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Abstract- Wavelet based compression schemes are the natural choice
for the multi-resolution representation of images because of their
successive approximation and better decorrelation property.
Experiments conducted by compressing images through wavelet filters
and integer wavelet transforms suggest that the filter performance
indeed is image dependent. It is observed that no wavelet filter
outperforms others uniformly while compressing sample images
drawn fromn a large selection. In fact, a detailed analysis of the results
reveals that certain wavelets perform better on certain classes of
images. A Neural Network can therefore, be used to categorize the
input image into one of these classes. A wavelet-based lossy or
lossless coder is then used to compress the image using the most
"appropriate" wavelet filter or integer-transform suitable for that class.

L INTRODUCTION

There is a need for digital technologies that strive to deliver,
automatically, just the right amount of image data for a given
application while retaining image quality. Such a technology
will enable to use and reuse a single image and make it
available to multiple users at multiple resolutions via multiple
transmission channels. Existing compression techniques require
users to make a compromise between image quality and
compression ratio(CR) at the time of encoding the image. This
is like saving the constant 'pi' to a fixed number of decimal
places, whether it is to be used to calculate the circumference
of a drainpipe or the machining tolerance of a component of a
high-precision watch. Dynamic resolution management at the
user level allows the user to save all the image files at full
precision and provide resolution on demand, enabling a layout
application or web browser to "chop" or truncate the file to the
precision required, when it has received sufficient data to
display the image at the desired quality level. Dynamic
resolution allows the user to choose between faster display
speed and highest quality at the time of output, depending on
how the image is to be used.

Wavelet based compression schemes are the natural choice for
this multi-resolution representation of images because of their
Successive approximation property[l1]. Multi-resolution
Successive approximation corresponds to the human visual
- System, which helps the multi-resolution techniques in terms of
perceptual quality. Wavelet-based image coders are typically
comprised of three major components: a wavelet filter bank
decomposes the image into wavelet coefficients which are then
quantized in a quantizer and finally an entropy encoder encodes
these quantized coefficients into an output bit stream, as shown
in Fig. 1(a). Fig. 1(b) shows a typical wavelet-based lossless
image coder, where the wavelet transform is replaced by
integer-to-integer(I121) transforms[2] derived from the
corresponding wavelet filters and the quantization step is
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eliminated. Although one has the freedom to choose each of
these components from a pool of candidates, it is often the
choice of either the wavelet filter or the I2] transform that is
crucial in determining the ultimate performance of the coder. If
the performance of the wavelet filter or 121 transform is poor in
the first place, the schemes for quantization (for lossy coder)
and entropy encoding, however elegant they are, cannot
generally provide adequate compensation to maintain
significant picture quality or bit-rate (BR).
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Fig. 1. A typical wavclet-based (a) lossy and (b) lossless image coder

All well known lossy and lossless image coding algorithms
developed so far, use either a specific filter bank or a specific
121 transform chosen from a large number of such filters and
transforms designed and developed by researchers over the
years. Once chosen, the coefficients are hard coded into the
algorithm. In other words, the same filter/I2] transform is used
for coding and decoding all types of images whether it's a
natural image, synthetic image, medical image, aerial image,
scanned image, compound image or any other image for that
matter. Our extensive image compression experiments using
sample test images from all of the above categories show that
this generic approach of filter/transform selection may not
always give the best quality of service (image quality or
compression) from the viewpoint of a specific application. For
example, in lossy coders while Haar filters perform the best in
compound images, it performs rather poorly in natural images
presumably because of its 10w order. For natural images higher
order filters like Villasenor’s-18/10 filters perform better. CDF-
9/7 filters are good for coding medical images. Similar
observations have been made for lossless coders as well. So,
for both lossy and lossless compression schemes the
performance has been found to be much more image
dependent.

1L FILTER AND I2I TRANSFORM
FEATURES

When deciding on a filter bank for lossy image compression,
there are many choices. The two well-known wavelet filter
families used in wavelet-based lossy image coders are
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orthogonal[3] and biorthogonal[4] wavelets. The following are
the key features that distinguish one wavelet filter from the
other, and need be considered while making a choice for
image compression.

