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Abstract The past few years have witnessed a rise in the use of AI and Machine 
Learning techniques to a variety of application areas, such as image understanding 
and autonomous vehicle driving. Wireless and cloud technologies have also made it 
possible for millions of people to access and use services available via the internet. 
During the same period, the world has also witnessed a rise in cyber-crime, with 
criminals continually expanding their methods of attack. Weapons like ransomware, 
botnets, and attack vectors became popular forms of malware attacks. This paper 
examines the state-of-the-art in computer security and the use of machine learning 
techniques therein. True, machine learning did make an impact on some narrow 
application areas such as spam filtering and fraud detection. However – in spite of 
extensive academic research – it did not seem to make a visible impact on the problem 
of intrusion detection in real operational settings. A possible reason for this apparent 
failure is that computer security is inherently a difficult problem.  Difficult because it 
is not just one problem; it is a group of problems characterized by a diversity of 
operational settings and a multitude of attack scenarios. This is one reason why 
machine learning has not yet found its niche in the cyber warfare armory. This paper 
first summarizes the state-of-the-art in computer security and then examines the 
process of applying machine learning to solve a sample problem.  
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1 The status of cyber warfare 
 
Cyber security, a subset of information security, is the practice of defending an 
organization’s networks, computers and data from unauthorized digital access, attack 
or damage by implementing various processes, technologies and practices.  

Network security, a subset of cyber security, aims to protect any data that is being 
sent through devices in a network to ensure that the information is not changed or 
intercepted. The role of network security is to provide protection from all types of 
cyber threats including viruses, worms, Trojan horses, zero-day attacks, hacker 
attacks, denial of service (DoS) attacks, and attacks by spyware, adware, ransomware, 
and so on. 
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With the advent of wireless technology, cloud computing and Internet of Things 
(IoT), the world is becoming one huge integrated network. This means that an 
increasing amount of personal and corporate information exists in the cloud where it 
potentially interchanges with a multitude of devices. A compromised network does 
not only mean access to private banking details, but also access to public 
infrastructures such as traffic lights, GPS tracking systems, water services, and power 
plants. Under these circumstances, faster and more reliable intrusion detection 
techniques become necessary both to diagnose and prevent attacks. To meet this 
challenge, some are suggesting the use of the power of parallel computing platforms 
like MapReduce and Hadoop, an open-source software framework for distributed 
storage and processing of big data [7, 11]. 

 
1.1 Hacking has gone pro 

 
At the turn of the century, almost all threats to computer systems were malware 
programs (viruses, worms, and Trojans) written by pranksters. Although some 
malware did harm, most simply annoyed people. Professional and state-sponsored 
hackers were there, but they were not the norm. 

Nowadays almost all malware is created to steal money or corporate secrets [14]. 
Professional hackers make millions of dollars, victimizing individuals and 
corporations with almost no fear of being prosecuted. Malware has morphed from 
innocuous, funny viruses and worms to identity-stealing programs and ransomware. 
Advanced persistent threats (APTs), such as mobile surveillanceware like JadeRAT, 
officially or unofficially working on behalf of a foreign government, are the new 
normal. According to the FBI, cyberwar will turn black in the coming years with 
sinister activities like taking control of a moving vehicle from a distance or remotely 
turning off a heart pacemaker [1]. 

 
1.2 Breach detection tools have improved 

 
Once antivirus scanners were the main tools for breach detection. Now, products have 
been developed to detect when someone is doing something malicious, even if that 
someone is a “legitimate” user. 

Event monitoring systems are improving. Many companies are now storing and 
analyzing billions of events a day, using huge disk storage arrays. Intrusion detection 
has moved beyond detecting simple malicious activity to detecting anomalous events 
that are out of character for a company and its employees. Connections to known, 
questionable networks are tracked and reported like the antivirus detections of 
yesteryear. Data leak protection (DLP)1 has become big business. 

 
 

                                                           
1 Roger A. Grimes, “Make stolen data worthless”, 
http://www.infoworld.com/article/2969372/security/how-to-make-stolen-data-worthless.html, August 11, 
2015  
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1.3 Multifactor authentication and encryption are becoming the new default  

 
Many still use passwords, but most sites now offer two-factor authentication. Mobile 
phones and popular operating systems come with biometric identification by default. 
Identity authentication startup Trusona is making a world without passwords a reality. 

