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ABSTRACT: The noninferior index solution of multi-criteria optimization theory is studied
as it relates to large-scale systems. The noninferior index set ié related in a one-to-one
manner to a family of auxiliary scalar index problems, where the auxiliary index is the
inner product of the index vector J and a weighting vector «. Particular emphasis is placed
on the functional relation between the noninferior index solutions and the wetghting vector
values. For a certain class of parameter optimization problems the entire noninferior
index surface can be determined by solving the auxiliary index problem using only one
value of the weighting vector o. The noninferior index solutions for such a parameter
optimization problem are obtained for a large-scale system problem in water resource
planning.

I. Introduction

Many problems of a modern technological society are typically charac-
terized by their complexity and variety. Problems of congestion, mounting
cost and inefficiency of public services, and deterioration of the quality of
our environment and its affect on various ecologies are just a few examples
of the “blessings” of modern technological achievements. There is little
question that the problem of characterizing and controlling large-scale civil,
social or environmental systems so that they operate efficiently is one of the
significant problems of our time.

While the agreement is nearly uniform in the recognition that large-scale
problems exist and urgently need solution, convergence of opinion as to how
to solve these problems is still lacking. It appears that there are three major
ingredients to the study of a large-scale system, namely : the criterion function,
the information available to effect meaningful control and finally the con-
troller itself. Traditional control theory deals with one information set
available to a single controller which attempts to extremize one criterion
function.
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Surely, one can easily visualize situations where there are more than one
measure of performance. Typical examples of this category are vector-valued
optimization or negotiation problems (1, 2) and nonzero sum differential
games (3, 4). At a more practical level problems of public investment such as
the operation of multipurpose river valley projects (5) and the design of
transportation systems for urban areas are but two examples of large-scale
systems requiring treatment with multiple objective functions.

The purpose of this paper is to investigate the optimization problem with
multiple performance criteria and its relevance to large-scale systems of
contemporary interest. Attention will be focused on one particular way of
viewing performance criteria so as to select a “best’ set. The emphasis here
is on criteria because more than one criterion will be necessary in a general
evaluation of the performance of large systems such as those already cited.

II. The Noninferior Index Problem

There already exist many references which treat the optimization of a
scalar index for all types of system equations (6-8). The application of
optimization principles to multi-criteria index problems is a topic which has
not received such widespread attention. Yet the multi-criteria index problem
is very important to the study of large-scale systems, because such systems
generally require more than one measure of performance for an adequate
system description. Also, the increasing use of systems analysis in non-
technical fields such as advertising, education and urban development
requires the formulation of subjective criteria which cannot be easily sub-
summed under a common scalar index such as cost or profit.

The general multi-criteria index problem will consist of scalar indexes
(Jy, ---»Jy) which may be considered as perfectly general system indexes for
a system described by either linear or nonlinear algebraic or differential
equations. These N scalar indexes will be considered ‘“best” when they
achieve the lowest values possible within the constraints of the problem, and,
for the sake of definiteness, they will all be taken as positive quantities
(i.e. J;>0;4=1,...,N). These are not stringent constraints on the problem
since the indexes can be easily transformed to meet the above requirements.
Also, the N scalar indexes will be considered as elements of an N-dimensional
vector index J which belongs to the positive orthant} of Euclidean N-space
EN, designated by EN+. This orthant is divided into admissible and inadmis-
sible portions designated by A and €, respectively. A performance vector
Jy,€ EN* belongs to A if and only if an admissible input exists which satisfies
all constraints which might be imposed on the problem and which yields the
performance vector J, when applied to the system. The region ( is defined
as the complement of A in E¥+. In the material which follows A is considered
to be a simply connected region in £+ which is continuous with respect to

+ An orthant is the largest subspace of the vector space E¥ within which the elements
of the member vectors are of constant sign. The term orthant is a generalization of the
terms quadrant and octant in two- and three-dimensional Euclidean space.
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the domain of input controls or parameters (i.e. no index point in A is isolated
from the remaining admissible points). Also, it is assumed that the origin of
EN+ belongs to Q since the trivial solution (J§ =0,...,J% = 0) would be
obtained otherwise. A schematic diagram of the two-dimensional index
space E?t is shown in Fig. 1.

