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SUMMARY

Today’s network control systems have very limited ability to adapt to changing network conditions. The
addition of reinforcement learning-based network management agents can improve quality of service by
reconfiguring the network layer protocol parameters in response to observed network performance conditions.
This paper presents a closed-loop approach to tuning the layer three protocol based upon current and previous
network state observations, specifically the Hello Interval and Active Route Timeout parameters of the AODV
routing protocol (AODV-Q). Simulation results demonstrate that the self-configuration method proposed
here demonstrably improves the performance of the original Ad-Hoc On-Demand Distance Vector (AODV)
protocol, reducing protocol overhead by 43% and end-to-end delay 29% while increasing the packet delivery
ratio by up to 11%. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

While the strict layering architecture of the Open Systems Interconnection (OSI) stack is conceptually
useful, it is not as effective for wireless networks when time-varying traffic is transmitted over a
channel with limited throughput. Efficiently utilizing the resources with quality of service (QoS)
provisioning requires a cross-layer optimization approach. As a result, better performance can be
expected from information exchange across the protocol layers [1,2] Q1. The purpose of this paper is to
address these issues by exploring the concept of intelligent network management for globally optimum
performance in a dynamic wireless network deployment.
In typical network deployment scenarios, networks elements are limited in their abilities to adapt to

changing application demands and topology characteristics, taking the context of these changes into
account. In the case of routing in multi-hop wireless networks, battery-powered devices create
challenging problems in terms of prolonging the lifetime of the network. In designing intelligent
routing protocols, the various features of sensor networks lead to a set of optimization problems in
routing path length, load balancing, consistent link management, and aggregation [3]. In real
scenarios, however, these factors are usually in conflict with one another, and influence the routing
performance in a complex way. This, in turn, leads to the need for a more sophisticated routing
scheme that makes ideal trade-offs between multiple factors. Clearly, solving the optimization goals
separately does not lead to a globally optimal solution; rather, all metrics should be addressed with
respect to one another.
A solution for addressing these multi-variant optimization problems in network management lies in

the vision of cognitive networks [4]. Cognitive networks continuously adapt to changing environmental
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conditions and/or user needs by constantly optimizing the bandwidth access and communication links.
Typically, machine learning techniques, such as Q-learning [5], help implement the adaptation methods
of self-configuration and self-management in the autonomic computing paradigm. Recent work
further reinforces the efficacy of leveraging machine learning for network management task
optimization [6–9].
The self-configuration of network systems has cross-layer ramifications for the protocol stack, from

the physical (PHY), Medium Access Control (MAC), network, and transport layers to the application
layer. Therefore, cross-layer design [10–13] approaches are critical for the efficient utilization of
limited resources, to enable QoS guarantees, in future wireless and heterogeneous networks. In this
paper, we present the concept of self-configuration in a cross-layer context, which can overcome the
current limitations of network management in heterogeneous wireless networks, by allowing networks
to observe, analyze and act [14] in order to optimize performance. Our approach is to augment the
routing strategy of the AODV routing protocol with Q-learning, to ensure that the packet delivery ratio
can be increased, while at the same time minimizing management overhead.
Toward the above stated goals, we present a new architecture of reconfigurable ad hoc routing

management with Q-learning, namely, Q-learning based self-configuration (QLS) management and
the AODV-Q protocol. The QLS management architecture enables nodes to efficiently learn optimal
routing strategies, thereby enhancing the packet delivery ratio, end-to-end delay, and other QoS
performance metrics. We present NS-2 simulation results showing that our cross-layer, self-configuration
approach successfully improves the scalability of the AODV routing protocol in a heterogeneous network
environment. The remainder of the paper is organized as follows. Section 2 presents a belief survey of
related work. Section 3 gives an overview of our network architecture with reinforcement learning
techniques for autonomic self-management. Section 4 describes AODV-Q in detail. Section 5 explains
the NS-2 simulation scenario. Section 6 presents NS-2 simulation results. Finally, Section 7 concludes
by projecting future research directions.

2. RELATED WORK

2.1. Cross-layer approaches for intelligent network management in wireless networks

The realm of network management covers a vast collection of issues, such as IP configuration, security
and network monitoring. While these components are not unique to mobile ad hoc networks
(MANETs), they do become more difficult to optimize when nodal mobility, dynamic network
membership, and unstable links are introduced into the network [15]. Depending on the speed of
the mobile nodes (MNs), mobility can be classified into three categories: static, low mobility, and high
mobility. The management layer of such a network should be able to take into account any of these
three cases or combination thereof. In the case of low mobility, the steady-state performance should
be optimized since incidental updates (e.g. for route discovery) can unnecessarily consume resources.
For high-mobility networks, resource consumption, and delay due to route maintenance are important
limiting factors [16].
Centralized network management architectures fail to provide effective scalability in MANETs.