Default encryption is on the rise despite nearly all governments protesting it2.  
Today, most popular operating systems, computers, and mobile devices come with 
built-in, default-enabled disk encryption. More and more websites are using SSL3  
encryption by default although police and government agencies are trying to get rid 
of default encryption or enabling backdoors in the name of stopping criminals. 

 
2. Computer security landscape 

Security is a hard problem. Hard because it is a complex problem with many facets. 
There are many types of attacks, each targeting a different layer of the ISO/OSI model 
as shown in Table 1. 

Table 1 Some Popular Attack Modes 
 

Layer Name Popular Protocols Popular Attack Modes 

Layer 7: Application DNS, DHCP, HTTP, FTP, 
IMAP, SSH, NTP, SMTP, 
SNMP, Telnet, TFTP 

DNS poisoning, Phishing, 
SQL injection, spam. 

Layer 6: Presentation   

Layer 5: Session  SMB, NFS, Socks  

Layer 4: Transport TCP (connection-based), UDP 
(connection-less) 

TCP attack, Routing attack, 
SYN Flooding, Sniffing 

Layer 3: Network IP-v4, IP-v6, ICMP, IPSec Ping. ICMP Flooding 

Layer 2: Data Link PPTP, Token Ring ARP spoofing, Mac flooding 

Layer 1: Physical   
 

Ping sweeps and port scans are used for reconnaissance. Sniffing captures packets 
as they travel through man-in-the-middle attacks intercepting messages intended for 
a third party. In spoofing, one sets up a fake device and tricks people to send messages 

                                                           
2 Paul Venezia, “The Deep End”, http://www.infoworld.com/article/2946064/encryption/encryption-
with-forced-backdoors-is-worse-than-useless-its-dangerous.html, July 13, 2015 

3 Roger A. Grimes, “10 security technologies destined for the dustbin”, 
http://www.infoworld.com/article/2970447/security/10-security-technologies-destined-for-the-
dustbin.html 
 

http://www.infoworld.com/article/2946064/encryption/encryption-with-forced-backdoors-is-worse-than-useless-its-dangerous.html
http://www.infoworld.com/article/2946064/encryption/encryption-with-forced-backdoors-is-worse-than-useless-its-dangerous.html
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to it. Hijacking means taking control of a session.  Advanced persistent threats (APT) 
and multi-stage attacks are other challenging problems. 

There are many components to a network security system that work together to 
improve the security posture. The most common network security components include 
firewalls4, anti-virus software, intrusion detection and prevention systems5, and 
virtual private networks6. 

 
2.1 Attack scenarios 
 
Attackers can take advantage of vulnerabilities in hardware, software, and protocols.  

Active attacks are based on an alteration of the original message, or the creation 
of a false message. An active attack can be an interruption (e.g., masquerading) or 
modification (e.g., denial of service). In a masquerade, an unauthorized entity 
pretends to be authorized. (e.g. Due to a lack of authentication, Bob doesn't know if 
Tom is masquerading as Alice.) Modification results in loss of integrity. A 
modification attack, in turn, can be a replay or alteration attack. In a replay, if Alice 
wants to send $100 to Tom’s account, Tom captures that message and makes a second 
transfer of $100. In an alteration, Tom captures Alice’s message and alters it to read 
$200. Denial of service attacks prevent legitimate users from using some services. 

In a passive attack, the attacker does not intend to modify but indulges in 
monitoring the transmission to find out what is happening. There are two types of 
passive attacks. In Release of Message, the goal is to capture confidential data and put 
it publicly on the network.  In Traffic Analysis, the attacker tries to find similarities 
between encrypted messages and deduces the original content.    