The first major problem in dealing with the multi-criteria index problem
is to define what is meant by a “best” vector index. When the system
performance is described by a scalar index it is easy to see that the “best” or
optimum index is one equal to the minimum (or maximum) value of the
scalar performance index. A vector index, however, has direction as well as
magnitude, and no standard mathematical comparison can be made in such
a case. Therefore, consider the following definitions (1-4) which focus
attention on a specific class of vector indexes to be sought.

ez
IS

/

Ji

F1c. 1. Two-dimensional performance index space.

Definition 1: A vector index J* € A is optimal with respect to A if J¥ < J;
(¢=1,...,N) for each JeA.

Definition 2: A vector index J* € A is noninferior with respect to A if there
exists no other vector in A which is optimal with respect to J*.

It can be seen immediately that optimality implies noninferiority, but the
converse is not true unless N = 1 (i.e. the scalar index problem is considered).
The optimal index problem although interesting theoretically (2) is not too
important for practical engineering problems, because the optimum index
solution may be found by optimizing any one of the scalar index elements
without regard to the others. Thus, for such a problem (N —1) of the index
elements are redundant, because the control or input which minimizes one .
of the N elements minimizes the remaining (N — 1) elements as well. There-
fore, the remainder of this paper will be devoted to the nonoptimal non-
inferior index problem.
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IIl. Nonoptimal Noninferior Index Problem

Qualitatively, the noninferior index problem corresponds to a problem
which has conflicting performance criteria, so that one scalar index element
cannot be decreased in value along the noninferior hypersurface in EN+
without increasing the value of at least one other index element. The fact
that noninferior vectors lie on the (N —1) dimensional hypersurface which
separates A and Q can be shown (9). It is also known that the non-inferior
vectors lie on the lower boundary of A, namely dA (i.e. that portion of JA
which has the inward normal to A in the region EN+). The portion of Fig. 1
labeled oA would qualify as a noninferior surface in £%*, and the noninferior
index vectors which terminate on this boundary are designated by J*. Thus
instead of searching for a single ““best’’ performance index vector the problem
becomes one of defining a set of noninferior vectors which describe an (N —1)
dimensional hypersurface in EV+.

% >

A~

~%
J

a %
k o

Fic. 2. Scalarized vector index problem.

Since the solution of scalar index optimal control problems is well docu-
mented for a large number of systems, the method of index scalarization
offers an attractive means of solving for the noninferior index set. The
method of scalarization consists of solving an auxiliary scalar index problem,
where that auxiliary index is a scalar function of the vector performance
index and a suitable weighting vector. It is well known (3, 4), for example,
that a sufficient condition for a performance vector J* to be noninferior is
that it must minimize J for some value of o, where

J=<a,J>é§ociJi; a, J e BENT, (1)
: i=1
Sat=1 (2)
and - :
J* = min [J] & {a, J*). (3)
JeA :
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Here, the N dimensional vector « is the weighting vector, J is the scalar
auxiliary index which represents the orthogonal projection of J along the
direction of the weighting vector o, and {,) indicates inner product.
Figure 2 shows the geometric relations between J, a and J* for the case
N = 2. The generalization of these relations to higher dimensions is straight-
forward though not as easy to visualize.

As mentioned earlier, methods for solving scalar index optimization
problems are well documented. The strategy is then to solve the optimiza-
tion problem posed by Eq. (3) with suitable system constraints such as
parameter constraints or control and state variable constraints if the system
is described by a set of differential equations. This scalar index problem
must be solved for all values of o € E¥* in order to map out the corresponding
noninferior surface. In practice, of course, the scalar problem will be solved
for a finite number of weighting vector values which cover a given subregion
of EN+. The noninferior vectors so obtained may then be used in an inter-
polation process to determine other noninferior vectors on 0A.