In the last few years, a distributed decision-making scheme [17] has been introduced to address
these concerns. In this proposed scheme, nodes may only be aware of their own neighbors and
have no understanding of the size and extent of the network. Finding a mechanism that can deal
with particular challenges associated with distributed decision making in ad hoc networks is
certainly non-trivial.
Recent research and present existing mechanisms do not provide a particularly good fit for a certain

environment and an alternative paradigm is needed for a particular scenario such as field-based
anycast routing using temperature field [18], a bidirectional abstraction to routing protocols for the
asymmetric mobile network [19], network science-based approaches for military applications [20]
and context-aware protocol engine [21]. To cope with these demands management solutions based
on cross-layer design [10–13] are necessary for efficient utilization of the limited resources in future
wireless networks.
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2.2. Challenges in MANETs

Several papers have classified MANET routing protocols in terms of their behavioral characteristics
and applicability. We largely adhere to the standard convention of classification, namely flat,
hybrid, and geographically oriented protocols. Routing protocols which are not organized in any
hierarchical fashion are commonly referred to as flat routing protocols [22]. Flat routing schemes
have three main classifications: proactive (table-driven, e.g. Optimized Link State Routing Protocol
(OLSR) [23]), reactive (demand-driven, e.g. Dynamic Source Routing Protocol (DSR) [24], Ad
Hoc On-Demand Distance Vector Protocol (AODV) [25]), and hybrid (e.g. Zone Routing Protocol
(ZRP) [26]).
DSR is a reactive protocol which uses source routing as a central mechanism [20]. When a route

request (RREQ) is made by a particular node, it uses the destination route stored in its local route cache
to send the data packet. Nodes along the path aggressively cache the path from the source node’s cache
(which is embedded in the packet itself). However, if the node does not have the required route
information cached, the route discovery process is initiated by flooding the network with route request
packets. The request packets propagate throughout the network until they reach the destination node,
or a node which has a cached path to the destination. The end node then sends a route reply with the
newly discovered route source information back to the source node which then caches the path for
future source routing. Further, destination nodes respond to all route request packets, thereby
increasing the amount of aggressive caching taking place throughout the network.
The AODV routing protocol is another routing protocol for multi-hop wireless networks, similar

in nature to DSR. AODV shares DSR’s on-demand characteristics in that it also discovers routes
on an as-needed basis via a similar route discovery process. However, AODV adopts a very
different mechanism to maintain routing information. There is only one table entry per destination
in any particular node’s routing table. AODV uses sequence numbers to determine the ’freshness’
of routes in the various routing tables. Without source routing, AODV relies on routing table
entries to propagate the route reply (RREP) back to the source and, subsequently, to route data
packets to the destination.
An important feature of AODV is the maintenance of timer-based states in each node with

parameters (e.g. Active Route Timeout, Hello Interval) regarding utilization of individual routing table
entries. A routing table entry is expired when not used recently. A set of predecessor nodes is
maintained for each routing table entry, indicating the set of neighboring nodes which use that entry
to route data packets. These nodes are notified by route error (RERR) packets when the next-hop link
breaks. Each predecessor node, in turn, forwards the RERR to its own set of predecessors, thus
effectively erasing all routes containing the broken link.
However effective AODV may be [27], it suffers from the following drawbacks in a mobile network

environment:

(a) It does not frequently update the route to the destination.
(b) Due to the large Hello Timer values, there appears to be a periodicity in the route request

generation which, in turn, can be attributed to poor link failure detection.
(c) It determines the ’best effort’ shortest path, i.e. the shortest successful path.

In the case of proactive protocols, such as OLSR, there are sufficient exchanges of routing
information to result in near-optimal routes. Therefore, OLSR is more resistant to packet drops at
the MAC layer. However, one of the drawbacks of OLSR is that it generates routing traffic
independent of application traffic [28]. Due to the higher routing overhead in proactive routing
protocols, we chose the reactive routing protocol, AODV, in our cross-layer approach and focus on
enhancing the protocol performance with a self-configuration mechanism.
To identify the trade-off issues when using reinforcement learning, it is crucial to study the impact

factors of routing protocols, traffic load and mobility, and their impact on service delivery. A statistical
design of experiments could be beneficial to identify both main effects and interactions of factors that
best explain the response variables [29]. However, in this paper the focus is on reconfiguring the
critical timers, namely, Hello Interval and Active Route Timeout (ART), to enhance network
performance by dynamic context exchanges in heterogeneous networks.
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2.3. Existing protocol parameter tuning solutions