The Speculative Execution attack or Spectre and Meltdown are two newly 
discovered attack scenarios that exploit critical vulnerabilities in modern processors.  
These hardware vulnerabilities allow programs to steal data that are currently being 
processed. While programs are typically not permitted to read data from other 
programs, these exploits can get hold of secrets stored in the memory of other running 
programs. This might include passwords stored in a password manager or browser, 
personal data such as photos, emails, instant messages and even business-critical 
documents. Unlike usual malware, Meltdown and Spectre are hard to distinguish from 
regular benign applications. These exploits do not leave any trace in a log file. 
Meltdown and Spectre work on personal computers, mobile devices, and in the cloud. 
Depending on the cloud provider's infrastructure, it might be possible to steal data 
from other customers. Intel has responded to this disclosure in terms of both software 
patches and firmware updates. 

                                                           
4 “Managed Firewall Simplify and Streamline the Management and Monitoring of Your Firewall Device”, 
https://www.secureworks.com/capabilities/managed-security/network-security/managed-firewall 
5 “Managed IDS/IPS Two Devices You Shouldn't Be Without”, 
https://www.secureworks.com/capabilities/managed-security/network-security/managed-ids-ips 
6 Chey Cobb, “Ensuring Network Security with a VPN (Virtual Private Network)”, 
http://www.dummies.com/programming/networking/ensuring-network-security-with-a-vpn-virtual-
private-network/ 
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Meltdown breaks the most fundamental isolation between user applications and 
the operating system. If a computer has a vulnerable processor and runs an unpatched 
operating system, it is not safe to work with sensitive information without the chance 
of leaking the information. Luckily, there are software patches against Meltdown.  
Spectre, on the other hand, breaks the isolation between different applications. It 
allows an attacker to trick error-free programs, which follow best practices, into 
leaking their secrets. In fact, the safety checks of said best practices actually increase 
the attack surface and may make applications more susceptible to Spectre. 

Speculative Execution is a legitimate procedure that may inadvertently create an 
opportunity for an attack. In order to improve performance, many CPUs may choose 
to speculatively execute instructions based on assumptions that are considered likely 
to be true. During speculative execution, the processor would be verifying these 
assumptions. If they are valid, then the execution continues. If they are not valid, then 
the execution is unwound, and the correct execution path can be started based on the 
actual conditions. It is possible for this speculative execution to have side effects 
which, if not restored when the CPU state is unwound, can lead to information 
disclosure.  

The “bounds check bypass attack” (Variant 1) allows malicious code to 
circumvent bounds checking features built into most binaries. Even though the bounds 
check fails, the CPU will speculatively execute instructions after the bounds checks, 
and can access memory that the code could not normally access. When the CPU 
determines the bounds check has failed, it discards any work that was done 
speculatively; however, some changes to the system can be still observed (in 
particular, changes to the state of the CPU caches). Malicious code can detect these 
changes and read the data that was speculatively accessed. 16, 17, 18 

“The branch target injection attack” (Variant 2) uses the ability of one process to 
influence the speculative execution behavior of code in another security context 
running on the same physical CPU core. Modern processors predict the destination 
for indirect jumps and calls that a program may take and start speculatively executing 
code at the predicted location. The tables used to drive prediction are shared between 
processes running on a physical CPU core, and it is possible for one process to 
influence (pollute) the branch prediction tables of another process or kernel code. In 
this way, an attacker can cause speculative execution of any mapped code in another 
process, in the hypervisor, or in the kernel, and potentially read data from the other 
protection domain using techniques like Variant 1.  

This vulnerability can be fixed either by a CPU microcode update from the CPU 
vendor, or by applying a software mitigation technique. This mitigation may be 
applied to the operating system kernel, system programs and libraries, and individual 
software programs, as needed. 16,19, 20  

                                                           
16 “Hacker News”, http://hn.premii.com/#/article/16073874 
17 “CVE-2017-5753”, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753 
18 “CVE-2017-5715”, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715 
19 “CVE-2017-5754”, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754 
20 “Meltdown and Spectre”, https://meltdownattack.com/ 
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2.2 Intrusion detection 
 
An intrusion detection system (IDS) is the modern-day equivalent to the burglar 
alarm; it constantly monitors the network to look for suspicious activity and can be 
configured to notify security administrators of any suspected intrusion.  An Intrusion 
Protection System (IPS) goes a step further by sending an alert and preventing the 
attempted intrusion, say by dropping traffic if a malicious act is detected. Based on 
the location in a network, an IDS can be host-based, network-based or application-
based [2, 8, 13, 18]. 