Attention will now be turned to the exposition of specific differential
properties of the noninferior index hypersurface in an effort to solve the
noninferior index problem without having to solve a large number of
auxiliary scalar indéx problems. These properties, as given in Theorem I,
will be used to determine the noninferior surface for a certain class of para-
meter optimization problems to be discussed later. Along the noninferior
hypersurface the noninferior vector J* may be thought of as a vector
function of the weighting vector « since the value of J* depends on the
weighting vector chosen in EN*. Theorem I, which follows, highlights
differential properties of J*(«) when J*(«) is considered to be of class (2
(i.e. J*(«) has continuous derivatives up to the second order with respect to «).

The justification for considering J*(«) as a class C? function is based on
the differentiability of the system of equations which results as a necessary
condition for the minimization of J. In an unconstrained parameter optimiza-
tion problem, for example, the necessary condition for minimizing J with
respect to » independent variables (zy, ...,,) is that the first variation of 3
with respect to each variable must be zero. The resulting system of =
algebraic equations is then solved for the optimum values of (zf,...,2}) as
functions of the weighting parameters («y,...,ay). If the conditions of the
implicit function theorem of calculus (10) are satisfied, the variables
(xf, ...,x¥) are differentiable with respect to the parameters (a,...,ay).
The elements of the noninferior vector J*, which are themselves differentiable
functions of (z;, ..., ,), are then differentiable with respect to («;, ..., ay) by
the chain rule of differentiation. For an unconstrained optimum continuous
control problem the differentiability of J*(«) with respect to « can be shown
by considering the differentiability of the Euler-LaGrange equations which
result as necessary conditions for the minimization of J (9, 11).

In Theorem I, the normalizing condition on «, given by Eq. (2), will be
dropped so that the results of the theorem coincide with those presented
later in connection with a particular class of unconstrained parameter
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optimization problems. This means that all N weighting coefficients are to

be chosen independently from the domain of positive real numbers.
Theorem I. If J*(«) is a solution to the problem

min[J] = min[K&JD]; &= (&,...,dy) € BV,
JeA JeA

then
Nl 8k
i R~ =0
() 'LZ:IOLI oa |y=a
- X o
) [12:1% da az&]
is a positive semi-definite (N x N) dimensional matrix and
dJ* R gt Ak
(iii) - =Jf8) (j=1,..,N); J*=min[J]].
do‘j a=& JeA

Proof: Since J* represents a minimum point of J = (&,J) for all JeA
there is a hyperplane at J* which separates A from the origin. This hyper-
plane has an inward normal to A proportional to the vector &. Since any
admissible variation vector, d.J, about the point J* must be directed toward
A this means that the inner product of & and dJ must be greater than or
equal to zero.

N
24,47, 0. (4)

Thus must also hold true along the boundary of minimum points designated
by J*(a) for at least a small neighborhood of J*(&). For a sufficiently small
neighborhood of &, dJ}(«) may be represented by
aJ* 1 o2 Jx

where dJ¥(«) denotes a variation along the noninferior surface, AaT is the
transpose of Aa = (a—¢&), and 7 =1,...,N.

After substituting these relations for dJ* (i = 1,..., N) into inequality (4)
it is found that

A *l 1 N 92 J::k
L‘gj_ai_ailcm&] AOL+2—!A04T Lglot,; ) a=&:l Aa>0 (6)

for sufficiently small Ax. If Aa is small enough so that the first term of
inequality (6) dominates the left-hand side then

R s
[Eeil] -0 g

in order to satisfy inequality (6) for A« of arbitrary sign. This then leaves the
second left-hand term in inequality (6) which must satisfy the inequality for
all Ax sufficiently small. Therefore,

Necn 02 ) ¥
|2a5E

1=1

] >0. (8)

a=0&.
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Finally, the differentiation of J* with respect to o; (j =1,...,N) yields

AR T .
" xdhy 21["‘*'?.1*%'7’] .l =
Jiow b ;)

where §;; is the Kronecker delta (i.e. §;; = 1 when ¢ = j; 8;; = 0 otherwise).
Part (i) of this theorem indicates that at « = & the first NV terms on the right
sum to zero leaving the result

dJ* =J*&) (j=1,...,N). (10)

These conditions on J¥(x) hold true over any finite interval on which the
continuity and differentiability assumptions are true.

