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Abstract. While intrusion detection technologies have benefited from
decades of study, there has been a lack of research into decision making
tools required to evaluate the cost-effectiveness of intrusion detection
systems (IDSs) and employ them properly. In this paper, we propose a
game theoretic methodology for cost-benefit analysis and design of IDS.
Game theory provides a natural setup for modeling the strategic interde-
pendence between an IDS and an attacker. We use a simple two-person,
nonzero-sum game to address the fundamental decision problems such as
“does an organization need an IDS?” and “how should an IDS operator
respond to the IDS alarms?”. The solutions based on the game theo-
retic analysis integrate the cost-effectiveness and technical performance
tradeoff of the IDS and identify the best defense and attack strategies.
We also discuss the extensions of our method as well as the challenges
of game theoretic modeling of security systems.

Key words: intrusion detection, cost-effectiveness, game theory, domi-
nant strategy, Nash Equilibrium

1 Introduction

In May 2003, the Gartner Information Security Hype Cycle report declared that
intrusion detection systems (IDSs) are “a market failure” and will be obsolete
by 2005 due to the problems such as excessive false positives and false negatives,
high operational cost and taxing incident-response process [1]. The report has
stirred fierce debate within the IDS vendor as well as research communities.
While it is debatable whether the Gartner’s prediction for IDS is short-sighted
or not, it is clear that cost-effectiveness will be one of the deciding factors in
IDS’ future.

IDS began in the 1980s as a promising paradigm for detecting hackers and
malicious insiders that exploit security vulnerabilities or flaws in computer sys-
tems [2]. For the last two decades, most research efforts have been devoted to
improve the technical effectiveness of IDS. That is, to what degree does an IDS
detect and prevent intrusions into the target system, and how good is it at re-
ducing false positives? In practice, however, no IDS will ever be 100% accurate in



detecting attacks. False positives and false negatives will be inevitably produced.
Moreover, the reduction of one type of error (false positive or false negative) is
usually accompanied by an increase in the other type.

Cost-effectiveness is an important, yet often overlooked aspect of IDS. When
an organization makes an investment decision on a security mechanism such
as IDS, risk assessment and cost-benefit analysis is essential. This includes as-
sessment of the organization’s assets and values, identification of threats and
vulnerabilities, cost-benefit tradeoff evaluation, and so on. The major cost fac-
tors that ought to be taken into consideration are the operational cost of IDS,
the expected loss due to intrusions and the cost of manual or automatic response
to an intrusion [3]. Even when the adoption of IDS technology is justifiable, the
IDS operator still faces the challenge of employing the IDS properly and deter-
mining the best response strategies against various types of attacks in order to
minimize the cost of maintaining the IDS while protecting the system assets.

Our research aims to provide a game theoretic methodology for analysis
and design of IDS and improve the effectiveness of IDS technology by modeling
the interaction between IDS and attackers in a game playing context. Game
theory offers a natural setup for adversarial situations, where multiple players
with different objectives compete and interact with each other. As a powerful
strategic decision making tool, game theory has been applied in many fields,
including economics, political science, etc. [4]. The game theoretic modeling of
security systems such as IDS makes it possible to bring the full spectrum of well-
developed game theory techniques to bear on the information security problems.

In this paper, we propose to use a simple two-person, nonzero-sum game to
model and analyze the IDS and attacker behavior in a general environment. At-
tacking and defending of the protected system are formalized in terms of a set
of strategies for attacker and IDS, respectively, whereas risk and objectives are
formalized in terms of payoff (or utility) functions. Each player strives to maxi-
mize his payoff function by selecting a feasible strategy. The solutions based on
the game theoretic analysis naturally integrate the cost-effectiveness and techni-
cal performance tradeoff of the IDS and identify the “best” defense and attack
strategies. Specifically, our results provide valuable insights in answering the
following fundamental questions:

— Under what condition would an attack most likely occur?

— When is an IDS useful? When does its use become counterproductive?

— When an IDS is deemed useful, what should be its technical specification?

— What’s the best response strategy when the IDS raises an alarm? Ignore it
or respond to it?