Host-based IDSs, typically software, are installed on host computers and are used 
to analyze traffic received by the host. For example, an antivirus device may detect 
unwelcome traffic and log it for further analysis. Host-based systems might also 
monitor the OS, system calls, audit logs, and error messages on the host system. While 
network probes can detect an attack, only host-based systems can determine whether 
the attack was successful. Additionally, host-based systems can record what the 
attacker performed on the compromised host. 

Network-based IDSs (NIDS) use strategically positioned probes to monitor and 
analyze all traffic on the target network. While host-based detection cannot detect a 
ping sweep or a port scan across multiple hosts, network-based IDSs can easily detect 
such reconnaissance attacks. Network-based sensors generate an alert when these 
reconnaissance attacks are discovered. As network speeds increase, so must the 
capabilities of the intrusion detection probes. As the network grows, more probes can 
be added to ensure proper coverage and security. None of these systems were effective 
in pinpointing attacks quickly; they were generally used as forensic tools to examine 
security incidents ex post facto. 

Depending on how they function, NIDS can be divided into two types: (a) 
Behavior-based (or, anomaly-based or statistical) IDS, and (b) Signature-based (or, 
pattern-based) IDS, also known as misuse detection. 

In behavior-based systems, the IDSs try to detect intrusions via deviations from 
normal or expected behavior. Here, IDSs make a profile of every user during normal 
operation. When a deviation of this normal behavior is detected, the IDS triggers its 
alarm. This type of IDS can detect the type of intrusion that has no record of its 
previous occurrence. In that sense, behavior-based systems can detect new type of 
attack patterns.  A large number of false alarms are a problem with this system. 

In signature-based systems, the IDSs maintain a database of known exploits and 
their attack patterns (also called signatures). While analyzing network packets, if the 
IDS finds any pattern match to one of those known attack patterns, then it triggers an 
alarm. This type of IDS needs to analyze every packet in the network as it looks for 
known attack patterns. This type of IDS produces less number of false positives. Since 
there are many network-based exploits coming on each month, these need to be 
updated frequently. 

While both techniques can be effective in real-time, both suffer from significant 
limitations: behavior-based techniques break down under heavy traffic or sudden 
traffic bursts and signature-based techniques cannot guard against unknown 
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intrusions. State-of-the art anomaly detection methods can identify deviations from 
normal behavior, but they do not offer guidance on what to do next.   

Application-based IDS appears to be the latest novelty in the intrusion detection 
field. These systems fall into three sub-categories: 

 
• Application self-protection (with OWASP7 being the most well-known Web 

application security project) 
• Web application firewall (WAF8) 
• Dynamic application security testing (DAST9) 

 
When it comes to web applications, the majority of companies do not have 

resources to fix vulnerabilities. A good option is to apply an automated process 
combining WAF and DAST. Being a passive security system, firewall itself is not 
capable of recognizing bad content in the traffic. Redirecting the flow to DAST and 
receiving an “alert” about malicious traces, firewall memorizes the rules and collects 
them. In its turn, DAST produces reports on application security vulnerabilities. 

There are a number of commercial intrusion detection systems in the market: 
Juniper, McAfee, Cisco, Symantec, etc. These IDSs generally do not provide an ideal 
performance as advertised.  Some of the effective host-based open source IDSs are: 
OSSEC10, and Tripwire11. Some of the popular open source NIDS are: Snort12, Real 
SecureNet, Suricata13, and Bro. 

Snort generates thousands of alerts in a small time. A sample is shown in the Table 
2 below. A table like this is usually the starting point for the application of machine 
learning. Each row of such a table describes an observation or alert. The fields 
(columns) in each observation may include source IP, destination IP, start and end 
times, protocol type, number of failed login attempts, number of file operations, 
number of failed connections from the same host, and so on. These fields are also 
called features (or attributes). A typical data set may contain millions of alerts (rows) 
and well over fifty features. An alert is nothing but a capture of an event (or events) 
that occurred at a given time; it does not mean an intrusion has occurred. Our goal is 
to look for a meaning in these patterns. Certain collections of alerts may indicate some 
nefarious activity. Collecting alerts from an IDS is just one way of taking the vital 
signs of a computer system. There are other ways, such as looking at the system calls 
generated by the operating system [15]. 
 