The purpose of this section has been to define and exhibit one particular
approach to the multi-criteria index optimization problem which should be
of particular interest in the study of large-scale systems. The major advantage
of the solution for a noninferior index surface is that it postpones the problem
of selecting a desired performance vector until the performance character of
the system is well understood. Also, the selection of a noninferior perfor-
mance vector from the set of noninferior vectors assures the system analyst
that no other admissible performance vector can offer better operating
characteristics for all N index elements simultaneously. The next section
will be devoted to a particular class of parameter optimization problems for
which the results of the above theorem are especially useful in defining the
noninferior index surface. For this particular problem class the entire non-
inferior surface can be defined by solving a scalarized problem of the form
given by Eqgs. (1) and (3) for only one value of the weighting vector «.

IV. An Application of the Noninferior Index Approach to Parameter
Optimization

The class of parameter optimization problems to be studied in this section
is related to and inspired by the posynomial function class introduced by
Duffin et al. (12). The unconstrained parameter optimization problem
involving a posynomial auxiliary index, J, will be reviewed following a
method first presented by Wilde and Beightler (8). An alternate solution,
which utilizes the results of Theorem I, will then be presented and the class
of parameter optimization problems will be expanded on the basis of
the results of this theorem. The attractive feature of the class of
parameter optimization problems to be studied here is that the noninferior
index elements J (i = 1,...,N) can be related to the optimum auxiliary
index J* via a simple functional form involving the weighting coefficients
a; (¢ =1,...,N). This property, when used in conjunction with Theorem I
allows one to solve for J* and J¥* (i = 1,...,N) in terms of the weights
a; (¢ =1,...,N). The use of such a property will become more apparent as
the discussion proceeds.
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Consider performance indexes of the form
Jj(z) = ﬁ(mw, 238 R i T, W), (11)

where z represents an n-dimensional vector of positive independent variables,
and a,; are real numbers; either positive, negative or zero. The auxiliary
index to be minimized is then given by the familiar linear sum of the J; as

N

J = ElajJ,.(x); W8 (=1 N} (12)
Since the auxiliary index, J, is the sum of positive polynomials with positive
coefficients the term posynomial was coined to describe the right side of the
above Eq. (12) (12). A necessary condition for finding minJ with respect
to z is that (8)

oJ \ * N
() - 2 oty | Tt = o (13)
2 i=1 ik
o)
—;zak,aJJ;‘(x*)=O (k"—"l,...,n). (14)
Ly j=1

The asterisk notation in Eqgs. (13) and (14) denotes a minimizing value for .
Now let performance weights w; be defined by

oy JF(x*)
wj = —jr—-——J *’(x*) 3 (15)
It is easy to see that
N
j=1

Equations (14) provide n equations which when multiplied by x¥ [ T*(a*)
(k = 1,...,n) yield the system of equations

1 N
=—t—7—*w—)j=lakjaj.];"(:v*); (k= 1,...,'n) (17)
N dJ* * N
0 = j§lakj—7——‘1 ‘:((xx*)) = ngak]w], (k = 1, ...,n). (18)

Thus, Eqgs. (16) and (18) yield a system of (n+ 1) linear equations for the
N unknowns w;(j =1,...,N). The number [N-—(n+1)] is termed the
degrees of freedom for the optimization problem (12). The present paper
will deal with only those problems having zero degrees of freedom. For the
particular case in which N = (n+1), this system may be solved for unique
values of w;(j = 1,..., N) providing, of course, that the appropriate coeffi-
cient matrix is nonsingular. Note also that the values of w;(j=1,...,N)
are constants independent of oy(j =1,...,N). This is an important point
which will be mentioned later.