Orthogonality

Linear phase (Symmetric)

Length of the filters

Smoothness (Number of zero moments)
Regularity measure (Holder regularity)
Order of the filters

Energy compaction (Coding gain)
Wavelet coefficient distribution statistics

The following wavelet filters have been used to compress

various images in the lossy experiment.

e  Orthogonal filters- Haar, Daubechies filters of order two,
four, and eight with four, eight, and sixteen coefficients
respectively, and Adelson’s symmetric filters with nine
coefficients.

e Biorthogonal filters- Cohen, Daubechies, and Feauveau
(CDF) filters e.g. CDF-9/7, CDF-9/11, CDF-13/3 filters,
Villesenor filters e.g. Vill-18/10, Vill-13/11 and Vill-6/10
filters, Odegard 9/7 filter, and Brislawn 10/10
biorthogonal filter.

For lossless compression using 2] wavelet transforms there
are many choices as well[2]. Orthogonality of such transforms
is not as important as in lossy image coders. Since there is no
quantization involved, arbitrary filters can be chosen as long
as it can reduce the average entropy at the output. The 121
transforms used in the lossless coding experiments include S,
S+P, TS, TT, CDF(2,2), CDF(2,4), CDF(4,2), CDF(4,4), and
CDF(2+2,2) transforms. Here, the notation (M,N) represents a
transform with M and N vanishing moments in the analysis
and synthesis high pass filters, respectively.

III. ANALYSIS OF COMPRESSION RESULTS

A. Lossy Compression

We have experimented with a large number of wavelet filters,
both orthogonal and biorthogonal with varying lengths,
regularity and smoothness, and a large set of images with
varying features. Test images in our experiment include
natural images, synthetic images, binary/compound images,
medical images, and aerial images of different sizes. An
embedded quantizer, an adaptive arithmetic entropy encoder,
and up to five levels of decomposition are used. Using the
same filters to code an image, the performance of the image
coder at four different compression ratios (8:1, 16:1, 32:1 &
64:1) is evaluated. Due to limitations of space, only a subset
(for compression ratio of 16:1) of the results is presented and
analyzed here. The results of the lossy image coding
experiment are plotted and shown in Fig. 2. The difference
between the worst and the best peak signal to noise ratio
(PSNR) values for compressing the same image using
different wavelets, is anywhere from 1.5 to 6 dB, which is

significant. Although there are some wavelet filters, mainly
biorthogonal that perform generally well for many images
there is no single one that outperforms others for all images.
Fig. 3(a) through 3(d), where PSNR values using different
wavelets have been plotted for various image types separately,
give a clearer picture. For natural images (Lena, Barbara,
Baboon, and Airplane), biorthogonal filters like the CDF-9/7,
and Villasenor-10/18, perform better than Haar and
Daubechies’ family of orthogonal filters as shown in Fig. 3(a).
It is also observed that, for both Barbara & Baboon images,
the PSNR values using the same wavelet filter are lower than
that of the Lena and Airplane images. This is mainly due to
the presence of more sharp textures and edges in those two
images than Lena & Airplane. For pure binary text image
(Bengali) as well as for images containing both binary data
and gray scale images (Cmpndl, Cmpnd2), Haar filters
outperform the rest by more than 3 dB as shown in Fig. 3(b).
Fig. 3(c) shows the PSNR values for the aerial images (Aerial,
airl and air2) where the performance of CDF-9/7, Odegard-
9/7 as well as Villasenor-10/18 and Villasenor-13/11
biorthogonal filters are very close. However, they all give
better PSNR (by about 2 dB) than the orthogonal filters. It can
also be seen that the plots of the images in various classes
follow a similar pattern. For example, in the case of aerial
images in Fig. 3(c), all three images show poor PSNR values
using both CDF-9/11 and Brislawn-10/10 filters. PSNR values
for four medical images (mri, nervecell, us (ultrasound), and
us1) are shown in Fig. 3(d). As expected, all four images don’t
perform the same, because of the different spatial features for
those images. For both ultrasound images (us and usl), Haar
filter gives the best PSNR outperforming others by more than
2 dB. However, for mri and nervecell images, the PSNR
curves are similar to those of the aerial images in Fig. 3(c)
with CDF-9/7 and Villasenor-10/18 giving the best results.
Apart from the best filters, Villasenor-6/10 and Odegard-9/7
perform well for the medical images.