Parametric tuning of routing protocols, and AODV in particular, has been of increasing interest in
recent years [30–36]. Vadde and Syrotiuk [30] explore the sensitivity of AODV protocol parameter
tuning in conjunction with network performance metrics. They show that nodal mobility is the major
contributing factor to end-to-end delay, due to frequent route re-establishing processes. Additionally,
they explore the fact that the packet arrival rate is the main contributing factor to changes in
throughput, and the fact that the interactions of network events and timers, such as the ACTIVE_ROUTE_
TIMEOUT, directly affect the generation of performance-degrading protocol overhead packets.
Other works have proposed solutions on how to concretely modify these protocol parameters to

improve network performance. Xing et al. [33] propose a modification to AODV, DA-AODV
(Dynamically Adjusting AODV), which measures network diameter to limit the scope of network
max hop count. Leveraging the RREQ and RREP packets to carry this information, the max hop count
indicates the number of max hops a packet can take from a source to a destination node. Network max
hop count is calculated on a per-node basis, indicating the max hops on a path for a particular source/
destination pair. The authors add a new routing table parameter, Net_Diameter, to denote the max hop
count value for each node’s routing table entry. When a routing table entry changes, Net_Diameter is
compared against every table entry to ensure that it is set equal to the max hop value. When a node
wishes to send a RREQ message to a particular destination, the source node first compares its max
hop count with the Net_Diameter value, setting either of the two values to the greater of the two
values, thereby allowing the Hello packet to be broadcasted over the whole known network. By
increasing the range of network discovery, the authors show a reasonable reduction in end-to-end
delay and route error packets, due to the enhanced routed discovery mechanisms.
Li and Han [32] propose a multi-hop wireless protocol tuning approach which uses nodal mobility

characteristics to determine changes in settings in AODV. Specifically, the authors chose to tune the
SEND_HELLO_INTERVAL based upon feedback of reply and acknowledge packets. The algorithm
used is as follows:

Procedure Recv Pð Þ
begin
p type ¼ P:typeðÞ;
if p type ¼¼ REP or ACK
intr ¼ Calculate LAST REP ACK Pð Þ
if intr decrease
SEND HELLO INTERVAL þ ¼ Δt

end;

The value of intr represents the time elapsed between the current RECV or ACK packet being
analyzed and the last time a RECV or ACK packet was analyzed. The Δt value is added to the
SEND_HELLO_INTERVAL based upon whether or not the value of intr decreased, which denotes
an increase in frequency of REP or ACK packets. When combining this modification with the
calculation of average neighbor’s speed (sending more RREQ packets if neighbor speed increases),
the authors were able to increase the lifetime of the network routes significantly over when using
standard AODV routing.
Tan and Seah [31] propose a solution whereby nodal mobility is used to tune the frequency of Hello

messages. Before a Hello message packet is transmitted, the nodal mobility is inferred by comparing
the current neighbor table of the node to the previous neighbor table of the node when the last Hello
transmission occurred, looking for the number of new neighbors and the number of neighbors still in
the table from the last iteration. If the change count (new neighbors + neighbors left count) is zero, a
so-called Deviation_Fraction value is set to 1.25. If its greater than 5, Deviation_Fraction is set to
0.75. If the change count is 1 through 5, the Deviation Fraction is set to 1. The Hello Interval is then
set equal to HELLO_INTERVAL * Deviation_Fraction. This process continues for each interval
expiration. The proposed solution results in a 20% reduction in Hello packet overhead, and increase
in packet delivery ratio due to longer lasting stable routes.
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We [34,35] proposed a general framework for autonomic network management in heterogeneous
network environments. Specifically, we [34] proposed using Q-learning to load-balance OSPF traffic
to avoid link congestion. This was achieved by having network agents observe and track queue length
of nodes in various routes. The reinforcement learning agent would then compute and track these
queue lengths over time to determine the optimal routes to facilitate network-wide load balancing,
and resulting in dramatic decreases in packet loss. We [35] provided initial experimental results of
leveraging reinforcement learning to improve AODV routing protocol performance over standard
AODV by tuning the Hello Interval. This work was a cursory study of how sensitive AODV would
be to parameter modification in a heterogeneous environment. However, this work did not compare
these modifications of AODV to any existing AODV parametric tuning solutions, nor was the learning
rate adaptation explored. Moreover, the approach we use in this paper for measuring application
performance is more tightly coupled to the actual realities of the network behavior. By using the max
observed end-to-end delay instead of a predefined max allowable end-to-end delay, as part of the
feedback mechanism to determine which protocol parameters to tune, we now observe better results.
For the purposes of this work, we chose to compare the performance of AODV-Q to the modified

protocols Modified-AODV (Mod-AODV) [31] and Optimized-AODV (Opt-AODV) [32], as well as
standard AODV. Since both solutions dynamically update the Hello Interval, the modifications
proposed [31,32] are more closely related than other existing proposed protocol enhancements. In
the next section, we cover the details regarding our proposed protocol tuning enhancement, aided
by autonomic/cognitive management principles, leveraging Machine Learning for better optimization
and performance.

