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Abstract

This paper demonstrates that artificial neural network (ANN) tech-
niques can be used in detecting intruders logging onto a computer net-
work when computer users are profiled accurately. The paper compares
the performance of the gradient descent back propagation (BP) with
momentum, the conjugate gradient BP, and the quasi-Newton methods
in detecting intruders using synthetically generated authorized user and
intruder profiles.

1. Introduction

Computer security issues are becoming headline grabbing items. Accord-
ing to one news report, our computer systems are being attacked hundreds
of times-each day. Internet security, and our ability to enforce it, is likely
to determine the extent to which we can harness cyberspace for conducting
business-and indeed our own lives. Internet security is a catchall term and can
mean different things to different people. Network security, server security,
user authentication, user authorization, data integrity, data privacy and many
more come under the general rubric of Internet security.
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According to one taxonomy [1], Internet security issues fall into two broad
categories: preventive and enabling. The preventive aspect of Internet secu-
rity has so far captured much attention primarily due to the activities of the
headline-grabbing malicious hackers, network intruders, and other black-hat
denizens of the cyberspace. Prominent among the defenses one can provide
in this area are well-designed routers, firewalls, intrusion detection systems
and anti-virus software. The enabling aspect of Internet security addresses
the problem from a different perspective. Instead of using technologies like
private lines, X.25 and frame relay circuits over a private provider, here one
focuses on methods of securely transporting sensitive data over the Internet.
Proponents of this approach offer the Virtual Private Network (VPN) as a
potential solution. VPN offers secure site-to-site connectivity using private
(i.e., using data encryption and authentication technology) and virtual circuits
(i.e., no physical end-to-end connectivity).

In any on-line activity, whether it is e-mail, file transfer, web surfing, down-
loading, or commercial trade, a number of component activities-say, the web
server, data transaction protocol, client side software and operating systems
software-come into play. A failure or intrusion at any one of these levels may
compromise the entire transaction. Data transaction security protocols and
encryption methods provide security to data in transit; they do not provide
security on either end of the transaction. A flaw in the web server software,
for instance, may allow an intruder access to the complete transaction records
without breaking any encrypted text. Therefore, intrusion detection continues
to be an important problem in the overall context of network security.

The focus of this paper, therefore, is on intrusion detection as a preven-
tive measure. The objective is to explore the potential of artificial neural
networks as on-line, real-time tools for detecting intrusive activities as they
occur. Toward this goal, the objective is to construct a model that captures a
set of user attributes and determine if that set of user attributes belongs to the
class of authorized users or to that of intruders. The premise is that any user
logging onto a computer can be uniquely characterized by a set of attributes
and those attributes can be monitored, measured and quantified [2].

The relevance of ANN’s in intrusion detection becomes apparent when
one views the intrusion detection problem as a pattern classification problem.
Using profiles of authorized computer users [2], one can train an ANN to rec-
ognize the authorized users in the incoming traffic, thus separating authorized
traffic from intrusion traffic. More importantly, many of the current intrusion
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detection techniques cannot detect new and novel attack patterns. It is pre-
cisely in this area that the learning and generalization capabilities of ANN’s
can be exploited.

The rest of the paper is organized as follows. Section 2 defines and formu-
lates the problem of using neural network for intrusion detection. Section 3
gives an overview of the different neural network methods used in detecting
the intruders. Section 4 covers the generation of the training and test data
sets. Section 5 summarizes the results and compares the performances of the
various neural network methods. Section 6 summarizes the research findings.
Finally, Section 7 gives a brief conclusion of the research and points to new
research areas.

2. Mathematical Formulation of the Problem

Mathematically speaking, the problem can be stated as follows. Given a train-
ing data set S, the goal is to establish a mapping from any given input vector
X to an output class d.

P2 {(xi,yi) S Rp,d}

Here x =input vector, y = corresponding output, and d = the desired output.