B. Lossless Compression

Similar experiments have been performed in the lossless
context on the same set of test images using a number of 12]
transforms[2] implemented using the lifting scheme[5]. The
performance used is bit-rate, measured in bits-per-pixel(bpp).
The results of the lossless experiment are plotted and shown in
Fig. 4. The difference between the best and worst BR values
for the same image using different I12I transforms is anywhere
from 0.14 to 1.68 bpp. There is no one transform that performs
the best for all images. Fig. 5(a) through 5(d) shows the plots
for different image types. For most natural images the ‘S+P’
transform is the best, although the performances of both
CDF(4,4) and CDF(2+2,2) are equally good. For compound
images no other transform comes even close to ‘S’ transform,
and so when compressing such images ‘S’ transform should be
the transform of choice. For medical images like ‘ct’ and
‘nervecell’ CDF(2+2,2) transform outperforms others,
whereas for both ultrasound images (‘us’ and ‘usl’) the ‘S’
transform is best.
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IV. IMAGE ANALYSIS AND CATEGORIZATION USING
NEURAL NETWORK (NN)

From both lossy and lossless compression results discussed in
section II & III, it is observed that certain wavelet filters and
121 transforms perform well for certain category of images. To
better understand this, we have summarized both lossy and
lossless results in Table-1 where, the performances of wavelet
filters and 121 transforms for a given image are ranked first
through third along with their respective PSNR and BR
values. For lossy compression, results for both CR=16:1 and
CR=32:1 are included. A close look at Table-I reveals that, for
certain image-categories the performance of a number of
wavelet-filters and 121 transforms are so close that it is rather
difficult and probably not worth the cost to try to identify the
best filter/transform. Instead, identifying any one of the top
performing filters/I21 transforms is good enough for that
category. For example, for lossy compression of natural image
Lena, all three wavelet filters CDF-9/7, Odegard, and Vill-
10/18 perform equally well. Similarly, for lossless
compression S+P, CDF(4,4), and CDF(2+2,2) transforms are
equally good. So, choosing any one of these filters or
transforms is acceptable. However, for certain other image
category like Compound images, no filter or 12] transform
comes close to the performance obtained from the Haar filter
or ‘S’ transform, and so there is only one choice.

Given an image, our task is to first analyze the image and then
try to classify it into one of the categories mentioned earlier. A
spatial domain analysis of various images show that in
general, images from different categories tend to have
different characteristics. For example, it is a common
observation that most of the natural images are continuous in
tone compared to the synthetic images most of which are of
discrete tone (dynamic range of the pixel bit depth is under
utilized). Such images generally have some numerical
structures that are not well represented by smooth basis
functions. Many medical images like MRI or CT scan contain
significant low-intensity (black) regions along image
boundaries. Compound images with significant amount of text
are a mixture of binary and continuous tone data. Even within
a particular category, images vary in many ways with widely
varying first and second order Markov statistics. Whereas
some are relatively flat, others are very busy having more
edges and contours in them. Some are darker and others have
more sharpness. So, a spatial domain analysis of these images
shows different characteristics like mean, median, standard
deviation etc. We use the following features to distinguish
between various categories of images.

* Spatial Features e.g. Mean Median, Mode, Variance,
Dispersion, Average Energy, Entropy etc.
Edge and Boundary Information, Image Activity Code
Higher Order Statistics e.g. Skewness and Kurtosis

Ve are currently implementing a 3-layer feed-forward NN [6]
with supervised learning like the error back-propagation

algorithm first to train and then to classify a given image into
one of the several categories. The input to the NN is the image
features mentioned earlier, and the output is the class the
image belongs. We also plan on using an unsupervised
learning technique like the Kohonen Self Organizing Feature
Map (SOFM)[6] and evaluate its performance. Once the input
image is identified to be from certain category, any one of the
filters/121 transforms suited for that category can be chosen to
compress the image.

