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Abstract—A discretized version of Fredholm integral equation of the first kind is solved using an interval
programming algorithm and the results are compared with an initial value method.

1. INTRODUCTION
The Fredholm integral equation of the first kind

f K y)f)dx=g(y); c<y=d (1)

where f, g and K are real valued functions defined, respectively, on[a, b] C R',[c,d] C R' and
[c,d]1X[a,b] C R? occurs in a wide variety of situations involving measurements made with
imperfect instruments[1-11]. Typically, the function g(y) would represent the quantity being
measured, K is a property of the measuring device and f is the unknown function to be
recovered. In an ideal measuring situation, the kernel K (x, y) = 8(x — y), the delta function; then
f(y)=g(y). In practical situations, a broadened function, such as a Gaussian distribution
function, takes the place of the delta function. This results in a smearing of f which in turn means
a loss of information. The problem of recovering the value of f from observed values of g is
therefore not trivial. This nontriviality, which stems from an ill-posedness of the physical
problem, translates into nontrivial computational difficulties. For instance, a discretized version
of eqn (1) typically tends to be ill-conditioned or underdetermined. Thus, the method described
here can also be viewed as one for solving underdetermined systems of linear equations and this
has a wide applicability in problems such as the reconstruction of objects from images.

A number of investigators[12-23] proposed a variety of methods to solve eqn (1) and each
achieved some measure of success (see Section 2). The purpose of this paper is to demonstrate
the feasibility of applying an interval programming (IP) technique to solve eqn (1).

2. PREVIOUS METHODS

Eddington[12] suggested a Taylor series solution which is applicable for the integration range
— to ® and when K(x,y) is of the form K(x —y). His solution was semi-convergent if the
values of the kernel K (x —y) are sharply peaked, and if f(x) and g(y) are relatively smoother
than K(x —y). Lane, Moorehouse and Phillips[3] extended this method to the case of a finite
integration interval using Fourier series. Tichanov’s[13, 14] regularization technique assumes a
unique solution f(x) corresponding to an errorless measurement g(y). Assuming that both f(x)
and g(y) to be continuous and piecewise smooth, Tichanov determined the function f(x) that
minimizes a functional defined as

M), g0l =a f [q()[f' GO + p () [ (x)P] dx + f e dt

a

where q(x) and p(x) are fixed positive functions and « is a parameter. The € in the second term
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on the right is just the residual, i.e. the difference between the left and right sides of eqn (1). The
first term on the right is referred to as the regularization functional.

Bellman et al.[15] treated eqn (1) using dynamic programming in conjunction with a
successive approximation technique. While agreeing that no one technique can satisfactorily
resolve the fundamental problem of obtaining sensible solutions from ill-conditioned systems, the
authors strived to point out that a reasonable compromise is to combine various techniques in
optimal manner. In a discussion of the difficulties involved in solving eqn (1), Phillips[16]
demonstrated that the existence of errors converts the problem from one with a unique solution
to one with infinitely many solutions. To pick one, out of many solutions, it is necessary to
impose constraints. Phillips picks the solution that minimizes [% [f"(x)I* dx over the family of
solutions. This type of smoothing can also be achieved using other types of criteria. Following
Phillips’ lead, Towmey[17] formulated the problem as a constrained optimization problem using
Lagrange multipliers. One common feature of the preceeding methods is that they require a
matrix to be inverted which is, in general, a time consuming operation. To overcome the storage
and time restrictions, Hunt used fast Fourier transforms. This method lacks the generality of
Phillips-Towmey method. Recently, the author[18, 19] suggested an initial value formulation
which converts the original problem into another requiring solution of a system of ordinary
differential equations with prescribed initial conditions. This method was implemented on both
analog and digital computers with promising results.

3. DISCRETIZATION

A standard method of solving eqn (1) is to replace the continuous variable y with a finite set of
mesh points yi, ya, ..., Y. such that a <y, <y,<ys... <y, <b and to write

gy = [ K(x, y)f(x) dx

2(ym) = f K(x, ya)f(x) dx.

In experimental situations g(y:) 2 g, i =1,2,..., m, generally correspond to m experimentally
observed data points.

The next step of the discretization process is to replace the continuous variable x by a finite
set of mesh points x;, X,, ..., X, such that a =x; <x,<...<x, <b.