— If the IDS operator can only respond to a subset of the alarms, what per-
centage is optimal?

The rest of the paper is organized as follows. In Section 2 we review some
related work. Section 3 is a brief introduction to game theory. Section 4 describes
details of our game model. In Section 5, we discuss the extensions of our method
as well as the challenges of game theoretic modeling of security systems. Section
6 presents conclusions.



2 Related Work

The economics of information security is an emerging and growing research area
[5] [6]. For example, Gordon and Loeb [7] presented an economic model that
determines the optimal amount to invest to protect a given set of information
assets. Theagwara [8] examined the effect of implementation methods, manage-
ment methods and intrusion detection policy on the return of investment.

The application of game theory to the domain of computer security has re-
cently been a topic of interest. Lye and Wing [9] constructed a stochastic game
to model the interactions between an attacker and the administrator in a typi-
cal network environment. Liu and Zang [10] presented a general incentive-based
method to model attacker’s intent, objectives and strategies (AIOS) and em-
ployed game theoretic techniques to infer AIOS. Different game models (stochas-
tic or Bayesian games) were proposed based on the accuracy of intrusion detec-
tion and the correlation among attack actions. Alpcan and Basar [11] argued
that game theory can provide the much needed mathematical framework for
analysis, decision and control processes for information security and intrusion
detection. They designed a security warning system for distributed IDS using
Shapley values. A two-person finite game was used to model security attacks in
a multiple sensor environment. Cavusoglu and Raghunathan [12] took a game
theoretic approach to determine the optimal configuration (detection and false
positive rates) of an IDS and compared it with the decision theory approach.
While the game models in this paper are similar to those in [11] and [12], our
focus is on the modeling of general IDS and its insights in IDS’ cost-effectiveness.
In addition, our incentive-based payoff functions more accurately represent the
interactions between the IDS and attacker.

Decision theory is often employed to facilitate risk management and cost-
benefit analysis [13] [14]. For example, Gaffney and Ulvila [13] used a decision
analysis to evaluate and configure IDS. Decision theory assigns prior probabilities
(usually fixed and exogenous) to handle the uncertainty of the environment (e.g.,
the prior probability of an intrusion). As pointed out in [12], decision theory
based approaches are inadequate for IDS problems because they don’t allow the
defense system’s decisions to influence the attacker’s behavior. In contrast, game
theory brings the attacker into the model and thus makes itself more attractive
for handling the strategic interdependence between the IDS and attacker.

3 Review of Game Theory

A gameis a formal representation of a situation in which a number of individuals
with different objectives compete and interact with each other. In general, a game
consists of the following elements:

— Players: who are involved?
— Rules: who moves when? What do they know when they move? What can
they do (i.e., what strategies do they have)?



— QOutcomes: for each possible set of actions by the players, what is the outcome
of the game?
— Payoffs: what are the players’ utility functions over the possible outcomes?

A classic example is the game of Matching Pennies. In this game, player 1
puts a penny down, either heads up or tails up. Player 2, not knowing player 1’s
choice, also puts a penny down. If the two pennies match ( either both heads
up or both tails up), player 1 pays 1 dollar to player 2. Otherwise, player 2
pays 1 dollar to player 1. The Matching Pennies game can be represented in the
extensive form depicted in Figure 1. Due to its treelike structure, the extensive
form is also known as a game tree. Matching Pennies is a two-player zero-sum
game, in which case the sum of the payoffs is always zero. In general, however,
most games of interest are non-zero-sum.

Player 1
o
Heads Tails
Up Up
o Player 2 O\]
Head// ¥I|S Hea% \Talls
(-1, 1) (1,-1) (-1, 1) (1,-1)

(1’s payoff, 2’s payoff)

Fig. 1. Extensive form for Matching Pennies.