 
 
                                                           
7 “Welcome to OWASP”, https://www.owasp.org/index.php/Main_Page 
8 Chandan Kumar, “5 Open Source Web Application Firewall for Better Security”, 
https://geekflare.com/open-source-web-application-firewall/, September 4, 2016 
9 Ian Muscat, “DAST vs SAST: A Case for Dynamic Application Security Testing”, 
https://www.acunetix.com/blog/articles/dast-dynamic-application-security-testing/, September 6, 2017 
10 “OSSEC: Open Source HIDS SECurity”, http://ossec.github.io/index.html 
11 “Tripwire”, https://github.com/Tripwire/tripwire-open-source 
12 “Snort”, https://www.snort.org/ 
13 “Suricata”, https://suricata-ids.org/ 
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Table 2 A Sample Data Set 
 

T Time src_port Dest 
port src_ip dest_ip Severity 

Adobe  
Products  
Violation                                                           

Sep 01 ‘14 
00:17:50 Medium Large4 46.178.180.36 33.85.222.155 High 

Aggressive 
Aging                                                                   

Sep 01 ‘14 
00:23:00 Medium Large4 15.226.10.38 25.46.150.139 Low 

Apache 
Server  
Protection 
Violation                                                 

Sep 01 ‘14 
04:17:11 Medium Large4 53.197.36.240 20.213.101.107 High 

Application 
Servers  
Protection 
Violation                                           

Sep 01 ‘14 
04:23:00 Medium Large4 21.69.151.82 3.138.44.87 High 

BACKDOO
R: SSH 
Server 
Running on 
Non- 
Standard 
Port                                  

Sep 01 ‘14 
08:34:55 Medium Large5 2.93.222.122 27.131.204.222 Low 

BitTorrent: 
DHT 
Tracker 
Communicat
ions (UDP)                                       

Sep 01 ‘14 
08:41:36 Medium Large5 51.105.11.21 15.40.86.223 High 

Content 
Protection  
Violation                                                       

Sep 01 ‘14 
08:47:00 Medium Large1 19.39.134.253 19.177.132.149 High 

 
3. Modern face of machine learning 

Banks and others in financial industry use Machine Learning (ML) to gain insights 
from data, and to prevent fraud. The insights can also identify investment 
opportunities, or help investors know when to trade. ML can also identify clients with 
high-risk profiles.  

Machine Learning posits that computers can learn from data without being 
explicitly programmed to perform specific tasks. In fact, data is key when it comes to 
building systems using ML. The adage that more data means better models is true 
when it comes to ML. The input to a ML model could be structured or unstructured 
data, network data, click-stream data or behavior data and the output is a score or a 
class label. 

Data sets are growing larger. As the volume, velocity, and variability of data 
streams increase, so does the challenges.  Even within a single network, the most basic 
characteristics – such as bandwidth, duration of connections, and application mix – 
can exhibit immense variability, rendering them unpredictable. While tools often 
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work well with thousands of records and a few megabytes of data, they do not scale 
up well while handling real-world problems, measured in gigabytes or even terabytes 
of data. 

As models are exposed to new data, they incrementally adapt. They learn from 
previous model stages to produce reliable, repeatable decisions and results. It is a 
science that is not new – but one that has gained fresh momentum [5, 21, 23, 25].  

 
3.1 Data collection  
 
Table 2 is an example of an unlabeled data set. Traditionally, a security expert 
examines each row of this table and assigns a label YES for a breach and NO, 
otherwise. Such labelled data, created laboriously, constitutes the training data for a 
supervised machine learning algorithm. Then the algorithm learns to classify the rows 
into two categories: intrusive and benign. Thus, a well-crafted anomaly detection 
algorithm may be able to generalize (from what it has learned from the training data) 
and detect an intrusion when presented with data it has not seen earlier [2, 24, 25]. 

Broadly speaking, there are three stages in the application of ML to solve any 
problem: preprocessing, training and validation of a model, and post-processing. The 
training and validation stage has been automated with excellent algorithms and 
opensource codes (e.g. Scikit-learn14, Tensor Flow15) to implement these algorithms. 
The bulk of the time and effort is normally spent during the pre- and post-processing 
(evaluation) stages where the purpose is to gain insight as such human intervention is 
still required.   

