is to transfer similar characteristics from
the parents to the offspring. This is done by transferring the records assigned to
the same file in both parents to the same file in the offspring. Those records not
assigned are counted for each attribute and sorted in decreasing order. One
offspring is created using a best fit method based on the contents of files. In this
approach unassigned records are located into files where records with the same
attribute reside. The main idea is to group files with the same attribute in the
same file as much as possible. The second offspring is created using a first fit
method based on the empty space in the files. Here the unassigned records will
be located where file space is available for records with the same attribute.
Using the configuration in Table 1 an example is shown in Figure 6.

Offspring inherits similar alleles from parents:

  Record Attribute: B B C C C C C C C F V V

          Parent 1: 0 0 1 2 2 2 0 1 0 1 2 1

          Parent 2: 0 1 0 1 2 2 1 2 0 0 1 2

         Offspring: 0 - - - 2 2 - - 0 - - -

Unassigned records by attribute: B:1, C:4, F:1, V:2

Assignment of records in sorted order to both
offspring:

           Offspring 1               Offspring 2

         Best Fit Method           First Fit Method

C:4  0 - 2 2 2 2 0 0 0 - - -   0 - 1 1 2 2 1 1 0 - - -

V:2  0 - 2 2 2 2 0 0 0 - 1 1   0 - 1 1 2 2 1 1 0 - 0 0

B:1  0 1 2 2 2 2 0 0 0 - 1 1   0 2 1 1 2 2 1 1 0 - 0 0

F:1  0 1 2 2 2 2 0 0 0 1 1 1   0 2 1 1 2 2 1 1 0 2 0 0

Figure 6: Mating operator for the File Design Problem

Given the parents in Figure 6, the offspring inherits only four alleles; 3 records
with attribute C and 1 record with attribute B. Using the best fit method the
other 4 records with attribute C are assigned to file 2 and file 0 because those
files contain records with the same attribute. Using the first fit method the 4
records are assigned to file 1 because that file is the most empty and all records
can be placed together. If not all records fit in one file then the remaining
records are placed in the next file having the most available space. The next



attribute having the highest number of unassigned records is selected and its
records are assigned in a similar manner.

Mutation is applied with a fixed probability for each allele. When an allele is
selected for mutation another position in the chromosome is selected at random
and the two values are interchanged. Such mutations may introduce a new
configuration in succeeding generations.

4.4 Fitness Function

The fitness function captures three important characteristics of an optimal
solution: low ANF, records with the same attribute are grouped together, and
records with the same attribute are spread equally among the minimum number
of files needed to store them. The last two points are captured in a grouping
term (GT) and balancing term (BT) respectively. The two terms are
contradictory in the sense that GT wants to group records together, while BT
wants to spread records equally across files. These three terms are added
together, with different weight values, to get the fitness of a solution. The GT
value is given a higher weight over the BT value because it promotes lower ANF
values in the solution.

Recall from Section 3 that the ANF value is given by the formula:

ANF fex h
h

=
=
∑ ( )a i
i 1

,

where fex(ai) returns the number of files containing attribute ai. From this
formula we can compute an upper and lower bound to the ANF term. The lower
bound represents a configuration where the records for all attributes are
assigned to the least number of files needed to contain them. The upper bound
can be calculated from the configuration containing the records for all attributes
spread among the maximum number of files possible. The lower and upper
bound are called min_anf and max_anf respectively and are:

 min_ max_ min( , )anf n b h ANF anf n K hi
i

h

i
i

h
= =

= =
∑ ∑≤ ≤

1 1
.

Recall that ni denotes the number of records with attribute i, h denotes the
number of attributes, b denotes the size of the files, and K denotes the number of
files.

To compute the GT value we need to know how the records of a given attribute
are spread in the files. Since we want as many records as possible of the same
attribute grouped together, we came up with an equation that looks at the ratio
of records with the same attribute in each file. The GT value is computed by
adding the normalized number of records squared for each attribute in every



file. The higher the number of records of the same attribute in a file the higher
the GT value. The formula for the GT value is:

( )GT attr a j ni i
j

K

i

h
=

==
∑∑ ( ), 2

11
,

where attr(ai,j) returns the number of records of attribute ai in file j.