3. SELF-CONFIGURATION FOR AODV

3.1. Self-configuration parameters for AODV

In AODV, the Hello Interval and ART values are important parameters to cope with link failures
caused by network dynamics. However, these timers are typically set in a trial-and-error manner or
set at a constant value, which can lead to great inefficiencies with respect to performance [30]. We
apply the Q-learning technique, leveraging cross-layer performance, to identify any possible
performance implications involving these timers.
AODV uses Hello messages: periodic local broadcasts by a node to inform each mobile node in its

neighborhood [6]. The Hello messages may list other nodes from which a mobile node has heard,
thereby yielding a broader knowledge of network connectivity. Setting the optimal Hello Interval is
a crucial aspect of maintaining network connectivity.
The route discovery process of AODV allows the intermediate nodes to store a route’s state between

the endpoints [37]. Each node keeps this state for a length of time given by the ART parameter. Every
time the route is used, the timer is reset back to the ART value. The ART is a static parameter that
defines how long a route is kept in the routing table after the last transmission of a packet on this route.
This parameter is arbitrarily set to 3 seconds. Comparatively speaking, DSR keeps a similar time-out
parameter, denoted route cache timeout, but with a value set at 300 seconds.
The use of static values does not take into account either the actual lifetime of the path or the scale of

the time correlation between two successive connections between the same endpoints. Finding an
optimal value requires a balance between choosing a short ART that causes a new route discovery,
even if a valid route is still available, and choosing a long ART, which risks sending packets on an
invalid route. In the first case, the cost is the initiation of a new route discovery that could be avoided,
and in the second case it is the loss of one or more packets and the initiation of a RERR process instead
of a new route discovery phase.

3.2. Q-learning in MANET routing

The varied features of wireless networks lead to many optimization problems with respect to achieving
specific performance objectives. The idea of applying reinforcement learning to routing in networks
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was first introduced by Boyan and Littman [38]. They showed that the Q-learning [5] based routing
can compete with the shortest path algorithms, without prior knowledge of the network topology.
Q-learning has also been applied to routing in ad hoc networks [3]. Collaborative reinforcement
learning (CRL) was also introduced and evaluated [7] as a self-organizing technique for building a
MANET routing protocol. To the best of our knowledge, no existing routing scheme with
reinforcement learning takes into consideration optimization goals (routing path length, load
balancing, consistent link management, and aggregation) combined with a cross-layer approach.

3.3. Cross-layer, autonomic network management architecture

The cross-layer architecture for our proposed cognitive management framework is explained in Figure F11.
One of the main advantages of cross-layer design is to make protocols aware of current network state in a
localized but distributed fashion. By introducing network and application layer context to the network
management agents, this improves the higher-level processes of the middleware, allowing our QLS
mechanism to exploit broader knowledge of the network state, and improve overall system performance.
Other proposals for implementation of cross-layer information exchange have been put forth in the

current literature. These proposals can be categorized in three main groups [13]: (a) direct communication
between layers; (b) a shared database across the layers; and (c) completely new abstractions. Specifically,
we present the cross-layer model which sets performance expectations relative to performance observed
thus far, in support of application-layer performance optimization, calculates reward and penalty values
in the middleware layer, and uses those values to inform protocol parameter tuning decisions at the network
layer. Figure F22 is an illustration of the cross-layer design approach which conveys how QLS in the middle-
ware layer can interact with the other reconfigurable modules in the network layer. The following steps
describe the detailed workflow of this management scheme.

Figure 1. Overall cognitive network architecture for distributed optimization in heterogeneous
networks.
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Step 1: The management module at the middleware layer gathers application demands and
determines the corresponding requirements (in this case, minimization of ETE delay).

Step 2: The Q-learning agent in the middleware layer receives the performance requirement in the
form of reward and penalty formulas.

Step 3: At the network layer, the AODV protocol provides the Q-learning agent with the decision
variables, including end-to-end delay, RERR and RREP.

Step 4: The Q-learning agent decides which action should be taken to enhance performance.
Step 5: The Q-learning agent reconfigures the routing parameter(s) accordingly (Hello Interval

and ART).
Step 6: Loop back to Step 1 to iteratively observe the effects of environmental actuation and

reformulate decision parameter values for Q-learning agent based upon new observations.

Table T11 summarizes the proposed autonomic management approach, with respect to qualitative
analyses of the challenges faced in MANETs.

4. Q-LEARNING BASED SELF-CONFIGURATION (QLS) FOR AODV

4.1. Q-learning

In Q-learning [5], each time an action a is executed, an agent receives an immediate reward r from
the environment. The agent then uses this reward and the expected long-term reward to update the
Q-values, which in turn influences future action selection. Its simplest form, one-step Q-learning, is
defined as follows:

Q s; actð Þ ¼ 1� að ÞQ s; actð Þ þ amaxact0 Q s0; act0ð Þð Þ (1)

Figure 2. Cross-layer design for routing optimization in a mobile node.
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where a is the learning rate (0 < a ≤ 1), which models the rate of updating Q-values. The variable s
represents the present state observation and s0 the new state which the algorithm will explore. The
variable act represents the action which led to state s and act0 the action that leads to s0. The Q-value
itself is a numerical value which represents the current state action pair. In this context, the state is the
current performance of the network and the action is how to tune various protocol parameters. Finally,
Q(s,act) is the Q-value derived from the current state–action pair, and maxact0Q(s0,act0) is the max
Q-value (reward) that can be obtained from next state s0 over all possible actions act0. As a model-
free reinforcement learning technique, Q-learning requires no knowledge about the underlying
reward or transition mechanism; thus it is applicable to the problem of learning routing strategy
in ad hoc networks, where explicit state-space mapping can become computationally cumbersome.
Specifically, mapping out the possible permutations of networks settings, nodal mobility, and traffic
interactions would be potentially infeasible, and Q-learning allows us to avoid this task by exploring the
state space of local state–action pairs without globally mapping it.