A significant challenge in devising an evaluation plan is the lack of publicly 
available datasets, such as those available in, say, image processing.  The two publicly 
available datasets that – the DARPA/Lincoln Labs packet traces [16, 17], and the 
KDD Cup dataset derived from them [12] – are almost two decades old, and no longer 
adequate for any current study.  

 
3.2 Pre-processing 
 
Raw data is often unusable for ML purposes. Data wrangling is the process of cleaning 
and unifying messy and complex data sets for easy access and analysis. This process 
typically includes manually converting/mapping data from one raw form into another 
format to allow for more convenient consumption and organization of the data. There 
may be missing data, inconsistent data use (e.g., a cardinality feature may contain 
“North”, “north”, and “N”, all identical in meaning), and numeric data with non-
numeric characters, among many other possible problems. This step also involves 
combining multiple data sources to a single usable source and normalizing data so that 
all feature values are within a standard range, say in [0,1].  

                                                           
14 “scikit-learn”, http://scikit-learn.org/stable/ 
15 “About TensorFlow”, https://www.tensorflow.org/ 
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For illustration, assume that we have a labelled data set, comprised of 41 columns 
and millions of rows. To detect an intrusion, we might use a classification algorithm 
and make a prediction of the class label. A first step of the procedure would be to 
download the data and examine it. To read the data and the labels we can use Python’s 
pandas.read_csv function and process the resulting data frame using the following 
process_data function. 

 

def process_data(X, y): 
    X = X.drop(41, 1) 
    X[1], uniques = pandas.factorize(X[1]) 
    X[2], uniques = pandas.factorize(X[2]) 
 
    num_examples = 10**6 
    X = X[0:num_examples] 
    y = y[0:num_examples] 
 
    X = numpy.array(X) 
    y = numpy.array(y).ravel() 
 
    return X, y 

 
All this function does is drop the label field (column 41) from X and turn 

categorical features in columns 1 and 2 into integers, then picks the first million rows 
and returns the resulting numpy arrays.  This idea can be used if one is trying to map 
source IP’s to some numerical values, thus: 

 
df['ID'] = pd.factorize(df.SrcIP)[0] 
 

Result 

        SrcIP | ID     
192.168.1.112 |  0   
192.168.4.118 |  1  
192.168.1.112 |  0 
192.168.4.118 |  1 
192.168.5.122 |  2 
 

The next step is feature engineering [3, 19]. Feature engineering is the process of 
using domain knowledge to create features that make machine learning algorithms 
work. Feature engineering is fundamental to the application of machine learning, and 
is both difficult and expensive. The table above shows only six features: time, src port, 
dest port, src ip, dest ip and severity. (What the table did not show is whether or not 
the alert is a result of a breach of security.) A security expert may feel that the features 
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selected may not suit her objective. To develop a user profile, subjective features like 
host ID, time of log-in, commands used, data entry modalities (speed of typing, 
keyboard Vs mouse usage) may be more relevant. To profile a program, objective 
features like system calls generated, resources used (CPU time, Memory, Buffers, 
etc.) may be more appropriate. In the context of intrusion detection, anomalous actions 
often happen in bursts rather than as isolated events. Due to this reason, time-based 
features like (a) the number of flows to unique source/destination IP addresses inside 
the network in the last T seconds to/from the same destination/source and (b) the 
number of flows from the source IP to the same destination port in the last T seconds, 
[4] occur. 

Another rule of machine learning is to use a training set with instances drawn from 
all classes in equal proportions. Also, these algorithms perform better when trained 
with large data sets from each class. One finds only a few anomalies in a large data 
set. A machine trained with large chunks of normal data (positive examples) performs 
better in recognizing normal data and it would be foolhardy to expect it to perform 
well on abnormal data (negative examples). 

