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ABSTRACT: The difficulties in solving Fredholm integral equations of the first kind are well
known. A classical method has been to convert the equation into a set of m linear algebraic
equations in n unknowns (m=mn). For computational convenience, it is customary to
Jorce m = n and solve the resulting ill-conditioned system using one technique or other.
In the general case, a feasible solution, if it exists, can be found by determining the
generalized inverse of the coefficient matrix. One method of finding the generalized inverse
s to reformulate the problem and observe the steady state response of a system of ordinary
differential equations with prescribed initial conditions. Results obtained from this
reformulation are found to be comparable in quality to those obtained earlier by other
methods. Analog and digital computer implementations are discussed.

I. Introduction

The Fredholm integral equation of the first kind

f:K(x, y) f@)dz = gly), a<y<b, (1)

occurs frequently in many branches of physical and biological sciences.
The hapten-binding equation of immunology (1), for example, is an equation
of this kind. The problem of locating tumors in a body using radiographic
techniques (2) can be formulated as an integral equation of the first kind.
The problem of deducing the structure of a planetary atmosphere from
satellite observations (3) can also be reduced to a mathematical problem
similar to Eq. (1). Indeed Eq. (1), and variations thereof, plays a central
role in many experimental sciences whenever physical data are gathered by
indirect sensing devices as is the case with many remote sensing experiments
4).

The convolution type integral equation, which is a special case of Eq. (1)
with z =1¢, K(x,y)Ah(t—y), plays a central role in the identification of

* The work reported in this paper is supported in part by Grant GK31786 from the
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linear systems. Since the input—output relationships for a time-invariant
linear system can be formulated as an integral equation of the convolution
type, identification of the system’s impulse response, A(t), from a record of
input and output functions f(f) and g(t), requires the solution of an integral
equation such as

f:h(t —7) f(r)dr = g(t).

This type of problem is called a system identification problem. An
equivalent problem is to find the system input, f(¢), given the impulse response
h(t) and the output g(t). This is referred to as input identification. Problems
belonging to the latter class are of general interest in remote sensing experi-
ments, and attention in this paper will therefore be focused on such types of
problems.

Treatment of Eq. (1) is difficult and complicated. For some types of
kernels, a solution is possible only for a restricted class of functions g(y).
For instance, it can be seen, by successive differentiation of Eq. (1), that if
K(x,y) satisfies the linear differential equation of the form

on an—l
3y—n+1’1(?/)5yn—_1+ DY) K2, y) = 0,

then solution to Eq. (1) exists only if g(y) satisfies the same differential
equation. Thus for kernels of this kind there is no well-behaved solution for
arbitrarily well-behaved g(y). The problem is further complicated by the
fact that the solution is extremely sensitive to the presence of noise, such
as measurement errors or rounding errors. Phillips (5) demonstrated that
it is possible to add a finite quantity to any solution f(z) adding only an
infinitesimal amount to the observed function ¢(y). Hence, if K(xz,y) and
9(y) contain any errors at all, the solution f(x) will be unreliable. Typically,
the solution one obtains is unstable and oscillatory. It can also be shown (5)
that the existence of errors converts the problem from one with a unique
solution to one with an infinite number of solutions. To choose one out of
many solutions, it is necessary to impose constraints on the problem. One
suggested constraint is to pick a solution that exhibits a minimum second
difference over the family of solutions. Following this lead, Twomey (6)
formulated the problem as a constrained optimization problem using
Lagrange multipliers. One common feature of both the above methods is
that they require a matrix inversion which is generally a time-consuming
operation. To overcome the storage and time restrictions, Hunt (7) used fast
Fourier transforms to solve the convolution type integral equation. As
pointed out by Hunt, the transform method lacks the generality of the
method suggested by Phillips and Twomey.

The importance of this problem prompted others to try various other
approaches. For instance, Bellman ef al. (8) treated this problem using
dynamic programming in conjunction with a successive approximation
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technique. While agreeing that no one technique can satisfactorily resolve
the fundamental problem of obtaining sensible solutions from ill-conditioned
systems, the authors strived to point out that a reasonable compromise is
to combine various techniques such as dynamic programming, successive
approximations, extrapolation and smoothing.