4.2. Q-learning-based self-configuration

In our implementation of AODV-Q, each node has two Q-values: Qpenalty and Qreward. Qpenalty denotes
the penalty Q-value for unstable network status, which makes the node take the action of decreasing
ART and Hello Interval. Qreward represents the stability reward of the network, which will make the
node take the action of increasing ART and Hello Interval. With respect to the Q learning calculation:

Qpenalty ¼ 1� að ÞQ s; actð Þpenalty þ aQ s0; act0ð Þpenalty (2)

Qreward ¼ 1� að ÞQ s; actð Þreward þ aQ s0; act0ð Þreward (3)

In AODV-Q, each node makes its self-configuration decision based on the local routing information,
represented as the two Q-values which estimate the quality of the alternative actions. These values are
updated each time the node receives a RREP packet. The reward value is given by

Reward ¼ Q s0; act0ð Þreward ¼ n 1=ETEtð Þ (4)

when a ROUTE REPLY packet reaches the source and there is a path from the source to the destination.
The thinking behind this calculation is that the reward should reflect the magnitude of improvement
observed, and therefore the smaller the observed delay, the larger is the reward value. Conversely,
the penalty value is calculated as

Table 1. Cross-layer reconfiguration in wireless mesh network management.

Key challenges Previous approaches Our approach

Route management • Routing protocols directly
manage the path

• Reconfigure (tuning) the routing
protocols to discover more-optimal paths

Management overhead • Relatively fixed management
overhead (e.g. proactive protocols
(OLSR) have almost fixed overhead)

• Autonomously (adaptively) change
the control message frequency according
to the change of application demands

QoS management • Resource management is limited
to network layer

• Cross-layer resource management from
network layer to application layer

• Mostly static, flat QoS support • Dynamic QoS support by reconfiguring
with Q-learning agent

Overall performance • Not aware of application demands • Support performance by our cross-layer
approach. When reconfiguring routing
parameters, end-to-end delay is used to
determine the reward/penalty values as
performance is more heavily dependent
on end-to-end delay
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Penalty ¼ Q s0; act0ð Þpenalty ¼ n ETEt=ETEmaxð Þ (5)

when a ROUTE ERROR packet is generated due to a broken route, or a ROUTE REPLY packet reaches
the source and there is no path from the source to destination. This formulation ensures penalty values
always range between 0 and 1, yielding smaller penalties the further the current end-to-end delay is
from the max end-to-end delay observed thus far.
In equations (4) and (5), ETEt is the current end-to-end delay; ETEmax is the maximum end-to-end

delay observed thus far. For every RREP message, the delay is measured between the destination and
the source. In the event that the destination cannot be reached, the delay is the amount of time the
RREP takes between the final node processing the RREQ and the source node. Whenever a node
receives an RREP, it captures the ETE delay for that packet at time t (ETEt). If that value is larger than
the current ETEmax, it sets ETEmax equal to ETEt. The value n denotes the normalization constant,
which is set to 1.0 for the penalty calculation, and 0.10 for the reward calculation, to ensure a range
of values between 0 and 1 for both. The end-to-end delay is used to affect the reward and penalty
because network protocol performance has been observed to be more tightly coupled with the ETE
delay metric than other network performance metrics [30]. The algorithm for calculating the
penalty/reward values and updating the ART and Hello Interval is as follows:

1. Intialize Qpenalty and Qreward values to 0 and a to 0.1.
2. For a period of time (’learning_phase_duration’ = 30 seconds), increase or decrease the ART

and Hello Intervals by 2 with equal probability. Q-values are calculated but not yet used to
determine increase/decrease.

3. When receiving a successful ROUTE REPLY message, calculate the reward value, update
Qreward, and GOTO step 4.

4. When receiving an unsuccessful ROUTE REPLY message or ROUTE ERROR message,
calculate the penalty value, update Qpenalty, and GOTO step 4.

5. If Qreward>Qpenalty, decrease the ART and Hello Interval by 1, ELSE Increase each value by 1.

To avoid overly aggressive changes in the ART or Hello Interval values, we initialize learning rate
to 0.1. Future research will entail an investigation of the effects of dynamic learning rate tuning in
response to observed performance thresholds. Section 7 conveys cursory results of experimentation
with respect to an adaptive learning rate scheme.
Consider an example multi-hop wireless network containing several nodes, including mobile nodes

(MN) A, B and C. Using the above described Q-AODV modifications, if MN A receives an RRER
then node A is more likely to decrease ART based on its Q-learning agent. MN B is going to decrease
the Hello Interval because MN B receives RREP indicating no valid route exists. But MN C may
increase its Hello Interval when MN C receives RREP of successful route discovery. By virtue of
distributed decision making, the different nodes on a given path may have different timer values,
allowing the intermediate nodes, which have different mobility patterns, to quickly and reactively
reconfigure their routing parameters. This enhanced reactivity from our cognitive framework improves
the stability of the generated routes, as will be illustrated in the ensuing discussion of results.