V. CONCLUSION AND WORK IN PROGRESS

To conclude, it is observed that for both lossy and lossless
compression schemes, no specific wavelet filtcr or-integer
transform has performed uniformly better than others on the
variety of test images and the performance has been found to
be much more image dependent. In fact, detailed analysis of
the results as shown in this paper, reveals that certain wavelets
and 121 transforms perform better on certain classes of images.
For example, images containing binary data (compound
images) as well as certain types of medical images (ultrasound
images) is compressed best using simple Haar wavelets or the
‘S” transform. Natural and aerial images on the other hand are
compressed best using different biorthogonal wavelet filters
and corresponding 121 transforms. These observations lead us
to conclude that for best results, in both lossy and lossless
compression, the most "appropriate" wavelet filter should be
chosen to match the image class and the characteristics of the
individual image being coded. We are currently implementing
a NN-based classifier to categorize the input image so that one
of the best performing filter or 121 transform for that class can
be chosen for subsequent compression purpose.
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Fig. 2. Lossy compression results for various images using different wavelet filters
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: : TABLE
PERFORMANCE OF VARIOUS WAVELET FILTERS AND INTEGER TRANSFORMS IN LOSSY AND LOSSLESS COMPRESSION

Lossy Codin; Lossless Codi
1 2 3 1 2 3

tmages | CR | Fiteer | PSNR | Fitter | PSNR | Fiteer | PSNR Jreansfor] BR [remnstor]  BR [rramsford  BR

Lena 16:1 CDF-97 3618 Odegard 3617 | Vill-1311 3616 §+p 420 | CDFAa 42 CDFA N 23
32:1 o 33.17 b 33.17 | Vill-1018 __ 33.16 COF2422) 422

Lenadarld 16:1 Odegard 343 CDF-97 3428 | Vill-1311 3428 $+P 457 | CDF.9) 459 | CDF42) 4.60
32:1 | vill-long 3157 Odegard 31.56 = 31.54 CDF(2:22) 439

Barbara 16:1 | vi-iym  30a8 Odegard 3016 | vill-lons 3009 Sep 470 |CDF(:2,2 472 | CDF42) an
32:1 o 26.76 o 2671 CDF%7 2665 | CDF(4.4) 4.70

Baboon 16:1 | vill-10/18 2533 | CDF-97  25.08 oa.-i 2498 S+p 59 |chRzé22)  s97 COFE,2) s.98
32:1 Odegard pz] Villk1311 2298 | CDF97 2287 | CDF{4.3) $.96 | CDF{42) 5.97 CDRCA) 5.99

Peppers 16:1 | vill-lois 3519 | CDF-97 3519 | Vill6/10 3516 | CDF(.9) 457  JCDFEC+22) 458 CDR2D) 458
32:1 Vil-6/10 3275 | Vill-1018 3267 | CDF-%10 _ 32.60 COF4,2) 4.58 COFC4) 458

Airplane] 16:1 | vil-loi8  355s | CDF-%7 3534 | Vi3l 3527 Sep 394 | CDFed; 3.95 CDF4.2) 3.95
32:1 ] vil-1048 3198 | Vill-610  31.86 CDF-97 3171 CDFiz:22; 398

Ball 16:1 | CDF-133 3688 | Vill6/10  56.49 Daub2 $6.38 s 078 | Coenz 0.79 S0 0.82
32:1 - 5241 - 52.09 CDF-9/7 51.81 CDECG 0.82

Finger 16:1 | vill-13 2774 | Vil-lo18 2766 | CDF-o11 2757 fobEizi2z; $S0 | DR 5.51 S+P 5.60
32:1 Odegard 24.13 CDF-97 2407 | Vill-1311 2407 | COFie2; 5.50

