


Nonlinear Parameters

the same resource of aiming for the same kind
of objective. To this end, a quantitative knowl-
edge of the dynamic behavior of the individual
entities is imperative. Only such a knowledge
will provide the ability to control and predict
the interactions among the individual entities of
the total system.

In mathematical language, one says that a
specification of a system is necessary to predict
and control its behavior. In other words, a
system—that is, its parameters—should be iden-
tified before one can control it. Treatment of an
example illustrating the identification of param-
eters of a system whose observed input-output
records are available would be an effective ve-
hicle to develop the hybrid computer method of
parameter identification.

Ground-water Management

An important engineering problem in ground-
water hydrology concerns the determination of
aquifer parameters from a limited number of
observations. For the purpose of formulating an
equation, a ground-water basin may be regarded
as a three-dimensional field with a free boundary
(ie., the water table) at the upper surface.
Designating the elevation of water table above a
reference level as h = h(z, y, t), its dynamic
state under certain assumptions can be described
by a quasilinear parabolic PDE [Vemuri and
Dracup, 1967]

:_x [T(z, y, b) %] A % [T(x, y, ) g—z“]
= S@ D= Q) O

defined over a connected region R, the areal extent
of the aquifer. Whether or not this equation really
represents a ground-water flow field depends
upon the validity of the assumptions made in
deriving it. Assuming that this equation does
indeed characterize a ground-water flow field,
the problem is to determine 7'(z, y, k), S(z, y, k)
and the boundary dR of the region R such that
the observed water table elevations % and the
response A of the computer model are close to
each other in some acceptable sense at least at
the points of a finite-difference grid. It is im-
portant to remember that the goal is not to
determine 7" and S as functions of the continuous
variables z, y, and h, but only to approximate
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their values numerically at those points defined
by the finite difference grid.

Conventionally, in a wide class of diffusion
processes it is customary to amalgamate the
parameters T and S into a single parameter,
called diffusivity. Determination of this single
parameter from one equation and one set of in-
put-output records is relatively straightforward.
However, from an engineering viewpoint, it is
more useful to determine 7 and S separately.
Venturing to determine all the three unknowns,
viz., T, 8, and dR, from one equation which is
only of first order in its parameters, may lead to
meaningless results. It is precisely here that a
specialist has a chance to infuse his experience
heuristically into the precisely formulated de-
seription of a physical phenomenon.

This paper demonstrates how the powerful
algorithmic techniques [Bryson and Denham,
1962; Rozonoer, 1960] available to control sys-
tems engineers can be successfully blended with
a heuristic approach to arrive at the most plaus-
ible computer model of a ground-water basin. To
this end, a steepest descent algorithm is devel-
oped to identify the parameter T; the other
two parameters, i.e., S and 0R, are identified
heuristically.

This identification, termed hybrid identifica-
tion, is achieved by first assuming a nominal
shape to dR and a nominal set of values to S.
For this setup, the quasilinear PDE describing
the dynamic state of the system is linearized
piecewise in the time domain. In each temporal
subinterval, the dynamics of the system are then
described by a linear PDE which is of first order
in the only unknown parameter, namely 7. This
single unknown parameter is identified in a
conventional way by minimizing an integral
square error cost functional over the T-param-
eter space. Application of the maximum princi-
ple [Rozonoer, 1960] guarantees that minimiza-
tion of an integral cost functional is equivalent
to extremizing a suitably defined scalar valued
Hamiltonian in Hilbert space. A set of necessary
conditions in the form of a pair of PDEs to
minimize (or maximize) this Hamiltonian is
derived, which in turn will determine optimum
estimates of transmissibility.

The search for a coarse extremum of the
Hamiltonian is performed by a steepest descent
(or ascent) method in Hilbert space. The pair
of canonical equations, termed the dynamic and
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adjoint PDEs, are solved using finite-difference
methods on a hybrid computer. The fine strue-
ture of the system is revealed by iteratively
applying the steepest descent algorithm punctu-
ated with a manual adjustment of the param-
eters S and dR. Changes in S are accomplished
by changing a suitable number in the computer
memory via the console. If a change in the
boundary geometry is warranted, it can be
accomplished by changing a few wires on the
easily accessible analog patch board of the
hybrid computer.