5. SIMULATION ENVIRONMENT

The performance of our network system has been evaluated with the NS-2 simulation tool [39]. As
shown in Table T22, the simulation network is defined in a flat terrain of 2000� 2000 m with 100 mobile
nodes, three MANET GWs, two BGP routers, and six fixed servers. Table 2 displays the summary of
NS-2 simulation parameters. At the physical and data link layers, the 802.11b standard was used for
analysis. The main purpose of the simulation scenarios was to provide a framework to compare the
performance of AODV-Q, the solutions previously proposed [31,32], and standard AODV protocols.
Results were averaged over 20 runs for each protocol, for each max pause time.
The traffic models used to gather the simulation results consists of constant bit-rate (CBR) video

conferencing and File Transfer Protocol (FTP) application traffic profiles. These traffic types were
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chosen for two reasons, the first of which was to have diversity in the type of transport protocol used
over this network, to try to understand any performance implications observed from each. The second
reason was for the rate of traffic generation, namely that FTP will try to send as much data as possible,
as opposed to other applications, such as HTTP, which can have more variability in the rate of traffic
generation. The more taxing the traffic source is on the available network resources, the better we are
able to observe how the protocol enhancements will respond to the observed performance.
In this analysis, node mobility is assumed to be random (i.e. independently selected by each node

using a uniform distribution) movement rather than group movement. The mobile nodes are assigned
a maximum speed of 15 m/s. In the simulation scenarios, each mobile node changes its location within
the network based on the ’random waypoint’ model; i.e. the node randomly selects a destination,
moves toward that destination at a speed not exceeding the maximum speed (15 m/s) and then pauses;
this interval is known as pause-time. In order to calculate the impact of high mobility on the protocol
overhead, pause-time ranged from 0 to 240 seconds in duration. It should be noted that a pause-time of
zero represents the worst case scenario, in terms of high topological instability, as the mobile nodes are
constantly moving during the simulation.
For the AODV-Q simulations, for the first 30 seconds each node randomly chooses actions

decreasing or increasing Active Route Timeout and Hello Interval. During the simulations
AODV-Q reconfigures Active Route Timeout between 3 and 10 seconds, and Hello Interval
between 1 and 10 seconds. Table T33 conveys a summary of the results of the simulation, with the value
of each performance parameter averaged across pause time runs, and percentage improvement over
standard AODV listed to the right of the value in parentheses.

6. PERFORMANCE EVALUATION

The performance of AODV-Q was evaluated in terms of responsiveness, protocol overhead, and packet
delivery ratio. The performance results are compared with those derived under the standard AODV
routing mechanism, as well as solutions proposed previously (Mod-AODV [31] and Opt-AODV [32]).

6.1. Responsiveness

The network responsiveness resulting from decisions QLS applied to AODV was evaluated in terms of
route discovery time and end-to-end delay. The route discovery time, measured in seconds, is the

Table 2. Summary of NS-2 simulation parameters.

Simulation Parameters Values

Simulation area 2000 m� 2000 m
Number of nodes Mobile nodes (MNs) = 100

3 wireless gateway nodes
6 fixed nodes

Mobility model Random waypoint
Speed (m/s) = uniform (0, 15)
Pause time (s) = 0, 60, 120, 180, 240

Wireless interface IEEE 802.11b, 11 Mbps
Wireless transmission range 350 m
Traffic flows: CBR/UDP 5 MN sources

↔2 fixed server and 3 mobile client destinations
Packet size: 1.5 kB
Transmission rate = 100 pkts/s
Application profile: lo-res video traffic

Traffic flows: TCP 5 MNs source
↔ 2 fixed servers and 3 mobile client destinations
Packet size: 512 B
Application profile: FTP traffic

Simulation time 10 min (for each run)
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measure of how long the protocol takes to determine a valid route once a request has been made.
Figure F33(b) conveys the average measure of route discovery time for all four protocols. Opt-AODV
tracks more closely with the standard AODV implementation with a 9% reduction in route discovery
time, whereas AODV-Q and Mod-AODV offer consistent improvement in route discovery time
(33% and 27% reduction respectively). The reduction in route discovery time can be attributed
AODV-Q and Mod-AODV’s more temperate approach to tuning the Hello Interval. Specifically,
Mod-AODV uses adjusts the Hello Interval by increasing or decreasing its value up to 25% (choosing
a deviation fraction of 0.75, 1, or 1.25), rather than immediately adding or subtracting values to the
Hello Interval. While AODV-Q does add or subtract values to the Hello Interval, it does so using a
thresholded machine-learning based approach, whereby previous Q-values are taken into account to
prevent radical swings in interval values. This approach leads to a more stable and accurate depiction
of network dynamics than the approach used by Opt-AODV, which adds or subtracts values based
upon immediate observation.
End-to-end delay, measured in seconds, is the measure of the time taken for a packet to be transmitted