Dealing with unbalanced datasets entails strategies such as improving 
classification algorithms or balancing classes in the training data during 
preprocessing. The later technique is preferred as it has wider application. The main 
objective of balancing classes is to either increase the frequency of the minority class 
or decrease the frequency of the majority class using a variety of techniques like 
under-sampling the majority class, over-sampling the minority class, synthetic 
minority over-sampling (SMOTE) – where a subset of data is taken from the minority 
class as an exemplar and new instances are created [9]. This author had used an Earth 
model to synthetically create a data set of minority class (underground nuclear 
explosions) while discriminating explosions from earthquakes [16]. 

 
3.3 Model building and validation 
 
To make a prediction, one can use any of the classifiers available in the library. For 
example, logistic regression is used in the next section. 

3.4 Evaluation of classification models 

Evaluation of the classification model is an important post-processing step. In this 
connection, there are several important issues that need to be addressed: 

(a) What is the purpose of model evaluation? We use a model evaluation 
procedure to estimate how well a model will generalize to out-of-sample 
data. We also need a model evaluation metric to quantify model 
performance. 

(b) What are some of the evaluation procedures?  
i. A simple way to evaluate a model is to split the data set into a training 

set and a test set. This split is best done with packaged s/w tools built 
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into Scikit or TensorFlow. While fast and simple, this step also gives 
a better estimate of out-of-sample performance, although it is still a 
high-variance estimate. 

# split X and y into training and testing sets 
#from sklearn.cross_validation import train_test_split 
X_train, X_test, y_train, y_test=train_test_split(X,y,  
random_state=0) 

 
ii. K-fold Cross Validation: This systematically creates “K” training 

splits and averages the results. This runs K-times slower, but gives 
even a better estimate of out-of-sample performance, although it is 
still a high-variance estimate. 

iii. The model itself can be evaluated depending on the type of problem 
the model is solving. In regression problems, the usual metrics are 
mean absolute error, mean square error and the root mean square 
(RMS) error. If it is a classification problem, accuracy is the 
traditional metric. The question to be answered is: Can we predict an 
intrusion status given some measurements on system health? 

# train a logistic regression model on the training set 
#from sklearn.linear_model import LogisticRegression 
logreg = LogisticRegression() 

 
logreg.fit(X_train, y_train) 

 
# make class predictions for the testing set  

y_pred_class = logreg.predict(X_test) 

 
(c) Now calculate the classification accuracy which is defined as the percentage 

of correct predictions 

# calculate accuracy 
from sklearn import metrics 
print(metrics.accuracy_score(y_test, y_pred_class)) 
0.692708333333 
 

(d) Null accuracy is the accuracy that could be achieved by predicting the most 
frequent class (here, normal with no intrusion). For brevity, this calculation 
is not shown here. 

(e) For the binary classification (normal Vs intrusive) model being built here 
from 192 (rows) alerts, only the first 28 results are shown below: 
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# print the first 25 true and predicted responses 
from __future__ import print_function 
print('True:', y_test.values[0:25]) 
print('Pred:', y_pred_class[0:25]) 
 
True: [1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0] 
Pred: [0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 

 
(f) The Confusion Matrix gives a more complete picture of how the classifier is 

performing. Also, it allows one to compute various classification metrics, 
and these metrics can provide valuable guidance in model selection. Here, 
this is a 2x2 matrix because there are 2 response classes.  Every observation 
in the testing set is represented in exactly one box. The basic terminology 
used is as follows:   

• True Positives (TP): The model correctly predicted that there IS 
an intrusion 

• True Negatives (TN): The model correctly predicted that there is 
NO intrusion 

• False Positives (FP): The model incorrectly predicted that there IS 
intrusion (a “Type I error”) 

• False Negatives (FN): The model incorrectly predicted that there is NO 
intrusion (a “Type II error”).   

 
#IMPORTANT: first argument is true values, second argument is  
predicted values 
print(metrics.confusion_matrix(y_test, y_pred_class)) 
 
[[118  12] 
 [ 47  15]] 

 

# save confusion matrix and slice into four pieces 
confusion = metrics.confusion_matrix(y_test, y_pred_class) 
TP = confusion[1, 1] 
TN = confusion[0, 0] 
FP = confusion[0, 1] 
FN = confusion[1, 0] 



36  IJBT (2018) 01:23-39 
 

 

The confusion matrix can be used to calculate several performance metrics of the 
classifier, as discussed below: 

Classification accuracy, defined as (TP + TN)/(TP + TN + FP + FN), is the easiest 
metric to understand. 

print((TP + TN) / float(TP + TN + FP + FN)) 
print(metrics.accuracy_score(y_test, y_pred_class)) 
0.692708333333 

 

Other metrics can be calculated likewise by replacing the first line of the above 
code snippet by the appropriate formula, as shown below: 

Sensitivity = (TP)/(TP + FN) = 0.241935483871  tells how sensitive the classifier 
is in detecting positive (intrusive) instances. That is, how often the prediction is 
correct when the actual value is positive?  