Now, the minimum auxiliary index value J*(z*) may be written as

T@) = [T (19)
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since Eq. (16) is true. Therefore,

N aJ*(x*) wj
J* e 13
e
N w; N
Toe) =11 (2)7 I Uy (20)
However,
N N n
I [JF(@*)]% = I1 II(xF)%>
§=1 j=11i=1
= [1(zF) Eowe
=1
I [0 = [T = 1. (21)
j=1 a1
Therefore,
N (o, wi
J*(@x*) = EI(E’) § (22)

Equation (22) is a parametric representation of J*(x*) in terms of the cost
coefficients «; (j = 1,...,N) and the weighting constants w; (j =1,...,N).
Via Egq. (15) one can then determine the noninferior vector elements in
terms of oy, w; (j = 1,...,N), and these elements are given by

THa¥) = (z) kﬁ (_‘."Lc)’” (F=1 ey (23)

a; wy,

Thus by solving the auxiliary minimization problem for one particular value
of a; (j = 1,...,N) the entire noninferior index surface is determined for all
;>0 by Eq. (23). This is independent of one’s ability to solve Egs. (16) and
(18) for w; (j = 1,...,N), because the values of w; (j = 1,...,N) are deter-
mined once the auxiliary index problem is solved for a particular set of
o (j=1,...,N). Although the above derivation is based on necessary con-
dltlons for the minimization of J it can also be shown that the solution
obtained is a minimum via sufficiency conditions which are presented else-
where (12).

It is interesting to note that the result given in Eqs. (22) and (23) can be
derived without using the results of Eqs. (19)-(22). The same relations for
J*(x*) and J¥@*) (j=1,...,N) in terms of o; (j = 1,...,N) can be derived
by using part (iii) of Theorem I and the fact that w; (j =1,...,N) in Eq. (15)

are constant for all values of o; (j = 1,...,N). From Eq. (15), one obtains
* (% _wij*(x*) .
e =TS (=), (24)
which when used in part (iii) of the theorem yields for any value of j
dJ*(x*) Wi yeiie :
T, _oT,.J (*) (j=1,...,N). (25)
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The general solution to this differential equation is given by

J*(ag, .enyay) = (o) {filoegs -y p_gy 009, .. rap)}  (F=1,...,N). (26)
Since this equation must hold for all j the general form for J* is

N
J*(al,...,aN)=0j1=11(aj)w:; C>0 (27)
and
J* wf\ - Wy LA
o, -or 08) =0(;) ,‘I;Il(ak) : (j=1,...,N). (28)

This is the same parametric form for the noninferior index elements as that
given by Eq. (23), the only difference being that the coefficient C replaces the
more explicit constant JT¥,; (1/w;)®.

A noteworthy advantage of this alternate derivation is that the result of
Eq. (28) or Eq. (23) depends only on the fact that w; (j = 1, ..., N) are con-
stants, and this fact depends in turn on the ability to repla,ce 3J t (x*) /2, with
JF(x*)/zf in- Egs. (13) and (14). Suppose that instead of being a polynomial
term Jj(z) is a general function of z such that

2  yad H@) (=1 Nik=1,..,m) (29)
k

The basic substitution property used in deriving Eq. (14) from Eq. (1)3
would then be preserved, and the resulting conclusions which lead to Eq. (28)
would also be valid. The general form of Jj(x) which satisfies the property
required by Eq. (29) is

5 = Gexp| 2 [“uerae; >0 (30)

Note that when y,;(x;) = a;;/x; and C; = 1 then

n

Tk Qy.: n
» Hidg =3 ay;Inz,,
k=1 £ k=1

M=

* Ui = 3 In (z), (31)
I=1 ¢ Tl

> f % q¢ = In T (@),
k=1 v k=1
and

5@ = expfin T (5],
- (32)
J](x) = [ @)* (j=1,..,DN).