from the source and received at destination node. As delay is a good measure of the fitness of
routes being selected, end-to-end delay was used as another measure of network responsiveness due
to the decisions made by the routing protocols. Figure 3(a) displays the results of end-to-end delay
measurements for all four protocols. While all four protocols generally reduced delay as network
stability improved with increased pause time, using standard AODV as the performance baseline,
AODV-Q and Mod-AODV exhibited 29% and 23% reductions in delay on average, respectively,
whereas Opt-AODV showed a 10% reduction. Overall, end-to-end delay reduction can be attributed
to the fact that AODV-Q, Mod-AODV, and Opt-AODV are tending to reduce protocol overhead over
time through tuning of the Hello Interval (see Figure F44a). Reduced traffic in the wireless medium allows
the QLS scheme to realize a shorter queuing delay, resulting in shorter end-to-end delays.

6.2. Routing overhead

Control overhead is measured in terms of the number of control messages generated by the four
routing algorithms. Figure 4(a) illustrates the number of routing control messages generated or relayed
in the network. The standard AODV mechanism generates a greater number of control messages than
does AODV-Q, Mod-AODV, and Opt-AODV, with reductions at 43%, 33%, and 29% from the
standard AODV respectively. This, in turn, translates into a higher probability of lost control messages
in AODV due to collisions in the wireless medium. Consequently, routing paths are less reliable under
the standard AODV. All three protocols make reasonable progress towards overhead reduction, but the
ability of AODV-Q to retain stable routes by tuning the active route timeout parameter yields further
reduction in unnecessary route discovery traffic.
The Q-learning agent at each node self-configures the Active Route Timeout and Hello Interval

according to the Q-value. Due to the distributed self-configuration of these parameters, the nodes send
RREQs more appropriately to account for failed routes, improving the route freshness and the link

Figure 3. Overall network responsivenesswith respect to (a) end-to-end delay and (b) route discovery time.
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failure detection processes. The route error is evaluated as the average number of RERR packets per
second. As shown in Figure 4(b), Mod-AODV and Opt-AODV yield a reduction of 20% and 16%
in RERRs respectively, whereas AODV-Q yields a reduction of roughly 46% in RERR messages.
While the previous two protocols have the ability to tune the Hello message interval to alleviate
unnecessary congestion and produce better routes, AODV-Q has the added advantage of being able
also to tune the active route timeout interval. This allows the protocol to hold onto routes longer than
the other three protocols when network stability is perceived over time. This behavior tends to favor
stable routes being used longer; hence the reduction in route errors over time.

6.3. Packet delivery ratio

The third criterion we use for evaluation is that of the packet delivery ratio, which is the number of
transmitted packets divided by the number of received packets. The delivery ratio was measured with
respect to the two traffic types that traverse the wireless portion of the network: constant bit rate (CBR)
UDP video traffic, and TCP-based FTP traffic. Figure F55(a) conveys the results for packet delivery
ratios for UDP video traffic. While Mod-AODV and Opt-AODV yielded a 4% and 2% improvement
respectively, AODV-Q showed an 11% improvement in delivery of video traffic. The tendency of
AODV-Q to hold on to more stable routes in addition to the reduction in protocol overhead contributed
to the larger percentage improvement for video traffic. Video conferencing applications generate
packets with very short inter-arrival times, prompting the Q-learning agent at each node to self-
configure a shorter Active Route Timeout and Hello Interval. AODV shows large video conferencing
packet delay variations due to its lack of efficiency and timeliness in finding new routes. AODV also
shows larger end-to-end delay for video conferencing packets when the mobile nodes are highly
dynamic, such as when the pause time is zero.

Figure 4. Resultant protocol overhead with respect to (a) routing traffic generated and (b) total route
errors sent.

Figure 5. Packet delivery ratio with respect to (a) CBR-UDP video traffic and (b) TCP-based FTP
traffic models.
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Figure 5(b) illustrates the packet delivery ratio for FTP traffic governed by TCP congestion control.
In this case, the improvement upon the standard AODV implementation was less pronounced, with
AODV-Q, Mod-AODV, and Opt-AODV yielding 5%, 3% and 2% performance improvements
respectively. TCP’s built-in congestion control can claim some responsibility for the higher packet
delivery ratios of all protocols. Moreover, the constant bit rate video traffic was sent regardless of
congestion or packet loss, accounting for most of the difference in performance between the two traffic
models. However, in general, we do see a larger performance improvement with AODV-Q due to the
increased longevity of stable routes.