To carry out this step, each of the integrals in eqn (2) is replaced by a suitably chosen
numerical quadrature formula to yield

gly)= Z wiK (x;, y)f(x;)

g(ym) = §=)1 wiK (x5, ym )f (x;)

where wy, Wa, . .., w, are the weights associated with the quadrature formula. Equation (3) in
vector-matrix notation is

g =~ Bf

where g =[g(y1), (32, ..., 81" f=1f(x1), f(x2),...,f(x.)]" in which the superscript T
denotes the transpose and B is an m X n matrix given by

wiK(x1,y1) W2K(X3,¥1) ... WK (Xn, y1)
wiK(x1,y2) waK(X2,y2) ... waK(Xs, ¥2)
B=]|-

wiK (X1, Ym) W2K (X2, Ym) ... WaK(Xn, Ym) | - &)
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The solution of the integral eqn (1) is thus equivalent to the solution of the matrix eqn (4).
There are many possible sources for error in experimental and computational processes:
inaccuracies in the original recorded data, truncation errors resulting from quadrature
approximations, rounding errors caused due to the finite word length of digital computers. To
accommodate at least some of these errors, eqn (4) is rewritten as

g=Bf+e (6)

where € € R™ is a vector of errors in the measured values of g.

Solution of eqn (6) is beset with difficulties primarily because of the poor conditioning of
matrix B. While eqn (1) is ill-posed, the matrix B in eqn (6) is ill-conditioned. Equation (1) is
sensitive to measurement errors and sampling errors. If one attempts to choose m and n larger
and larger in an effort to avoid discretization or sampling errors, the condition of B will
correspondingly deteriorate. It can be shown that as m — and n - «, then B indeed approaches
the Hilbert matrix, which is often cited as a classical example of an ill-conditioned matrix. That is
to say that large n tends to make B more and more ill-conditioned. Making n too small is not
desirable either as it tends to make the approximation very crude.

The basic difficulty with ill-posed problems is the lack of sufficient information from
measurements to infer the correct solution. This is reflected mathematically in the fact that the
system determinant B tends to be underdetermined, or rank deficient, even if it is formally
overdetermined (i.e. more rows than columns). An obvious approach, then, is to augment the data
with any additional knowledge of the nature of the quantity being measured in order to obtain
approximate solutions which are physically meaningful. One method of accomplishing this
objective is to translate some of the physical insight into additional mathematical constraints. For
instance, the error vector ¢ is usually composed of both measurement errors, and discretization
and rounding errors associated with the computation. In well designed experiments that utilize
well calibrated instruments, the errors vector can be assumed to have zero mean. This can be
translated into the constraint —e, <€ <+e¢, where €, is a measure of the spread of error
distribution. Therefore, the task of solving eqn (1), or eqn (5), can be posed as an L,
approximation problem:

Minimize D |e|
=1
Subjectto Bx+e=g, —€ <€<¢,. @)

If matrix B has more rows than columns (i.e. m > n), then it is advantageous to work with the
dual problem

Maximize tTy
Subjectto BTy=0, —-e<y<e

where the vector e is defined as e =(1,1,...,1)" for program standardization. This operation
may require a scaling of the original equations.

4. THE INTERVAL PROGRAMMING ALGORITHM
Equation (7) can be rewritten in the standard interval programming (IP) format as

maximize t"y (8a)

subjectto b =Ay=<b" (8b)

where

a3 o= =)

Robers and Ben-Israel [24, 25] suggested an efficient supoptimization algorithm for solving the IP



412 V. VEMuRI and P. C. TapiA

problem posed in eqn (8). This method, which is finite-iterative in nature, attempts to solve eqn (8)
in terms of an auxilary problem. For the vth iteration (v = 1), this auxilary problem takes the
form:

maximize t7y (8a)
subjectto b~ =A®y =<h™" (8c)
bh(v)—sah(v)y = bh(V)* (8d)

where eqn (8c) is a set of n constraints from eqn (8b) chosen such that A’ is nonsingular and eqn
(8d) is a single constraint equation arbitrarily picked from the remaining (m — n) equations of eqn
(8b). Thus, eqns (8a, c, d) constitute a subproblem of the one defined by eqns (8a, b).