Teradata| 16:1 | vil-1018 4233 | Vill-1311 4242 Odegard 241 | CDFED) 260 | <DFG.4) 261 |eDEC+22; 262
32:1 - 38.05 Odegard 37.84 CDF-97 3783

Bengali 16:1 Haar 213 Daub2 4.9 CDF-9/71 247 3 1.04 | CDF(22) 1.90 TS 207
32:1 Vill-6/10 19.41 Daub2 19.21 Daubd 19.20

Cmipndl 16:1 Haar 34.51 Daub2 3147 | ville10 3116 s 274 | CDFR22) 346 TS 3.50
32:1 * 25.92 * 2592 | CDF-9/7 2553

Cmpad2 16:1 Haar 34.81 CDF-97 3214 Odegard 3 & 327 | CDFR2) 4 TS 424
32:1 Odegard  25.53 » 25.45 Daub2 2539

Us 16:1 Haar 3332 | CDF-97 3243 | Vill610 3227 s 302 | CDFQ22) 312 S+P 3.16
32:1 A 2857 | Vill6/10 2826 | CDF-%7  27.94 s 3.17

CT 16:1 | vill-lo1g 5137 | Vill-13/11  SL19 Odegard 5112 JCDF(2L2 146 | CDF(4,4) 149 | CDF(22) 153
32:1 . 4577 | CDF-9/7 4552 | Vill6/10 4547 CDF(4,2) 1.49

Acrial 16:1 | vil-l018 2823 Odegard 2811 | Vill-Ivil 2801 S0 5.06 |COE2:22) 509 COFid4) 5.10
32:1 CDF-9/7 2524 | Vill-10/IR _ 25.23 Odegard 25.17 CDF{4.2) 5.09

Airl 16:1 | vill-lo18  27.65 Odegard 21.62 CDF-97 2161 §47 X DR 548 |CDF2+22; 546
32:1 CDF-9/7 2508 - 2501 | Vill-1311___ 25.01 COFa4) 5.45

Air2 16:1 CDF-97  29.59 Odegard 29.59 | Vill1311 2954 [<DEC22; 613 CDF@E.2) 6.14 S+P 6.19
32:1 o 26.75 s 2674 | Vill-1018 2670 CDfed 4) 6.14

Bridge 16:1 CDF-97 2623 | Vill-1018  26.16 Odegard 26.11 Sep 587 |CDF(C:2 587 CDR{4.2) £X
32:1 Jvi1ons 2417 | Vill6/10 2417 | CDF-97 2413 | ¢DF8 587 | cDF(ED) 5.87

Camera 16:1 CDF-977  30.19 Odegard 3009 | Vill610 2989 | ¢pFzn 451 §iP 452 |CDF2:22; 454
32:1 » 26.94 Odegard. 2678 | Vill-10/18  26.68 COFCA) 4.54

Couple 16:1 CDF-977 3526 | CDF-133 3513 Odegard 35.04 CDFQD) 391 CDFED) 392 CDE 1) 393
32:1 . 31.76 | Odegard 3164 | Vill-1018 3163 JCO¥2422) 391 S+p 3.9

Seagull 16:1 CDF-977 285 | Vill-lYIR 2848 | Vill6/10 2846 Sep 555 | CDF.4) 5.55 CDF@4.2) 5.56
32:1 5 25.39 o 25.718 » 2578 | CDFez4: 5.55 CDrE. $.55  CDF2122)  5.56

Mri 16:1 | vili-1018 32385 CDF97 3277 | Vill¢10 3273 §+P 443 COFd,2) 445 COF4) 445
32:1 u 29.46 » 29.15 ” 29.12 CDF(2422)  4.48

Nervecel} 16:1 CDF-97 3396 | Vill-l0/12 3396 Odegard 3390 [CDFi2+22;. 466 | CDFM 467 | COF 467
32:1 > 31.08 Odegard 31.02 | Vill-1¥1__- 31.01 §+P 4.68
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