On the other hand the BT value wants to spread the records with the same
attributes equally among the minimum number of files needed to fit the records.
The BT value is then computed by adding the absolute value of the difference
between the number of records for each attribute and a balance configuration for
the attribute. Only files containing records for the given attribute are included in
the summation. The formula for this term is:

  BT attr a j n n b when attr a ji i i
j

K

i

h

i= − ≠
==
∑∑ ( , )   ( , )

11
0, .

Here  n bi  returns the number of files needed to store the records of attribute

ai. Values of BT closest to zero represent more balanced configurations.

The three terms ANF, BT, and GT are used to define the fitness value for a
solution. Since higher positive values are used to indicate a better solution, the
terms are normalized to return values between 0.0 and 1.0. A percentage of each
term is then added to form the final fitness value as indicated by the following
formula:

fitness
GT

h

anf ANF

anf anf BT
= + −

−
+

+
0 70 0 25 0 05

10

10
. * . *

max_

max_ min_
. *

.

.
.

The fitness value for any solution is a number between 0.0 and 1.0. Solutions
where the fitness value is 1.0 represent configurations where the min_anf value
is achievable and all the records for any attribute can fit in the minimum
number of files. Having the property of fitting records with the same attribute in
one file eliminates the conflict between BT and GT while obtaining a maximum
value of h for GT.

5. Experimental Data

To evaluate the behavior of the algorithm six test cases, having different
properties, were created. Some of the test cases contain solutions achieving the
min_anf lower bound. In other test cases we have attributes with the number of
records exceeding the file size (therefore the fitness < 1.0 and a min_anf
configuration may not exist). In all test cases, multiple attributes per file were



mixed to create the different configurations. For all configurations 100 records
were used. Table 2 summarizes all configurations created.

Table 2: Configuration for all test cases

Case
Num.

Num.
Files

File
Size

Num.
Attr.

Number of Records per Attribute
n1 n2 n3 n4 n5 ... nh

min_anf
exist

1 5 20 10 7, 2, 3, 1, 5, 17, 18, 13, 15, 19 Yes

2 10 10 10 7, 2, 3, 1, 5, 17, 18, 13, 15, 19 Yes

3 5 20 10 7, 4, 3, 8, 6, 11, 18, 15, 10, 18 No

4 10 10 10 7, 4, 3, 8, 6, 11, 18, 15, 10, 18 No

5 5 20 21 7, 4, 3, 8, 6, 1, 8, 5, 10, 8, 1,
2, 4, 9, 5, 1, 6, 2, 3, 3, 4

Yes

6 5 20 15 7, 4, 9, 7, 7, 4, 9, 5, 9, 7, 9,
5, 6, 7, 5

No

To evaluate the performance of the implementation three different platforms
were used: the SGI Iris 4D, Cray Y-MP, and Cray C90. The execution time
from one to four processors was collected for the algorithm using case 1 in
Table 2. The MNC GA parameters used for each run are:

Population size: 100
Number of generations: 50
Mating probability: 0.95
Mutation probability: 0.01
Cs for selection: 4
Cf for replacement: 3
s for replacement: 5

These parameters were chosen after a trial and error period. They represent a
good set of choices for the test data shown in Table 2.

6. Results

The generational MNC GA was very successful for the test data in Table 2. For
all test cases, multiple optimal solutions were found and retained for many
generations. In four of the six test cases at least one optimal solution was found
prior to generation 6. More generations were needed for the test cases 3 and 4.
These test cases have the property that the min_anf is not achievable and there
are attribute values where the number of records is higher than the file size. In
those cases, the solutions were competing between themselves for a very small
improvement in fitness.

Table 3 shows solutions for all test cases and the generation number on which
they were obtained. Each solution is represented by the file number to which
each record is assign. The records with the same attribute value are separated by



commas to verify how many files are used to save them. For example, the first
solution has the records for attribute 1 assigned to file 4, records with attribute 2
assigned to file 1, and so on.