A central concept of game theory is the notion of a player’s strategy. A
strategy is a complete contingent plan, or decision rule, that specifies how the
player will act in every possible circumstance in which he might be called upon
to move. For example, in Matching Pennies, both players have two possible
strategies: play heads (H) or tails (T). Then the game can be represented in terms
of strategies and their associated payoffs. This representation, often depicted as a
matrix, is known as the normal (or strategic form). The normal form of Matching
Pennies is presented in Figure 2. Each row of the matrix represents a strategy of
player 1, and each column a strategy of player 2. Within each cell, the first entry
is player 1’s payoff for the corresponding strategy profile; the second is player
2’s.

Up to this point, we have assumed that players make their strategic decisions
with certainty. However, a player could randomize when faced with a choice. We



Fig. 2. Normal form of Matching Pennies.

now call the deterministic strategy a pure strategy. By contrast, a mized strategy
for a player is simply a probability distribution over his pure strategies. For
example, a mixed strategy for player 1 in Matching Pennies is to play heads
with the probability of 30%, and tails of 70%, instead of playing heads or tails
all the time.

It is not so obvious to predict how each player should play Matching Pennies
in order to maximize his own payoff. Consider the game illustrated in Figure 3
instead. In this game, player 1 has three pure strategies (U, M and D) and player
2 has two pure strategies (L and R). Note that, no matter how player 1 plays, R
gives player 2 a strictly higher payoff than L does. In formal language, strategy L
is strictly dominated. Thus, a “rational” player 2, who uses only those strategies
that are best responses to some beliefs he might have about the strategies of his
opponent, should not play L. Furthermore, if player 1 knows that player 2 will
not play L, then U is a better choice than M or D. This process of elimination
is called iterated dominance. It reduces the strategy sets of the players and thus
simplifies the game.

L R
5,1 6,2
M 8, 4 3,6
D 9,6 2,8

Fig. 3. Game example.

Unfortunately, most games (e.g., Matching Pennies) are not solvable by it-
erated dominance. The Nash equilibrium solution provides the optimal response
to other players’ strategies for each player. In a Nash equilibrium, none of the
players has an incentive to deviate unilaterally from the equilibrium as long as
the other players don’t deviate. It can be proved that every finite game has
a mixed strategy Nash Equilibrium. Solving the Nash Equilibrium for a 2 x 2
matrix game is trivial, although it can be costly for higher-dimensional matrix



games [4]. The Nash Equilibrium for Matching Pennies is the mixed strategy in
which each player randomizes between his two pure strategies, assigning equal
probability to each.

So far we have assumed that players know all relevant information about
each other, including the structure of the game and payoffs that each receives.
Such games are known as games of complete information. However, this assump-
tion may be invalid in practice. How to weaken or entirely dispense with this
assumption and solve games of incomplete information has been a challenging
research topic in game theory. One widely used approach is to transform in-
complete information about players into imperfect information about nature’s
moves. A game of this sort is known as a Bayesian game.

4 Game Theoretic Modeling

We use a two-person non-zero-sum game model to formulate the strategic inter-
dependence between a general IDS and an attacker. The IDS can be host-based
or network-based in an organizational environment 1. The organization can range
from small enterprises to government agencies. Intrusions are identified through
anomaly detection, misuse detection or hybrid techniques [2]. The attacker can
be a skillful intruder from outside, a malicious insider, or even a script kiddie.

Before we delve into the game modeling details, we shall introduce the pa-
rameters and identify the cost and payoff factors related to both players of the
game.

4.1 Parameters and Cost/Payoff Factors

Table 1 summarizes the parameters used in our models. The parameters are
always positive.
The cost and payoff factors associated with an IDS are:

— Operational cost (OC). This includes the cost of purchasing the IDS, the
amount of time and computing resources needed to process the audit data
stream and the personnel cost involved in administering and maintaining the
IDS. Considering the voluminous audit data an IDS processes, the average
operational cost for each audit event (the unit of analysis) should be nominal.

— Damage cost (DC), the amount of damage to the organization by an at-
tack when IDS is not available or ineffective. It can be measured by the
degradation of a set of security measurements associated with the organi-
zation’s security metrics [10]. Different types of attacks can incur various
levels of damage. Here we use DC' to represent the expected damage cost by
a generic attack.