From a modeling perspective [3], the objective is to seek a model that
provides the best fit to the given training data and the best prediction capability
with future observed data (also known as test data set), while minimizing model
complexity.

The above objective is typically accomplished by building a model (i. e.,
the neural net, or equivalently, the mapping function) and train it prior to using
that model for intrusion detection. During the training phase, a performance
index, defined in terms of the error, e is minimized.

e=d—y

3. The Back Propagation Class of
Training Methods

The back propagation method is a popular technique to train multi-layer feed-
forward neural networks in a supervised manner. This method is well known
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and details can be found in the published literature [4, 5]. What follows is
a brief synopsis of the methods and formulas used in this study. In each of
these methods, the term “training” refers to the systematic procedure used
to adjust the “weights” in a weighted sum of inputs that is responsible for
activating a neuron. The sigmoidal activation [5] is used in this study. The
back propagation methods are the gradient descent with momentum (GDM),
the conjugate gradient descent (CGP) and the quasi Newton (BFGS).

3.1. GD with Momentum BP (GDM)

The simplest back propagation method is the gradient descent method. In the
gradient descent method, the network weights are updated in a manner that
the value of the performance index decreases most rapidly. That is, the new
weight vector wy is obtained according to:

Wk+1 = Wi — Q8

where the parameter « is the learning rate and g is the gradient of the error
with respect to the weight vector. The negative sign indicates that the new
weight vector wj; is moving in a direction opposite to that of the gradient.

However, the gradient descent method is slow to converge. Gradient
descent with momentum (GDM), a modified version of the gradient descent,
is faster. In GDM, the new weight vector wy; is defined by

Wit+1 = Wi — Q8r + UWg_

where p is the so-called momentum term. The GDM allows a network to
respond not only to the local gradient, but also to trends in the error surface.
Without momentum a network may get stuck in a shallow local minimum. With
momentum a network can slide through such a minimum [5, 6]. Momentum
can be added to BP method learning by making weight changes equal to the
sum of a fraction of the last weight change and the new change suggested by
the gradient descent BP rule. The magnitude of the effect that the last weight
change is allowed to have is mediated by the momentum term, x, which can
be any number between 0 and 1. When the momentum term is 0, the weight
change is based solely on the gradient. When the momentum term is 1 the
new weight change is set to equal the last weight change and the gradient
information is simply ignored.
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3.2. Conjugate Gradient BP (CGP)

The basic gradient descent BP algorithm adjusts the weights in the steepest
descent direction. This is the direction in which the performance function
is decreasing most rapidly. Although the function decreases most rapidly
along the negative of the gradient, this does not necessarily produce the fastest
convergence. In the conjugate gradient algorithms a search is performed along
conjugate directions, which produces generally faster convergence than the
steepest descent method. In the conjugate gradient algorithms the step size
is adjusted at each iteration. A search is made along the conjugate gradient
direction to determine the step size which will minimize the performance
function along that line. The version of conjugate gradient method used here
is due to Polak and Ribiere (CGP) [6, 7]. The search direction at each iteration
is determined by updating the weight vector as:

Wil = Wi + Q Pg

P =Bk PPk 1
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3.3. Quasi-Newton BP (BFGS)

Newton’s method is an alternative to the conjugate gradient methods for fast
optimization. Newton’s method often converges faster than conjugate gradient
methods. The weight update for the Newton’s method is:

—il
Wincss Wearr Ak Sk

where A, is the Hessian matrix of the performance index at the current values
of the weights and biases. When Ay, is large, it is complex and time consuming
to compute Wy ;. Fortunately, there is a class of algorithms based on the works
of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5, 8] that are based on
Newton’s method but which don’t require intensive calculation. This new class
of method is called quasi-Newton method. The new weight wy.; is computed
as a function of the gradient and the current weight wy.
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4. Creation of Training and
Test Data Sets

Creation of training data is central to the success of any neural networks
method. One of the challenges is in creating intrusion scenarios. Earlier
works have shown that computer users exhibited unique characteristics, and
that computer users can be profiled accurately based on their attributes [2, 10].
By analyzing the data logs collected from the Computer Security Laboratory
at the University of California, Davis, computer users were profiled based on
four attributes [2]. These attributes were: (i) the command set used by the
user, (ii) the login host, (iii) the time of login, and (iv) the time required to
execute each of the commands entered (i.e., the CPU time).