THE IDENTIFICATION ALGORITHM

The Mazimum Principle

A common problem in control theory is to
determine a control law ¢(¢) such that a differ-
ential equation

dz/dt = f[z(%), c(9)] (2
representing the dynamic state of a system is
satisfied, whereas a cost functional

J=f”u@@m ®)

is minimized over the interval [, ¢,].

The maximum principle states that minimiza-
tion of the integral J over the interval [t., ¢,]
is equivalent to minimization (or maximization)
of a scalar-valued Hamiltonian H, where H is
defined by

H(x1 ¢ c, t)) S !)(t)’f(.’l?, c) S L(xr c) (4)

in which the multiplier v (%) is called the adjoint
of the variable z(t).

If c(¢) is treated as a parameter, then under
certain conditions the above problem can be
treated as a parameter identification problem
[Butkowskii and Lerner, 19607. In this section a
maximum principle for this identification prob-
lem is derived by using the principle of optimal-
ity and dynamic programming [Bellman, 1957;
Wang, 1964].

Equation 1 is quasilinear, whereas the identi-
fication technique developed in the sequel applies
only to linear systems. To be able to apply the
theory developed in the succeeding paragraphs,
equation 1 is linearized piecewise in the time
domain. For this purpose, the time interval
[t:, t,] over which the equation is required to
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be solved is subdivided into % subintervals, and
it is assumed that 7 and S are only functions of
the spatial coordinates and independent of the
variable h during each subinterval. Then equa-
tion 1 can be rewritten as

Lh(z, y, 1) = f(z, y, h, Q) (5)
for
te[t;, £
z,yeR and j=0,1,2, il — 1)

In Equation 5, the operator L is defined as

- "{aa_z [T(x, v) :—x] + 5{% [T(;v’ v 3%/]}
(6)

and

f = (ah/at) s O'Q(xy Y, t) (7)
where o(x,y) = 1/8(x, y).

Now the identification problem in its con-
tinuous form can be stated as follows: Given
the observed values /(z, y, t), find T, S, and R
such that

J=£WLM@%0—M%%NT

[z, y, 8) — h(z,y, )] dR dt  (8)

is minimized for each j, and the resulting values
of T, S, and dR are plausible from physical con-
siderations. The superseript 7' stands for trans-
pose.

In the present example 4 is a scalar, and the
qua'ntity [i(z, ¥, 0 ﬁ(x; Y, t)]T[h(x) R o
h(z, y, )] appearing under the integral sign of
equation 8 becomes (h(z, ¥, t) — h(z, y, t))?, but
the expression as it appears in equation 8 is
written to include the general case where A is
an n-dimensional ,vector valued function. The
important thing to remember is that by equation
8 we seek to minimize the square of the distance
between two continuous functions, and so the
distance is to be measured in function space.

Let the minimum value of J over a subinterval
[t,, t.] and over all possible values of T'(z,y,t)
be defined as e
N ©)

telto,ta1]

H[h(t()’ z, y)9 T] é
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Furthermore, the speed gained by the use of
analog hardware compensates for the additional
work involved in solving the two-point boundary
value problem.

The network subroutine that appears on the
analog patch board preserves the geometry of
the field being simulated. The flexibility offered
by this network is an advantage that cannot
be matched by pure digital systems.

Data Handling

In practice, the observed values i(z, y, t) are
not available as a continuous function of the
spatial coordinates and time. Usually, % will be
recorded at discrete instants of time and at
discrete points in space. Furthermore, the points
of observation are not arranged, in general, in a
regular array, whereas numerical solution of the
PDEs using a symmetric finite difference grid is
efficient and convenient. This leads to the situa-
tion where the N points of the finite difference
grid at which h, ;e = 1,2, +++ , N, is computed
fail to coincide with the M points in the field at
which ﬁ,,; B=1,2, -+, M has been reordered.
This situation requires an initial processing of
raw data, as described below, before the preceding
algorithm can be applied.