! Our model can be easily extended to the case when there are multiple IDSs within
the organization. The game formulation will remain the same.



Table 1. List of parameters.

| notation | | description

false alarm rate, the probability of an alarm, given no intrusion
false positive rate, the probability of no alarm, given an intrusion
intrusion detection rate, d =1 — 3

probability of an attacker conducting an attack

probability of responding to an alarm

IDS operational cost

damage cost of an attack

RC ||IDS response cost

RD ||reward (i.e., payoff) of IDS for responding to an attack

ggbgean

LC ||attacker’s cost of launching an attack
PC ||penalty to the attacker when the attack is detected
BA ||benefit to the attacker when the attack is undetected

— Response cost (RC), the cost of acting upon an IDS alarm. Depending on
the type of response mechanisms being used, the response cost includes the
computing resources for terminating the offending connection or session, the
downtime needed to repair and patch the computer systems, the labor cost
of the response team, and so on.

— RD, the reward to the organization for responding to an attack. It can be
measured by the improvement of the organization’s security metrics after
the response to the attack. In other words, RD is the potential damage cost
caused by the attack if it went unnoticed otherwise 2.

Similarly, from an attacker’s point of view, the cost and payoff factors include:

— LC, the cost for an attacker to launch an attack. It is the amount of time and
resources needed to conduct the attack, which includes searching for system
vulnerabilities, designing malicious code to exploit the vulnerabilities, etc..
It is reasonable for a vigilant security officer to assume that the cost of attack
LC is small.

— Penalty cost (PC).This characterizes the risk for the attacker to be traced-
back and punished. Quantitatively, it is the product of the probability of the
attacker being held accountable and the penalty to the attacker when he is
caught.

— BA, the benefit to the attacker when the attack is undetected. We use the
attacker’s incentive, quantified as the organization’s damage cost DC, to
represent BA (i.e., BA = D(C), although it may not be the benefit he receives
directly from the attack [10].

% For organizations such as law enforcement agencies, there is additional value for
catching the attackers.



In this section we assume the values of the parameters are common knowledge
known to both players of the game. Section 5 shows how we can weaken this
assumption and design the game of incomplete information. We further assume
that OC and LC are much less than the other cost and payoff factors.

4.2 1IDS vs Attacker

The extensive form of the game is illustrated in Figure 4. The attacker’s strategy
is either to attack or not to attack the targeted organization. Accordingly, the
organization may simply choose to have or not to have an IDS to defend against
the attacker. Due to the imperfect technical performance of the IDS, it is possible
that the IDS can raise a false alarm when there is no attack or generate no alarm
when an attack is occurring. The corresponding probabilities and payoffs are
shown in the shaded area in Figure 4. in this game we assume the IDS operator
responds to every alarm the IDS generates (i.e., p = 1).

Attacker
o}
attack no attack
[ Q. Organization O, ]
1D o IDS no IDS DS
¢} o
/O\ (DC—-LC,-DC) (0, 0) /O\
alarm /' \_ no alarm no alarm,/ \_ alarm
1—5// \B g N
7 X = 5
i \\m 4 N
o o o e}
(-PC~LCRD~RC~0C) (DC~LC,~DC-0C) (0,-0C) (0, - RC-0C)

(BDC - (1-B)PC—-LC, (1-B)(RD — RC) - B8DC - OC) (0,- OC-aRC)

Fig. 4. Extensive form for Game A.

Figure 5 presents the normal form of the game. The payoffs for both players
are determined as follows. If the attacker decides not to commit an attack, he
receives no payoff. In contrast, the the organization has to pay for the operational
cost (OC) along with the cost of false alarms (aRC) if an IDS is employed.
When the attacker conducts an attack while the IDS is not in place or does not
generate an alarm, the organization’s loss is DC, whereas the attacker’s payoff
is the difference between BA and LC, which is the same as DC — LC'. If the IDS
successfully detects an attack, the organization gains RD at the cost of RC' and
OC'. Meanwhile, the attacker bears the expected penalty cost PC' in addition to



LC 3. The organization’s expected payoffs when having an IDS is determined by
taking the sum of products of probabilities and payoffs for two scenarios (alarm
or no alarm).