II. Motivation

The method described in this paper is new and radically different from all
the earlier methods. Essentially, this method is an application of a recent
result obtained by Menhertz et al. (9). This method converts the problem
of solving the integral equation into an equivalent one of solving a system
of ordinary differential equations with prescribed initial conditions. Thus,
the problem becomes amenable for solution on digital, analog or hybrid
computers.

The idea of reformulating an integral equation as an initial value problem
is not entirely new. Fredholm integral equations of the second kind have
been reformulated as systems of ordinary differential equations using
invariant imbedding (10). These equations have also been solved on an
analog/hybrid computer (11). To date, however, Fredholm integral equations
of the first kind have not been solved after reformulating them as initial
value problems. Also, the possibility of using an analog computer to solve
Fredholm equations of the first kind appears to be new.

A first step in the new procedure is to replace, as is usually done in con-
ventional methods, the continuous variable y with a finite set of mesh

points ¥y, Y, -« Yy
a<Y;<Ys<...<Y,<b

and to write

b
gly) = LK(ac,yl)f(x)dx

i
9(tm) = LK(oo,ym)f(x)dx. (@)

In experimental sciences g(y,)Ag; (¢ = 1,2,...,m) generally correspond to m
experimentally observed data points. For simplicity, these data are assumed
to be noise-free even though the contrary is generally true.

The second step.of the discretization process is to replace the continuous
variable x by a finite set of mesh points x;, z,, ..., x, such that

O <<t < b

To carry out this step, each of the integrals in Eq. (2) is replaced by a
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suitably chosen numerical quadrature formula to yield

n

9y~ Zw; Kz, yq) fl2;),

Jj=1

n

9(Ym) = lejK (@) Ym) S (@5),

9 —

where w,, w,, ..., w, are the weights associated with the quadrature formula.
Equation (3), in vector-matrix notation, is

g Af, (4)

where g = [9(41), 9(¥2): 9¥s), - 9W)IT [ = [f(@1).f(@,), ... f(%,)]" in which
the superscript T denotes the transpose and 4 is an (m x n) matrix given by

w; K(x,9,) waK(2,9,) ... w, K(z,,9,)
A= | K@,y wK(@y,ys) ... w,K(@,,y,)
wl K(xl’ ym) wz K(xz’ ym) wn K(xnﬂ ym)

As Eq. (4) represents m equations in #» unknowns, a usual procedure is
to force m = n and recover f by inverting the resulting square matrix 4.
However, it can be shown (12) that A4 isill-conditioned and indeed approaches,
in the limit as n—>o00 and m—o0, the Hilbert matrix. Indeed, choosing 7
larger and larger to reduce the discretization error is not a panacea to the
ill-conditioning problem. On the one hand, large n demands that we make m
correspondingly larger (i.e. in effect make more measurements). On the
other hand, large n tends to make 4 more and more ill-conditioned. Making
n too small is also not desirable as it renders the approximation very crude.
Indeed, almost all the techniques reviewed earlier are aimed at the problem
of inverting the ill-conditioned matrix 4 or at by-passing the inversion
problem completely.

The method suggested in this paper offers several advantages: (1) It no
longer requires A to be a square matrix; (2) The problem of inverting an
ill-conditioned matrix is completely by-passed by reformulating the problem
as one of solving a set of ordinary differential equations as initial value
problems; (3) For the first time, Fredholm integral equations of the first
kind can be solved on analog/hybrid computers; (4) The problem of estimat-
ing the kernel K(z,y) from input-output data is now relatively straight-
forward as several estimation techniques can be readily applied to the new
formulation.