Thus the posynomial term defined by Eq. (11) is a special case of the more
general functional form of Eq. (30). The existence of an auxiliary minimum
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and its uniqueness are not guaranteed for the more general index form given
by Eq. (30), but the extension of the noninferior index problem to this index
form is certainly worthy of investigation. The following example will serve
to illustrate some of the principles presented above for a multi-index problem
whose index elements are of the form given by Eq. (30).

V. A Multi-criteria Problem in Water Resource Planning

Consider the problem of determining the optimum storage capacity of a
reservoir subject to a specified set of release rules (13). Also, assume that a
dam of finite height impounds water in the reservoir and that water is
required to be released for various purposes such as flood control, irrigation,
industrial and urban use, and power generation. The reservoir may also be
used for fish and wildlife enhancement, recreation, salinity and pollution
control, mandatory releases to satisfy the riparian rights of downstream
users, and so forth. The problem is essentially one of determining the
storage capacity of the reservoir so as to maximize the net benefits accrued.

It is not always straightforward, nor is it desirable, to express the benefits
in terms of net income, because the procedure for comparing the economical
and recreational benefits of a large public project with the dangers of cultural
and social dislocations is not very clear at the outset. Under these circum-
stances the concept of utility, as used by economists, is far more useful than
scalar-valued performance criteria.

Treatment of this problem in its entirety is beyond the scope of this paper.
To demonstrate the point and for several computational reasons this problem
is simplified as follows. Let J; be an indicator of the capital cost of the
project which depends on the total man hours x, devoted to building the
dam and also on the mean radius x, of the lake impounded in some fashion.
The height 4 of the proposed dam can be related to the variable z; by an
equation of the form

h = [e*(z,)%]Y/%; a constant >0, (33)
and the surface area of the reservoir 4 is

A =k, 1I(2,)?; Kk, constant > 0. (34)
Capital cost J; may be denoted by

J, = kyh?A; k, constant >0, } (35)

J, = k, kg IT[e*®/o(z,)4/5(x,)%].

Similarly, let J, represent the water loss (volume/year) due to evaporation.
This water loss is proportional to the surface area of the lake, so

Jy=kyA; ks constant>0, } (36)

Jy = ky kg I1(25)?.
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The total volume capacity V of the reservoir is vital to the realization of
the various goals set forth previously. This reservoir volume may be
approximated by

V =hA,

(37)
V = ky H[e™/%(x,)%%(x,)?].

Since one is interested in formulating performance indexes to be minimized
the third index J; will be taken as the reciprocal of V. The physical situation,
in this case, leads to the qualitative assumption that J; and J, are quantities
to be decreased, whereas V must be increased, in order to improve the
system performance. Therefore, let

1
J3 — —_[7,
(38)
1
Jy = 51 [e==1/%(2,)~2/%(2) %]

The scalar indexes given by Eqs. (35), (36) and (38) represent the elements
of the three-dimensional vector J, and the problem is to determine the
noninferior index set J* by the method described in the previous section.

In order to deal with a specific numerical form of the problem described
above, the constants k,, k,, k; and a are chosen so that the three scalar
performance indexes become

Jy = &0z, 0%(ay ),
Jy = Hz)?, (39)
Jy = e—000521 (g5, ) =001,y -2,
The scalar auxiliary index J is then
J = o [€%0(2,)0%(x,)%] + g [ ()]
+ g @000521 () ~00% () 2], (40)

and the necessary conditions corresponding to Eq. (13) become

aJ\* _ if ! 1 &3 1
0= (e = 2l o] o o o

7 (41)
aJ \* 2 2 2
0= (&) = walefa]] ealvrlagl] # oo - =l
or
0 = oq[2J¥]+ 0+ o[ — J¥], ] (42)
0 = oq[JF]1+ g[S 5]+ g — I5].
Now, let
W s 0‘.17*1 ;- Wy = 0‘}*2 o Wg = o‘}: 5 (43)
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Equations (42) and (43) when used with the unity condition of Eq. (16) lead
to the following system of linear equations in w,, w, and w

wytwyt+ws =1,
2w; +0—w3 = 0, (44)
wy+wy,—ws = 0.
The solution of Egs. (44) can be found by inspection to be
wy=%; wy=1%; wy=4% (45)