Specificity = (TN)/(TN + FP) = 0.907692307692  tells how often the prediction is 
correct when the actual value is negative?  

False Positive Rate = (FP)/(TN + FP) = 0.0923076923077 tells how often is the 
prediction incorrect when the actual value is negative. 

Precision = (TP)/(TP + FP) = 0.555555555556 tells how often is the prediction 
correct when a positive value is predicted. That is, how “precise” is the classifier while 
predicting positive instances? 

3.5 Which metrics to use? 
 
The choice of metric depends on the objective in modeling. For spam filtering 
(positive class is “spam”), one optimizes for precision or specificity because false 
negatives (spam goes to the inbox) are more acceptable than false positives (non-spam 
is caught by the spam filter). For a fraud detector (positive class is “fraud”), one 
optimizes for sensitivity because false positives (normal transactions that are flagged 
as possible fraud) are more acceptable than false negatives (fraudulent transactions 
that are not detected). In intrusion detection applications, a false positive, requires 
spending expensive analyst time examining the reported incident only to eventually 
realize that it reflects benign activity and can quickly render the NIDS ineffective.  
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False negatives, on the other hand, have the potential to cause serious damage to an 
organization: even a single compromised system can seriously undermine the integrity 
of the IT infrastructure. Systems that aim at minimizing FNs also tend to increase FPs. 
To guarantee that no terrorist passes through an airport security, you may have to risk 
frisking a grandmother! 
 
3.6 Adjusting classification threshold 
 
A threshold of 0.5 is normally used in binary classification problems to relate class 
predictions to probabilities. It is straightforward to print, say the first 10, predicted 
responses using the command logreg.predict(X_test)[0:10] and the 
corresponding predicted probabilities by the command 
logreg.predict_proba(X_test)[0:10,:] and plot a histogram of the 
predicted probabilities.  

 

3.7 ROC and AUC 
 
Sensitivity and specificity have inverse relationship. Although both are affected by 
the threshold, it is possible to study the effect of the threshold by plotting the ROC 
(Receiver Operating Characteristic) curve, which is a plot of the true-positive rate on 
the y-axis (i.e., sensitivity) and false-positive rate (i.e., 1 – specificity) on the x-axis, 
for all possible classification thresholds. For an ideal classifier (high sensitivity and 
high specificity), the ROC curve hugs the upper left corner of the graph [Fawsett, ‘06]. 
This curve can be obtained by running the ROC Curve function from the Scikit-
Learn’s Metrics module with the true values of the testing set stored in y_test, as the 
first argument and the predicted probabilities stored in y_pred_prob, (NOT 
y_pred_class) as the second argument.  

The AUC is literally the area under the ROC curve and represents the percentage 
of the total area under the ROC. A higher AUC value is indicative of a better overall 
classifier as such AUC is often used as a single-number indicator of the performance 
of the classifier as an alternative to classification accuracy.  

4. Summary 
 
The first part of this paper examined the state-of-the-art of computer security in the 
light of evolving advances in mobile and cloud computing with special attention to 
intrusion detection. The second part identified spam filtering and fraud detection 
where ML scored significant successes. Intrusion detection did not score as well in 
terms of its large-scale adaptation in commercial products probably because it is not 
a single problem but a syndrome. It seems that ML is good at identifying known 
patterns of attack (is this pattern there?) and not so good at identifying evolving attack 
patterns, especially if the attacker can inspect the models being used. As Richard 
Hamming famously said, “The purpose of computation is insight, not numbers,” ML 
can be profitably used to gain insight into the operation and interpretation of intrusion 
detection systems because it can do a lot more, a lot faster.   
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