III. Description of the Initial Value Method

The starting point of the method is Eq. (4) which is reproduced here for
convenience

Af—gq
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While solving Eq. (4), the system may exhibit one of three characteristics:
(1) the system may be infeasible (i.e. no solution may exist); (2) the system
may have an infinite number of solutions; or (3) the system may have a
unique solution. Regardless of the nature of the system, a reasonable
approach is to minimize the error (4f—g) in a least square sense. Among
the class of vectors f that minimize the Eucledean norm of the error, there
exists a unique vector A+g which is of least norm where 4+ is the generalized
inverse of A (13, 14). Thus the problem of solving the integral Eq. (1) is
equivalent to solving Eq. (4), which in turn is tantamount to finding the
generalized inverse of 4. This observation is the point of departure between
the conventional methods and the new method.

There exist many elegant iterative methods of determining the generalized
inverse of an arbitrary rectangular matrix (15). However, for an initial
value formulation, the task of finding 4+ is made possible by the following
theorems (9, 16).

Theorem I. For any arbitrary real (m x n) matrix 4 the inverse is given by

A+ = lim [(Al + AT A)-1 4T]. (5)
A-0

Proof of Theorem I. This can be found in the paper of Manhertz et al. (9).

Theorem II. For any real, finite (m x n) matrix 4 and column vector g,
the system

ft)y=—AT Af+ ATy,

(6)
f0)=0
has a unique asymptotic solution given by
lim f(t) = A+g. (7)
t->0

Theorem II can be readily proved by taking Laplace transforms on both
sides of Eq. (6) and applying the Final Value Theorem :

F(s) = (1/s)(sI+ AT A)1 AT, (8)
lim f(¢) = limsF(s) = lim (s/ + AT A)1 ATg. (9)
{0 $-0 §-0

Equations (9) and (5) give the result shown in Eq. (7).

Thus, if Eq. (6) is programmed, say, on an analog computer, and if the
computer is allowed to reach steady state (i.e. the integrator outputs become
sufficiently constant), the value of f(f) obtained constitutes a solution of the
given integral equation.

Note that AT 4 is at best positive semidefinite (9). Therefore an unforced
version of Eq. (6) is not necessarily stable. The forced system, however, is
stable due to the form of the forcing function ATg. Since ATg cannot be
programmed exactly anyway, Eq. (6) can be slightly modified to ensure
stability, i.e.

f=—(4ATA+8I) f+ ATy,

10
f(O) =0, ( )
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where § is a small positive scalar and I is the identity matrix. If § is small
compared to the nonzero eigenvalues of AT 4, then the error introduced is
small. In practice, a small § can be chosen first and as the solution reaches
its asymptotic value, the value of § may be made smaller and smaller until
no further improvement in the solution is possible.

IV. Illustrative Examples

The procedure suggested in the preceding section was applied to solve
three different problems. The results are compared with solutions of the
same problems obtained by others. To facilitate comparison, only the cases
in which the matrix A4 is chosen to be square (i.e. m = n) are presented here
even though these three problems were solved using various combinations
of m and n with m#mn. Secondly, while implementing the new method,
Simpson’s quadrature formula was used whenever the number of grid
points in the integration formula (i.e. n) is odd and Newton—Coates closed
integration formula was used whenever n is even. The resulting systems of
ordinary differential equations were solved (1) on a digital computer in
conjunction with a Runge-Kutta fourth-order method and (2) on an analog
computer. Even though all the examples were also solved on an EAT 680
analog computer only the results obtained from one problem are reported
in this paper.

Example 1 (the Bellman problem)

X
fo(x‘?/)zf(x)dw=%y2—%y+%, 0<y<l. (11)

This problem was first discussed by Bellman et al. (8). Solution of this
equation is readily seen to be f(x) = « by direct integration of the left side.
Bellman et al. discretized this problem into an 11 x 11 linear system

de—b
using Simpson’s quadrature formula where
b,=3y2—%y;+% i=1,2,...,11,
ay = fowiz; =y, ij=12,..,1L
with the weighting coefficients w; given by
ooyl = $4, 24, s 204, Lt Gimils il

The solution obtained by direct inversion (see Fig. 1) shows wide oscillations.
This problem is solved once again using the new method for three different
values of m = n = 6,7, 11. The results are shown in Fig. 2.
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7(x)

0 1

(o] OIZ : 0'4 ; OTS s 028 : l~‘0
X
F1c. 2. Solution of Eq. (11), for » = 6, 7 and 11, using the initial value formulation.