The calculations to be performed at the vth iteration are now described below. Let

y®~P = optimal solution of eqns (8a, c)
y® = optimal solution of eqns (8a, c, d).

To start the process, let, for v =1
AQ=T, JpRs=iigrinptz 9

and let eqn (8d) be any constraint from the remaining constraints 0 < B”y < 0 of eqn (8b). Then,
the starting solution y© = (y{,... y®)" where

1 if >0
yo=i-l=@=+1 "Ha=0." i-172...,0
is clearly a solution of the subproblem

maximize t7y
subjectto —e=<y<e. (11)

Thus, the procedure can get started with a feasible solution. For » = 1, the values of y“~" and
[A®] " are already known. Now, if y~", the optimal solution of eqns (8a, c), satisfies eqn (8d) also,
then by the earlier definition

y sy (12)

Otherwise, y* can be obtained from y®~" as follows: Let A, defined below, be the amount by
which eqn (8d) is violated by y®~"

_ [ah@yed_ prer if positive
A= {ah(v)y(v—l) — pr- if negative. 2
Now let
O -"lil=i=n, (a" (A ") #0, y; =0}, (14)
where
y i -1y
= WA ik

Y ((1 h(v)(A(v))—l)i
be an index set of the components of (a®’y®~"). Notice that Q is the set of components of
(A®y®~") which can be changed in order to move eqn (8d) to feasibility while maintaining
feasibility in eqn (8c) and y; can be interpreted as the marginal cost of such a change.



On solving Fredholm integral equations of the first kind 413

Now, the indices in Q are ordered such that
Q=(ki,ks...ky) (16)
where
V=S YeSYeS .o = Vi 17

If yi, = ., then as an arbitrary tie-breaking rule, it is proposed to set k; < k; ..
Now a modified delta is defined as

e {(b"’" AT VR HGSR AT SRt SNA YY), (18)
Tl -A®y* ), if sign A= —sign (a"*(A®)™).
for k € Q. Introducing
p = min [i: l<i=gq, lz &, (a"‘"’(A"”)“)k,.I = |A|] (19)
j=1
and
p—1
i A 0 2 ak,«(a h(v)(A (v))—l)kj
- =
U= (a h(v)(A(v))ﬂ)kp (20)
Now y® can be expressed in terms of y® "
p—1
y(v) e y(v—1)+ (A(V))—l [2 8k.-ekl- 3 Gek‘,] (21)
i=1

where e, is the kth unit vector.

Here 8, is the maximal change of (A“’y®~"), in moving eqn (8d) towards feasibility without
violating eqn (8c). In effect, y* is obtained from y " by making p such changes. If the y’ thus
obtained satisfies all the constraints of eqn (8b), then the problem is solved. In going from »th to
(v + Dth iteration, the k, th constraint of eqn (8c) is replaced by eqn (8d). In place of eqn (8d), any
constraint from eqn (8b) that is violated by y®’ is used. The algorithm terminates after a finite
number, say f, of iterations and y* is the optimal solution of the auxilary problem defined by
eqns (8a, c and d). This optimal solution y’ can now be used to obtain the optimal solution € * and
x* of eqn (6) as follows.

At the end of the final iteration, A “*" is obtained from A as a result of replacing the latter’s
k,th row with a*®. Then

He {0 if row j of BT is notin A**" 5
o tT(AYT) Y, if row j of BT is the ith row of AY*" (22)

and
e*=t_Bx*. (23)

5. ILLUSTRATIVE EXAMPLES
The interval programming algorithm described in the preceeding section was applied to solve
several problems [26] and the results were compared with those obtained by other methods. Some
of the more interesting results are presented in this section. In all cases, the starting point was an
equation such as eqn (1). The matrix B in eqn (5) was obtained by using Simpson’s quadrature at
eqn (3).
In all cases, the right side of eqn (1), namely g(y) is assumed to be known and one is required
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to find f(x). Therefore, the values of g(y;),i =1, ..., m, are first evaluated and their information
is corrupted with a random noise € whose mean value can be changed as a parameter. To
facilitate comparison, only simple problems for which f(x) can be exactly evaluated are
considered. Thus, the function to be recovered from observational data is indeed known a priori.
The computational algorithm produces a set of points f(x;). Then an interpolating polynomial
¢(x) is fitted to the above set of points.