1. Starting from water table data obtained
from field measurements at the M points, water
table contours showing equal elevations of water
table are drawn.

2. A suitable grid is superimposed on this
contour map and the average water table ele-
vation at the center of each cell of the grid is
computed using the Thiess method. The second
grid thus obtained by connecting the center
points of the first grid is the one that is used to
write difference approximations of the con-
tinuous partial derivatives.

3. Data relating to the net accretion to the
water table, ie., @, are likewise treated. The
net accretion to the water table is obtained by
taking the algebraic sum of all inflows and out-
flows. Typically, major components of inflow
are precipitation and artificial recharge, and the
principal component of outflow is pumping for
consumptive use.

At this stage, the data are ready for computer
use. It is useful to remember that from now
onwards ‘observed values ~ at the finite differ-
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ence grid points’ imply the values obtained after
the aforementioned operations on the raw data.

A base period of six years (1950-1951 to
1955-1956) has been chosen for this study.
There is no special significance attached to this
period, except that the results of an analog com-
puter study [Blevins, 1965] during that period
are available for comparison purposes.

RESULTS AND DISCUSSION

The San Fernando Valley Basin

The technique described in the earlier sections
was applied to study the San Fernando Valley
basin in the City of Los Angeles, and some
typical results are reported. The San Fernando
Valley is roughly elliptical in shape, with a
major axis of about 24 miles and a minor axis
of approximately 12 miles, and covers an area
of about 120,000 acres of the valley floor.
The valley is surrounded on almost all sides by
mountains which are, in general, impermeable
to the movement of water. The Los Angeles
River system, extending along the southern edge
of the valley floor and going out of the Los
Angeles Narrows into the Los Angeles Coastal
Plain, is the major drainage medium of the
basin. The source of ground water is by perco-
lation, surface runoff from valley slopes, and
spreading of imported waters. Disposal of the
supply, other than export, consumptive use, and
runoff is by relatively small amounts of under-
flow out of the area at the Narrows.

The western part of the valley, generally com-
posed of fill materials that have a high clay
content, transmits water at a relatively slow rate
and exhibits a specific yield of about 0.02. The
eastern portion of the valley, generally com-
posed of coarse deposits of gravel and sand,
transmits water at a relatively greater rate and
exhibits values of specific yield as high as 0.3 to
0.4. This gravel-sand complex constitutes about
one-third of the valley floor area and contains
about two-thirds of the ground-water storage
capacity of the basin. The pattern of ground-
water flow, in general, is in a southeasterly di-
rection from the recharge areas in the alluvial
cones along the edges of the valley fill towards
the Narrows. Most of the pumping wells supply-
ing water to the cities of Glendale and Burbank
are located in this southeastern segment of the
valley.
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Computed Water Table Contours

Some of the typical water table elevations
obtained from the computer model and those
that were measured at the test wells are plotted
as contour lines and shown in Figure 1 and
Figure 2. In these figures, the solid lines corres-
pond to the observed water table, and the
dashed lines correspond to the computer re-
sponse. In general, maximum errors and anoma-
lies appear to occur in the west-central section
of the valley, i.e., in the vicinity of Lankershim
boulevard and Vanowen street. This anomaly is
perhaps due to a ‘dome-like feature’ [Corbato,
1960] in the depth of the water-bearing forma-
tions in that area.