Example 2 (the Fox—Goodwin problem)

fl(x2+y2)*f(x)dx=%[(1+2/2)*—y3], 0<y<l. (13)
0

This equation was first discussed by Fox and Goodwin (17). The solution
of this equation is f(x) = «. Using Simpson’s quadrature, respectively, with
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5 and 9 grid points Fox and Goodwin noted that a smaller interval led to a
more oscillatory solution. Use of the more powerful Gaussian formulae also
led to a similar phenomenon. Rust and Burrows (18) repeated this problem
and noted that a small discretization interval, even though it tends to
oscillate more vigorously, yields a better approximation. Some typical
results are reproduced in Fig. 3.

This problem is solved once again by the new method with #» = 5 in con-
juction with Simpson’s quadrature and with » = 6 in conjunction with the
Newton—Coates formula. The results are shown in Fig. 4.

Lar

1 1 1 1 1 1 1 31

0 |

Fic. 4. Solution of Eq. (13), with n = 5 and 6, using the initial value formulation.
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Example 3 (the Phillips problem)

+6
_eK(x,y)f(w)dx=g(y), ly|<6, ' (14)
where
1+cosw, lz—y|<3, |y|<6,
K(x’y)= 3 (15)
0, |z—y|=3, |y|<6,
and
= tosa ¥ o 2. gl
e (6 !yl)[1+20083}+2ﬂsm 3 1YI<6, (16)

0, |y|>6.

This problem was first suggested by Phillips (5). The solution of the above
equation is
1+cosimx, |z|<3,
fl@) = (17)

0 ol >3

Phillips solved this problem by discretizing the problem using Simpson’s
rule and solving the linear system via Gaussian elimination. His results are
shown in Fig. 5.

Results obtained by the new method are shown in Fig. 6.

30
2:5
20

r(x) I'5

s 1 L 1 1 rt
-6 = [¢] 3 6
X

Fre. 5. Phillips’ solution of Eq. (14), for » = 13 and 25, using Gaussian elimination.

Vol. 297, No. 8, March 1974 195



V. Vemuri and Fang-pai Chen

20
15
F(x) 1-0

05

X

Fic. 6. Solution of Eq. (14), with n = 13 and 25, using the initial value formulation.

Example 4 (the Fox—Goodwin problem on an analog computer)

To demonstrate the feasibility of solving these equations on an analog
computer, Example 2 is repeated once again on an analog computer. The
solutions are shown in Fig. 7. As time increased, the integrator outputs

fq O5F

l

s osr
|

e 0'5{

F1c. 7. Typical outputs of some integrators while solving Eq. (13), with n = 6, on an
analog computer using initial value formulation. Each integrator output at steady
state corresponds to f; = >, af; g;, where f;, a;; and g; are defined in Eq. (4).

#

exhibited an apparent steady state for a while and began to diverge slowly.
This behavior is due to terms like c;exp (+;t) (o;>0) in the solution
which are due to small errors such as truncation errors and errors due to
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approximation of the kernel. Attempts to minimize errors due to approxi-
mating the kernel resulted in a wild oscillation of the solution, perhaps
because of the poor conditioning of the resulting system. Filtering techniques
to impart stability, by removing the undesirable components, are discussed
in the sequel.