Figures 1 and 2 illustrate how two attributes-the command set and time
of login-can be used to identify a user. On the x-axis of Figures. 1a and 2a
are the 100 most common commands used by all profiled users. The y-axis
represents the time in weeks, and the z-axis represents the percentage of each
command used in relation to the 100 command set. In Figures. 1b and 2b, the
x-axis represents the login time, the y-axis represents the time in weeks, and
the z-axis represents the number of commands each user entered. Figure 1
summarizes the command set and the login time of User 1 on host A; similarly
Figure 2 summarizes the command set and login time of User 2 on host C. From
Figures. 1 and 2, one can see that User 1 and User 2 used different command
sets and at different frequencies during the time of login. If only two attributes
are capable of showing this level of discrimination, it is reasonable to expect
that the use of more attributes will have better discrimination capability.

To test this hypothesis further, two data sets for training and testing the
neural networks were created. For simplicity in testing, these two data sets
were created on the same host. Each of these two data sets now has three
varying attributes-command set, time of login and CPU time, and one fixed
attribute-host. The characteristic of the data set and how they were used for
testing are covered next.

4.1. Characteristics of Data Sets

The objectives of creating data sets for training and testing were twofold. First
is to test the capability of the neural networks to classify data from authorized
users and intruders that are linearly separated (i.e., two distinctive classes).
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Figure 1. User 1 Characteristic on Host A-(a)Command Set (b)Login Time.

Figure 2. User 2 Characteristic on Host C-(a)Command Set (b)Login Time.
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Table 1. User Profile of Characteristics of Generated Test Data
User Authorized Intruders

Features Users
L3661 BT 1347 10 31
22,25,26,28 29 31 33 37 38|

Command 1, 43, 44, 46, 47, 49, 50, 51, 54, L, ..; 100
First betiy 1835559, 61, 7IRFL U8 78.79. 81,
Data Set 84, 85, 87,91, 92, 93, 95, 98, 99
Login Host 1 1
[Login Timg 6-19 1-5, 20-24
CPU Time e a4 56 TR 50, 60, 70, 80, 90
[usec] 100, 200, 300

1,570,998, R a7 2T,
22, 25,26 28,29 31 .33 37 38

Command 41, 43, 44, 46, 47, 49, 50, 51, 54/ 100
Second Bet B3 5961, 70.72.76. 718 1 81|
Data Set 84, 85, 87,91, 92,93, 95, 98, 99
Login Host 1 1
Login Time 6-19 1-7, 1824
CPU Time 1. 232900 .8 3,6, 7.8, 10, 20,
[usec] 40, 50, 60, 70, 80, 90,
100, 200, 300

Second is to test the performance in situations where the profiles of authorized
users and intruders have some similarity. Based on the four attributes above, the
first data set was created in such a way that the authorized users and intruders
are clearly differentiated from each other. The second data set was created
using the same feature set, but these features were selected so as to blur the
distinction between the authorized users and intruders. The characteristics of
the two data sets are summarized in Table 1.

4.2. Organization of Data Sets

The next step is to organize the data set into a suitable format for training and
testing. The generated data was organized into two parts. The first part is
for training. Each training input sample came with a desired output. Here,
ninety percent (90%) of the input data was generated as authorized traffic
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Figure 3. Construction of the Generated Data.

and ten percent (10%) as intrusion traffic. The second part is for testing
the performance of the methods. In this part, ninety eight percent (98%) of
the traffic were generated to be authorized traffic and two percent (2%) of the
traffic to be intrusion traffic.