Computed Transmissibility Contours

Contours of equal transmissibility correspond-
ing to the periods ending in 1953-1954 and
1955-1956 are shown in Figures 3 and 4, respec-
tively. Interpretation of the significance of the
transmissibility contours is more difficult, be-
cause they are defined as the product of the

‘equivalent permeability at a point (z,y)’ and
the depth of water-bearing formations at that
point of the aquifer. Therefore, a necessary con-
dition for a meaningful interpretation of these
contours is a knowledge of the depth of the
saturated portion of the aquifer. If contours on
the base of the valley fill are available, it is
possible to deduce the thickness of the saturated
portion. Designating the elevation of the base of
the valley fill above a reference as f(z,y), the
thickness b(z,y,t) of the saturated portion of
the aquifer at any time ¢ can be written as

b(z, y, &) = h(z, 9, ) — f(z, )  (36)
Because T (z,y,t) is defined as

T(xy Y, t) 7 K[.’l?, Y, h(.’l?, Y, t)]' b(.’l?, Y, t) (37)
equation 36 and equation 37 help to determine
the ‘equivalent permeability at the point (z,y)
on the ground surface, i.e., K(z,y,h(z,y,t)).

In the present case [Cdlifornia State Water
Rights Board, 1961] the depth of water-bearing
formations is, in general, small, decreases along
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Fig. 1. Observed and computed water table contours at the end of 1953-54 in the eastern
portion of the San Fernando Valley. The dotted lines indicate boundary of recent alluvium.
The dashed lines correspond to observed water table contours, and the solid lines indicate re-
sponse of the hybrid computer model. The numbers refer to the elevation in feet of water
above a reference. The superimposed finite difference grid is not shown.



Fig. 2. Observed and computed water table contours at the end of the time period 1955-1956.
The notation is same as the one used in Figure 1.
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Fig. 3. Observed water table and computed transmissibility contours at the end of the
time period 1953-1954. The solid lines are lines of equal transmissibility. The water table con-
tours (dashed lines) are identical to those shown in Figure 1. This kind of plotting helps to
deduce the dependence of 7' on h. The numbers on the solid lines indicate transmissibility in
acre-ft/yr/ft.
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Fig. 4. Observed water table and computed transmissibility contours at the end of the
time period 1955-1956. The notation is same as that used in Figure 1 and Figure 3.

the bed of the Los Angeles River, and becomes
very small at the Narrows. Therefore, the
transmissibilities along the river bed are con-
sistently low, even though the bed offers high
permeability. On the other hand, high trans-
missibilities in the central portions of the valley
are due to large depths in water-bearing forma-
tions and are not necessarily indicative of high
permeabilities.

There is a general tendency for the trans-
missibilities to decrease with declining water
tables.

Computed Storage Coefficient Contours

Contours of equal storage coefficients are
plotted in Figure 5 and Figure 6. The storage
coefficients also show a general tendency to
decrease with falling water tables. Also, storage
coefficient values exhibited less sensitivity to the
changing water tables.

Boundary of the Aquifer

By virtue of the assumption made in deriving
the equation of ground water motion, namely
that the aquifer is bounded on all sides by ver-
tical imaginary impermeable barriers, the

boundary 9R is not a function of A. The shape
of the boundary that gives the best model can
be seen from the shape of the resistance network
on the analog patch board.

Comments

This work [Vemuri, 1968] demonstrates the
computational advantages in combining analog
(parallel) and digital (serial) hardware, not
only in terms of the gain in computational time
but also in terms of the flexibility offered by the
system. Moreover, hybridizing the hardware
creates a unique opportunity to amalgamate in
one system basically different kinds of compu-
tational techniques, namely, the blending of an
algorithmic procedure with a heuristic approach.
This conjecture has been proved by demon-
strating the application of the functional
maximum principle and the steepest descent
algorithm to identify one of the unknown
parameters in the conventional way. Identifica-
tion of the other two parameters was done
heuristically, by taking full advantage of the
flexibility offered by the computer via the analog
patch board. ]

Finally, this work demonstrates the utility
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Fig. 5. Observed water table and computed storage coefficient contours at the end of the
time period 1953-1954. The solid lines are lines of equal values of the storage coefficient, which

is dimensionless.
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Fig. 6. Observed water table and computed storage coefficient contours at the end of the
time period 1955-1956.