IDS No IDS

Attack | Ay;=B8DC-(1-B)PC-LC,By;=(1-B)(RD-RC)-BDC-0OC | Aj,=DC-LC, B,,=-DC

No Attack Ayy =0, By =— OC —aRC Ayp=0,Byp=0

Fig. 5. Normal form of Game A.

We shall consider the attacker’s strategies first. As shown in Figure 5, the
attacker’s payoff A1o = DC' — LC' is greater than A2 = 0, based on our assump-
tion that LC' <« DC. “Attack” would be the attacker’s dominant strategy if A11
is also greater than As; = 0. That is,

Ay = BDC — (1 — B)PC — LC
~ BDC - (1 - B)PC

>0
This is equivalent to
DC S 1-4
c 8’
or
DC s
PC " 1-§

We define A = DC'/PC, which essentially represents the benefit-to-risk ratio for
the attacker.

Remark 1. If the attacker’s benefit-to-risk ratio A\ is greater than &/(1 — 4),
“attack” is his dominant strategy. In other words, “no attack” is the strictly
dominated strategy. A rational attacker would always choose to attack the orga-
nization and thus maximize his payoff regardless of the organization’s decision.

This result is not surprising. Intuitively, the greater potential damage cost or
the lower risk would motivate the attacker more to commit the attack. On the
other hand, the higher the attack detection rate, the more risk to the attacker
and the less likely the attack occurring. This is illustrated in Figure 6. For a fixed
A value, an IDS with the intrusion detection rate less than d¢preshota = A/(1+A)
(A> 1f 5 is equivalent to § < 1%\) would not play a deterrent role for the
attacker at all. For example, when A = 10, §preshotd = 0.91. Even when X\ = 5,

3 Our model can be extended to accommodate the case in which the attack is partially
in progress when the IDS raises an alarm and the organization only recovers a portion
of the damage.



Othreshold 1S still as high as 0.83. On the other hand, for a fixed § value, a malicious
attacker who wants to maximize his payoff would rather conduct an attack with
A > 0/(1—4) than do nothing! This implies that the effective way to discourage
the occurrence of an attack is to not only improve the attack detection rate but
also increase the punishment for the attackers. In addition, it is interesting to
note that false alarms cost nothing to the attacker. Therefore o does not come
into play when determining the attacker’s dominant strategy.

100

90

60

40

30

Fig. 6. Attacker’s dominant strategy is “attack” when A > /(1 — 9).

We next examine the organization’s strategies. The negative By; is always
less than Bsgo. If By is also less than Bjs, the organization’s dominant strategy
would be “no IDS”. Therefore we have

Bio — By =-DC - (1-8)(RD — RC) + 8DC + OC
~(1-p)(RC —DC - RD)
>0
Clearly, By, is greater than Bj; if and only if RC — DC — RD > 0 (OC is
relatively small and neglected and 3 is always less than 1).
Remark 2. Having an IDS becomes counterproductive when RC' > DC + RD.

It is more cost-effective for the organization not to use the IDS due to its high
response cost.

Note that RC' is compared to the sum of DC and RD (instead of DC alone).
As long as RC < DC + RD, it is beneficial for the organization to employ an
IDS. A similar analysis of the IDS’ decisions upon an alarm (respond or not
respond) would reveal the following;:



Remark 3. When an IDS is deployed and it generates an alarm, it is more cost-
effective to ignore the alarm and not to respond to it if RC > DC + RD.

In case there is no dominant pure strategy for neither player, we need to
examine the Nash Equilibrium of the game. Let ¢ and 1 — 1) be the probabil-
ities for attacker’s strategies “attack” and “no attack”, respectively. Also let ¢
and 1 — ¢ be the probabilities for strategies “having IDS” and “no IDS” of the
organization. In practice, an probability distribution over an organization’s pure
strategies can be interpreted as the extent to which the organization needs an
IDS or the percentage of the time that the IDS should be available.