In both parts of the training and test data section, several bursts of intrusion
data are inserted into the authorized data stream. Each of the generated input
data files has 7000 samples. The first 5000 samples are the training data, and
the next 2000 samples are the test data. Authorized traffic is designated Class
Positive and unauthorized traffic as Class Negative. Figure 3 illustrates the
structure of the generated data files.

In Figure 3, an input sample is defined as a unit of data being fed into the
neural network at one time; one sample can consist of many command units
(CUs). A CU is defined as a set of four elements-the UNIX command, the
login host, the time of login, and the execution time of the command (i.e.,
CPU time). The objective is to test the neural networks for detecting intrusion
traffic with the fewest number of CUs. With that objective, three test files for
the first data set and three test files for the second data set are generated. These
six files are identified as follows: Filela, Filelb, File2a, File2b, File3a and
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Table 2. Total Number of Elements in Test Files
Filela File2a File3a
Filelb File2b File3b|
Training Data 100, 000 120, 000 140, 000
Testing Data 40, 000 48, 000 56, 000
Total 140, 000 168, 000 196, 000

File3b. Each of the files Filela & Filelb have 5 CUs in each input sample
(that is, 5 x 4 = 20 input neurons). File2a & File2b each have 6 CUs in each
input sample (that is, 6 x 4 = 24 input neurons) and File3a & File3b each have
7 CUs in each input sample (that is, 7 x 4 = 28 input neurons). Thus Filela,
for example, has 20 x 5, 000 = 100, 000 elements in the training section and
20 x 2000 =40, 000 elements in the test section. The total number of elements
for each input file is shown in Table 2.

5. Simulation Results and
Performance Comparison

Simulation results are summarized in Table 3 and Table 4. In these tables,
topology specifies the neural network architecture. For example, a topology
of {20, 10, 1} indicates 20 input neurons, 10 hidden neurons, and 1 output
neuron. The parameters v and p indicate the learning rate and the momentum
constants of the gradient descent BP with momentum. The quantity e is the
mean of the square error (MSE) of the difference between the actual output
y and the desired output d. An epoch is one complete presentation of the
training data. ‘FP’ and ‘FN’ are the false positive and false negative rates
in classifying users. A false positive is classifying an authorized user as an
intruder; conversely, a false negative is classifying an intruder as an authorized
user. Each method terminates when any of the following condition occurs: (i)
MSE < ¢, (ii) Epochs = 500, and (iii) when the gradient undergoes negligible
change from one epoch to the next (i.e., typically exp(-10) in the simulation).
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Table 3. Summary of Simulation Results for the First Data Set

Filela Input File2a Input File3a Input
Parameters] Results [Parameters] Results [Parameters] Results
FP=N/A FP=0 FP=0

GDMI{20, 17, 1}| FN=N/A ({24,14,1}] FN=0 ({28,17,1}] FN=0
a = 0.1 |500 epochs| a = 0.05 | 140 epochs| o = 0.05 | 500 epochs
u=075|e=N/A |u=0T75c=exp—5 p=0.70 | ¢=0.07

FP=0 FP=0 FP=0
CGP[{20, 13,1} FN=0 [{24,10,1}] FN=0 ({28,16,1} FN=0
90 epochs 50 epochs 40 epochs
.= eTp.— 9 € = exTp — O e = eTp— 5
FP=0 FP=0 FP=0
BFGS{20, 13,1}] FN=0 [{24,11,1}] FN=0 [{28,11,1} FN=0
45 epochs 60 epochs 40 epochs
b= cpp o K e ) e =exp —

5.1. Simulation Results

Table 3 summarizes results obtained when the first data set was applied as input.
Since the gradient descent with momentum (GDM) method did not perform as
well as the other two methods (CGP and BFGS), it was excluded from being
used to test the second data set. Table 4 summarizes results obtained when the
second data set was used as input for the conjugate gradient and quasi Newton
methods.