V. Improvements

The preceding section essentially demonstrates the feasibility of the new
method of solving Fredholm integral equations of the first kind as an initial
value problem on digital or analog computers. As can be seen, by comparison,
the results are comparable in quality to those obtained by other methods.
In the course of several experiments with various grid sizes, it was noted, as
expected, that as the grid size used in integration formulas decreases the
system becomes more and more ill-conditioned and the solution more and
more oscillatory. Secondly, the solution of the ordinary differential equations,
viz. Eq. (6), never achieves a true steady state. The reason for this is the
presence of small unwanted eigenvalues introduced by the approximation
process. Both of these problems can be remedied to some extent by a suitably
chosen filtering process. Phillips and Towmey (5, 6) attempted this filtering
by writing the solution f of Eq. (4), as

f=(ATA4+yH) 147y, (18)

where H is a constraint matrix of some convenient form. Specifically,
Phillips and Towmey chose H to be the second difference matrix, i.e.

1 =2 {

T e |
H= : (19)
e e R

..............

Following this lead, the initial value formulation shown in Eq. (6) is
rewritten as

f(t) = — (AT A +yH) f(t) + A"y,
f(0) = 0. (20)

Note that this equation is the same as Eq. (10), obtained earlier from a
stability argument, if H = I and y = 8. The three model problems are solved
once again using Eq. (20), rather than Eq. (6). Each problem is repeated with
various values of y, and some selected results are shown in Figs. 8-11.
It can be seen that Phillips’ problem, with the best behaved kernel of all
three, required only a small value of y (i.e. required the least amount of
smoothing) in order to match the exact solution.
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/~—TRUE
E +
s
7(x) o6 o
L /+/ n=1l
o4 +
; i
L +
#
o2k +7
5 +/
7
0 1 1 1 1 I Y L ' 1 1
[0} 0-2 04 06 08 I-0
*

F16. 8. Solution of Eq. (11), for n = 11, using a smoothing technique, i.e. by imple-
menting Eq. (20).

I-or +
= TRUE /.,./
B \/4‘
o-6F T
g +/+/
f(x) ==
r —+ n=1l
0-2r /+
i
-0-2F
_0.6_
1 ' 1 1 | g 1 1 1 1 )
0-2 0-4 06 0-8 |
X

Fie. 9. Solution of Eq. (13), for n = 11, using a smoothing technique, i.e. by imple-
menting Eq. (20).

20r /+\

(X 10

- / \

g,
S
40N

F16. 10. Solution of Eq. (14), for n = 13, using a smoothing technique, i.e. by imple-
menting Eq. (20).
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2:0r +.
e
.
1:5( /+ +\ n=25
1:or + *
£ / \/TRUE
(075] /+ \
+ +
Of+—t—t 4 4 4~ e
1 1 1 ]
=6 =3 (0] 3 6

Tic. 11. Solution of Eq. (14), for n = 25, using a smoothing technique, i.e. by imple-
menting Eq. (20).

VI. Discussion and Conclusions

This paper has demonstrated the utility of a new method of solving
Fredholm integral equations of the first kind. The first step of the method
involves, as usual, the replacement of the integral by a summation and
rewriting the integral equation as Af = g. However, it isno longer required that
the resulting coefficient matrix 4 be square. In practical problems this means
freedom in choosing the step size of the integration algorithm independent
of the number of data points available on g. The next stage involves solving
for f as f = A+g where A+ is the generalized inverse of 4. Instead of finding
A+ using iterative methods, the method determined A+ by looking at the
steady state solution of a set of ordinary differential equations with specified
initial conditions. This reformulation allows one to use the powerful
techniques associated with ordinary differential equations. Just as 4 (or
AT A4) is often ill-conditioned, the ordinary differential equations obtained
after the reformulation also tend to be unstable. At this point, the well-
developed stability theory of ordinary differential equations can be readily
used to tackle the stability problem. Furthermore, the initial value formu-
lation allows one to solve the given equation in near real time by obtaining
the solution using an analog or hybrid computer.

To improve the quality of solutions obtained, a stabilizing technique has
been used. The crux of the idea is to render AT 4 +yH positive definite by
choosing a sufficiently large y using a trial and error procedure. It was noted
that the bigger the value of y, the slower the convergence. If y is too small,
the solution is oscillatory. The present investigation, among other things,
is aimed at determining an optimum value of y for any given problem.
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