The Nash Equilibrium solution of the game is as follows:

aRC

Y = 5(DC+ RD = RO) + aRC’

.___DC__
T =5(PC+DC) 51+ A

The organization’s mixed strategy (¢*,1 — ¢*) is the best response to the at-
tacker’s strategies. In fact, if the IDS is available with the probability of ¢*, the
attacker’s expected payoff will be 0, whether he attacks or not. Similarly, if the
probability for the attacker to attack the organization is 1*, the organization’s
expected cost is

aDCRC

V = = SO0+ RD = RC) + aRC”

whatever its defense strategy is.

Remark 4. When an IDS is useful, the organization’s best response to the at-
tacker’s strategies is to employ the IDS with the probability of A/[6(1+ A)]. This
way, the attacker’s expected payoff will be 0, whatever he does.

It may seem counter-intuitive that ¢* is proportional to 1/§ and it increases
monotonically with increasing A. However, d is expected to have a value greater
than dtpreshota = A/(1+ A). The higher benefit-to-risk ratio for the attacker, the
better the IDS ought to be in terms of intrusion detection rate, and the more it
is inclined for the organization to have the IDS in order to catch the attacker and
reduce his payoff. On the other hand, 1* increases with increasing false alarm
cost of the IDS or decreasing §, which implies an attack is more likely to happen
if the IDS is less accurate.

Alternatively, ¢ can be interpreted as the probability of responding to an
alarm when an IDS is employed (i.e., p). Therefore the optimal value of p is ¢*.

Remark 5. The optimal probability of responding to an IDS alarm is A/[6(1+A)].

Table 2 lists a set of numerical examples of A, &, d¢hreshorda and ¢* values.



Table 2. Numerical examples.

| A | 1) ||6thresh0ld = )\/(1 + )\)|(I* = )\/[6(1 + )\)”

0.1|180% 9.1% 11.4%
1 {80% 50% 62.5%
5 |85% 83.3% 98.0%
10 (95% 90.9% 95.7%

5 Discussion

The game theoretic methodology of cost-benefit analysis is not limited to IDS.
In fact, it can be easily extended to any security mechanism. It is important to
bring adversarial attackers into the security models. The game theoretic formu-
lation makes it possible to understand an attacker’s intent and strategies from
the attacker’s perspective, which has been an often neglected facet of computer
security research.

Our game model assumes complete information of the IDS and attackers.
However, this assumption is somewhat unrealistic in practice. In particular, it is
very difficult to estimate an attacker’s payoff values. Significant research effort
is needed to address the issue of accurate quantification of the attacker’s pay-
off functions. Nevertheless, a qualitative game theoretic analysis can still bring
unique and valuable insights to the understanding of the attacker’s behavior
and the decision making of security systems. Meanwhile, Bayesian games can
be used to accommodate the uncertainty of the payoffs and handle the case of
incomplete information. For instance, an attacker can be classified into three
types: a skillful intruder from outside, a malicious insider, or a script kiddie. A
prior probability is assigned to each type and the payoff values are identified
for each sub-game associated with each type. Then the transformed game can
be analyzed with standard techniques. Similarly, different attack types, such as
denial of services, port scanning, masquerading, and so on, can be incorporated
into the game model as well.

Finally, the interaction between attackers and security systems can be viewed
as a repeated game. Both players can improve with the experience of playing
the repeated games. How to incorporate game theory with learning is another
important issue for our future work.

6 Conclusion

Cost-effectiveness is an important aspect of intrusion detection systems. In this
paper, we have proposed a game theoretic methodology for cost-benefit analysis
and design of IDS. A simple two-person game was used to model the strategic
interdependence between a general IDS and an attacker. The solutions based on



the game theoretic analysis naturally integrate the cost-effectiveness and tech-
nical performance tradeoff of the IDS and provide valuable insights in intrusion
detection and response.

Our game theoretic methodology can be applied to the cost-benefit analysis of
any security mechanism. The main difficulty is the quantification of the players’
payoffs. Our future work includes Bayesian game modeling of security systems
and learning of repeated games.
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