Table 3: Best solution and the number of generations needed for all test cases

Case Gen Best Solution
1 3 4444444, 11, 333, 0, 22222, 33333333333333333,

111111111111111111, 4444444444444, 222222222222222,
0000000000000000000

2 4 9999999, 77, 111, 6, 88888, 33333333113311111,
222222222277777777, 5555555555999, 444444444488888,
0000000000666666666

3 25 2222222, 0000, 222, 44444444, 333333,  44444444444,
000000000100001000, 333333433333333, 2222222222,
111111111111111111

4 15 8888888, 9999, 888, 55555555, 999999, 22222222227,
000000000066666666, 111111111155667, 3333333333,
444444444477777777

5 5 0000000, 3333, 222, 33333333, 222222, 0, 00000000,
11111, 2222222222, 44444444, 2, 44, 4444, 11111111,
3333, 4, 111111, 44, 333, 444, 0000

6 5 0000000, 2222, 222222222, 4444444, 222222, 3333,
333333333, 44444, 000040000, 3333333, 111111111,
11111, 111111, 4444444, 00000

By examining test case 4 more closely we can observe that the optimal
configuration required the records for the eighth attribute (111111111155667)
assigned to 4 different files. All other attribute values were assigned to 1 or 2
files only. In the same run other configurations were found were the ANF was
the same and all the records for the eight attribute were stored in 2 or 3 files. In
such cases other attribute values were assign to 3 or 4 files.

In general, the use of heuristics improved the convergence of the MNC GA. We
tried other crossover operators, but they required many more generations to
achieve similar results. At the same time, the MNC GA did not allow the
population to converge prematurely to a local optimum. Mixing heuristics with
the GA allowed us to obtain results which are better than using the heuristics
alone. Heuristics alone tend to locate local optima frequently, whereas the MNC
GA allows different solutions to converge at the same time giving  a higher
likelihood to obtain the global optimum, as defined by the fitness function, in
search spaces with multiple optima.

Platform   1 Proc.   2 Proc.    3 Proc.    4 Proc.

Y-MP C90   12.9799    8.6748     6.4425     5.4930

Y-MP       18.6106   10.4642     8.9153     6.3648

SGI Iris   25.8900   16.5300    13.4200    11.9000

      Figure 7: MNC GA execution time in seconds for 50 generations.



We also observed the increase in speed that can be obtained using a parallel
implementation of the MNC GA. A speedup between 2.2 and 2.9 was achieved
with four processors in the three different platforms. Figure 7 summarizes the
performance from one to four processors in the different platforms.

The best speedup was obtained for the Cray Y-MP platform and the worst
speedup on the SGI Iris platform. The speed of the Cray is not much faster than
that of the SGI when we take into account that the SGI does not have vector
calculations and has worse cache locality. Better speedup times can be obtained
for more complex (in terms of evaluation time) fitness functions. This is because
selection and mating are done in parallel whereas replacement is done
sequentially. Since the fitness of a new offspring is calculated at the end of the
mating step a more complex fitness function will benefit from the parallelism.

7. Summary

The results obtained with the parallel version of the generational MNC GA
model are encouraging. Diversity was maintained during the run, just as the
steady state algorithm did, and the last generation contained multiple optima.
Exploiting the multimodality inherent in the File Design Problem resulted in a
more balanced search over the entire space.

Creating genetic operators that use heuristics enhanced the convergence of the
algorithm while at the same time allowing multiple solutions to coexist. In this
work we developed a model from the problem's point of view. We enhanced the
MNC GA with problem specific operators to provide a better way to search for
optimal configurations. The convergence to optimal solutions was achieve in all
cases while improving the performance using SISAL.

A better speedup can be achieved using more complex fitness functions or by
introducing a parallel version of the WAMS replacement operator. The parallel
version must retain the important properties of WAMS. Competition among
solutions within the same peak is encouraged while allowing competition
among the multiple peaks as well.

Like the steady state MNC GA, the algorithm located and maintained multiple
solutions throughout the run while maintaining diversity in the population.
Creating genetic operators that use heuristics enhanced the convergence of the
algorithm while at the same time allowing multiple solutions to coexist. These
operators enhanced the ability of the MNC GA to search for optimal
configurations. The convergence to optimal solutions was achieve in all cases
while improving the speed with a parallel version developed using SISAL. In
the future we want to investigate in more detail the use of heuristics for genetic
operators.
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