Table 4. Summary of Simulation Results for the Second Data Set. (* Methods
stop due to gradient being too small)

Filela Input File2a Input File3a Input
Parameters] Results [Parameterss Results |[Parameters) Results
FP=0.04% FP=0.01% =0

CGP {20, 15, 1}| FN=15% |{24, 14, 1}[FN=17.5%|{28, 16, 1}] FN=17.5%
500 epochs 500 epochs 450 epochs™

e =0.01 e=1.17 == U 1o
FP=015% FPH). H% FP=0.05%

BFGS|{20, 17, 1}JFN=12.5%({24, 15, 1} FN=5% {28, 16, 1} FN=25%
500 epochs 500 epochs 100 epochs*
e=0.01 e =001 e = 0.18%
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5.2. Performance Comparison

After the three described neural networks were trained and tested with the first
data set {i.e., Filela, File2a, File3a} for the first case and the second data set
{i.e., Filelb, File2b, File3b} for the second case, the following observations
were made.

First, the gradient descent with momentum method did not perform well as
the Conjugate Gradient and quasi Newton methods. Furthermore, it was time
consuming to tune the learning rate, o, and the momentum parameter, s, for
this method to operate properly. For instance, when the input was Filela, the
GDM method was not able to classify the intrusion traffic from the authorized
traffic, however it was able to do the classification correctly when the input
file was File2a or File3a. When the input file was File2a, GDM requires 140
epochs to converge compared to only 50 epochs for CGP and 60 epochs for
BFGS. When the input file was File3a, GDM needed 500 epochs to converge
to a 75% false negative error compared to 40 epochs and no false negative
for both CGP and BFGS methods. These results indicate that both the CGP
and the BFGS methods were superior in classifying authorized users from
intruders while maintaining good false negative values and good convergence
properties compared to the GDM method.

Second, the conjugate gradient and the quasi Newton methods exhibited
roughly the same performance in terms of classification. Both of these meth-
ods required simpler NN topology (i.e., a topology with fewer hidden layer
neurons) and fewer epochs to converge compared to the GDM method.

Third, the number of CUs used in each input sample affected the per-
formance of the classification of the data. Of all the data sets used, File2a
and File2b tended to yield the best performance for the three neural networks
methods. This leads one to believe that an input sample consisting of 5 CUs
(20 elements) might not contain enough information, while 7 CUs (28 ele-
ments) input sample might contain too much information, whereas 6 CUs (24
elements) input samples contains the right amount of information for classifi-
cation of computer users. This issue needs further study.

6. Summary

In this paper, the problem of computer network intrusion detection is posed
as a classification problem. Three different BP neural network methods were
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applied to solve this problem. For training and testing purposes, two synthetic
test data sets were created. From the first test data set, it was shown that the
three neural networks methods were capable of classifying authorized users
from intruders. The conjugate gradient and the quasi Newton methods yielded
superior performance than the gradient descent with momentum method. With
the second test data set, the conjugate gradient and quasi Newton methods
performed best when each input sample size is 6 CUs, or equivalently 24
elements long.

7. Conclusion and Future Work

From the preliminary results shown in this paper it appears that neural network
techniques hold some potential in intrusion detection. The training data and test
data used in this study were synthetically generated. Using this generated data,
it was shown that the conjugate gradient and the quasi Newton can successfully
detect intruders logging into a computer network. These two methods only
required an input sample of 6 consecutive CUs from the intruder to classify
that the current user is indeed an intruder.

Several issues remain to be investigated. First, it is necessary to evaluate
the performance of neural networks with data sets captured by monitoring real
traffic. Second, itisalso necessary to establish the feature set that best describes
users and intruders. The three used in this paper, namely command set, login
time, and CPU usage, were selected because they appeared to be reasonable
choices after a cursory examination of a data set available at the Security
Laboratory of the University of California at Davis. Third, it is necessary
to characterize the drifting patterns among authorized users and develop an
incremental training procedure. Finally, besides the BP methods, there are
other neural networks methods like the radial basis function (RBF) that could
be implemented. These issues are being addressed at this time.
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