Example 1
Consider
e L]
[ Kanfw =gy 3sy=7 24)
with
S Sl (25)
f(x)=1/3x>-3x>+8x +1. (26)

This problem was discussed earlier by Vemuri[19]. If one performs the integration indicated in
eqn (1), one readily gets an expression for g(y). This was evaluated for various values of y; and
was used as data to recover f(x;) for all i. To facilitate comparison, an interpolating polynomial
¢ (x), defined by,

d(x)=cot+ C1X + C2x2 + ¢ax> 27

was fitted to the set of points f(x;) and the ¢; are compared with the coefficients in eqn (27).
Figure 1 shows a faithfully recovered solution f(x;) when no errors were introduced.
Although, Fig. 1 shows an apparently perfect fit, the polynomial coefficients c; are not the same.
Table 1 shows this comparison.
Figure 2 shows the behavior of the solution f(x) as the errors € are introduced and increased
and Fig. 3 shows the behavior of the solution as the number m of constraints are varied. Figure 4

8.97

4

1.30 2.10 2:90 3.70 4.50

Fig. 1. Solution of eqn (24) using the interval programming algorithm.
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Table 1.
Coefficient Original value IP solution
[ 1.00 E +00 7.00 E +00
C2 8.00 E +00 25 E +00
C3 -3.00 E +00 =~ 186 E- 1D
C4 3B E-0I 521 E +00
g 93 L Mean Test Error = 0.01
True
Function

(M=20,50)

i A 1 A A

1330 2:10 2.90 3.70 4.50

Fig.2. Solution of eqn (24) with varying number of constraints and with a mean observational error = 0.01.

True
(e=0.0001) Function

I 4 A I

A
1.30 2.10 2.90 3.70 4.50

Fig. 3. Solution of eqn (24) with varying amount of mean observational error.
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8.97
8.19. ¢
True
Function
TAN It
6.63 |
585 F

Recovered Solution

(a)
8.97 t
8.39.F True
Function
7:41 }
6. 63 Recovered

Solution

1 1 1 ' A :
1:30 2.10 2.90 3.70 4.50
(b)
Fig. 4. Solution of eqn (24) using the analog computer method described in Ref. [19], Fig. 4a was obtained with
no smoothing and Fig. 4b with a smoothing factor y = 0.05.

shows the results obtained by an analog computer method reported earlier[19]. This figure is
reproduced for comparison purposes only.

Example 2
Instruments for optical imaging are employed with the assumption that the intensity at each

point y of the image depends solely on the intensity of a single point x of the source. After
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observing the intensity g(y) throughout the image, one can invert eqn (1), once again, to get the
source function f(x). Calibrating the instrument corresponds to a mathematical formulation of

the kernel K (x, y).
Consider an optical device with a kernel defined by

K(x,y)=K(¢, 0) =[cos ¢ +cos 0)((sin a))a)]
with
a = (mal))(sin ¢ +sin 6).
The angle of incidence ¢ defines the location of the source and the angle of emergence defines
the location of the image points. Traditionally, an undeviated ray is assumed to be described by

6 = — ¢ and the slit width consists of only one wavelength, i.e. a = A. In practical applications,
the objects mostly examined had the form of superimposed Gaussians

f(x)=x(¢)=exp(—ci(¢ —d)’) +k exp (—cx¢ - dy)’)

with k = 1, ¢, and ¢, as high as 16, and d, and d, as small as + 1/4. Shaw [27] solved this problem
using the set of parameters

ci=c=4 S5 =¢ =15 k=1

The above problem was solved once again using the IP algorithm. Shaw’s original result
is shown in Fig. 5 and the IP solution in Fig. 6.

0.996 [ 2

0..332 |-

0.166

& |

=10 =0.5 0.0 0.5 1.0

Fig. 5. Solution of the image restoration problem using Shaw’s method.

DISCUSSION
This paper essentially demonstrated the feasibility of solving some types of Fredholm integral
equation of the first kind using interval programming. The accuracy of the method is not readily
apparent from the graphs but the computer output revealed that the method is at least as good as
most of the available methods cited in the earlier part of the paper. Further comparitive studies
would be useful in establishing the relative merits of various methods in different circumstances.
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-1.0 0.5 0.0 0.5 1.0

Fig. 6. Solution of the image restoration problem using the interval programming method.
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