Therefore, the noninferior surface for this problem in terms of the weighting
coefficients «;, oy and o is found by combining the results of Eqs. (28) and
(45). The noninferior index elements are

J¥ (0, g, ag) = C(}) {(orr) H()*(e3)},
I3 (o, g, o) = C(F) {(0r)} (o) ~Hexg)}, - (46)
J (o, ag, a3) = C(F) {(g)H(org)(org) H}.

The constant C is evaluated by solving Egs. (42) for one particular value
of the weighting vector o = (o, ®, a3) and using any one of the resulting
noninferior element values in Eqgs. (46). This sample problem can be solved
by using the Newton-Raphson numerical iteration technique (8) for mini-
mizing J at a given value of a. After a solution is obtained for the given
value of «, the constant C is evaluated via Egs. (46). Additional points on

the noninferior surface can then be calculated via the parametric noninferior
surface equations represented by Eqs. (46).

TaBrLE I
Sample Problem Results (C = 2-38)

Data

set R ay ag Py I3 1/J3 af ke
1 10° JU2 108 1-06 x 10®* 1-06x 102 4-73x 102 1-51x10% 1-45x10?
2 100 101 105 3:34x10% 3:34x10 1-50x10% 1-51x10% 8-18 x 10°
3 10° 10t 107 ° 3:34¢x10® 3-34x10® 1-50x10® 1-51x10% 2-59x10!
+ 100 10! 108 1:06 x 104 1-06x 10° 4-73x 103 1-51 x 102 4-60x 10!
5 100 ax Io: = 1t 1-58 103 3-16x 10t 3-16 x 102 3-10x 10? 7-95x 10°
6 100 102 308 1-88x10% 1-88x10® 2:66x 102 3-79x 102 6-13 x'10°
T 10° 102 108 3-34x10% 3:3¢x10° 1-50x10%2 6-09x 102 2-59 x 10°
8 301 Fox 108 5-95x10® 595x10' 8:41x10% 3-79x 102 1-09x 10*
g - 5x10! 10t 108 1-78 x 10® 8-89x 10 5-62x 102 2-19x10%2 1-33 x 10!

10 Ot 101 106 3-34x10* 3-34x 10! 1-50x10%° 6-09x 102 8-18 x 10°

These calculations were carried out for the weighting coefficient values
shown in Table I, and the values of J¥, J¥ and J¥ were checked for each
value of « by using the Newton—-Raphson technique as well as the analytical
solution given by Eqs. (46). For each value of « the resulting values of
J¥, J¥ and J¥ calculated via Eqgs. (46) agreed to eight decimal places with
those given by the Newton—-Raphson solution. In all cases the numerical
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iteration was carried out until convergence of J was satisfied to the eighth
decimal place. The noninferior values of #, and x,, which are denoted by x§
and z¥ in Table I, were calculated by the Newton—Raphson technique since
these values are calculated explicitly at the last step of the iteration process.

Note that 1/J¥ is displayed in Table I rather than J§ since the reciprocal
of J, represents the reservoir volume and thus has more physical significance
than the quantity J;. The numbers given in Table I, which have been rounded
to two decimal places, may be thought of as units of money for J¥, water
volume evaporated per year for J§ and total volume for 1/J¥. One unit of J;
may represent a dollar or a thousand dollars since the constants k,, k, and k,
have been chosen for numerical convenience rather than their physical
significance. Thus the results of Table I are intended to convey only a
qualitative feel for the performance trade-offs possible. A more detailed
study of a specific problem would, of course, yield a quantitative significance
for the numerical results obtained.
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