6.4. Impact of learning rates

In the preceding experiments, we executed the simulations with a maximum learning rate (a= 0.1).
However, we devised a dynamic self-reconfiguration mechanism for adapting the learning rate in real
time. The learning rate updates occur each time a node agent computes its respective Q-values. If one
of the following two events occurs, then the learning rate a is given by:

1. a = a/2: occurring when an agent receives a reward (the ROUTE REPLY packet reaches the
source and there is a path from the source to destination);

2. a = a * 2: occurring when an agent receives a penalty (a ROUTE ERROR packet is generated or
a ROUTE REPLY packet reaches the source but there is no path from the source to destination).

Since the above scheme yields an exponential increase/decrease in the learning rate value, we
bounded the learning rate between values of 0.01 and 0.1, to prevent impractical values from
occurring. Furthermore, we rounded the result at each possible computation to attain four possible
values, namely 0.01, 0.2, 0.05, and 0.1. This scheme provides for rapid change in the learning rate
without creating unnecessary skew in the values after repeated rewards or penalties. Such an
unbounded approach could potentially leading to very high learning rates which exacerbate the
instability of an already instable network, or leading to near-zero learning rate values which would
prevent taking potentially important performance information into account in highly stable network
scenarios.
To analyze the impact of the learning rate itself upon the observed performance enhancement of

QLS, we present the results of simulation scenarios with three learning rates: 0.01, 0.05, and 0.1. First,
we denote the various traffic types by index number, delineated by the mobility of the nodes involved:

Profile 1: Ethernet-to-MANET
Profile 2: MANET-to-Ethernet
Profile 3: MANET-to-MANET

Figure F66(c) conveys the fact that higher learning rates improved the packet delivery ratio for
Profile 3. However, we found that lower learning rates were more advantageous for Profiles 1 and 2,
with respect to improving their localized delivery ratios. We infer from these results that higher learning
rates are more advantageous in highly mobile environments, where quick adaptability can enhance
network performance, as evidenced in Figure 6(a). Further, such high learning rates could be harmful
to semi-static components of the network, in that either the source or the destination is relatively stable
with respect to the rest of the network.
One candidate solution for the problem of optimizing the learning rate is to use Bayesian

exploration [40] (to be explored in our future work), to tune and optimize learning rate values with
respect to network performance. There further exists a need to investigate the optimization accuracy
and the process of reward value assignment in the Q-value computation, in addition to the selection
of correct parameters for self-configuration.

7. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we described a proposed framework for autonomously reconfigured network systems
with a cross-layer approach. AODV-Q has been proposed to improve the performance of AODV,
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Figure 6. (a)Q2 Packet delivery ratio with respect to mobility and learning rate. (b) Packet delivery ratio
with respect to mobility and learning phase duration. (c) 2D contour graph of packet delivery ratio with

respect to mobility and learning phase.
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through the use of iterative network state observation. This is applicable to large heterogeneous
networks, where the characteristics of the mobile nodes and application demands are different. We also
presented experimental results. The performance results confirm that QLS dramatically reduces the
protocol overhead compared to the standard AODV. AODV-Q achieves a higher packet delivery ratio
while incurring shorter queuing delay. Specifically, with AODV-Q, it is possible to achieve shorter
end-to-end delay while reducing the incidence of lost data packets. Therefore, the proposed
autonomous self-configuration mechanism successfully improves the scalability and adaptability of
the original AODV protocol in a heterogeneous network environment.
The work in this paper highlights some interesting and potentially important areas for future work,

enumerated below.

7.1. Proactive vs. reactive network management

There is a fundamental trade-off between proactive and reactive routing protocols, in terms of delay
and control overhead. A proactive routing protocol generates routing traffic independent of application
traffic. Due to the higher routing overhead in proactive routing protocols (e.g. OLSR), we have chosen
the reactive routing protocol, AODV, in our cross-layer approach and tried to enhance the protocol
performance with QLS. However, it is inevitable that certain static networks will have especially
high QoS demands which require the use of proactive routing. How to use proactive routing while
minimizing the network-layer overhead is of key interest.

7.2. Performance evaluations in various network environments

It is important to verify the suitability of our approach to other heterogeneous networks (e.g. 3G,
WiMAX, LTE and optical networks) with various traffic models and mobility models. It could be
useful to provide results as a combination of larger networks and nodes.

7.3. Cross-layer design for heterogeneous application traffic with QoS guarantees

To guarantee the desired QoS levels, it would be critical to consider changes in user demands in the
application layer. For consistent QoS support, the MAC layer could provide the essential feedback.
The MAC layer could provide an indication of the network congestion level and achievable data rates;
these calculations could, in turn, be used to determine whether the lower layer capability can meet
upper layer requirements.
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Research Article

Self-adapting protocol tuning for multi-hop wireless networks using Q-learning

Dan Marconett, Minsoo Lee, Xiaohui Ye, Rao Vemuri and S. J. Ben Yoo

This paper presents a closed-loop approach to tuning the layer three protocol based upon current and
previous network state observations, specifically the Hello Interval and Active Route Timeout
parameters of the AODV routing protocol (AODV-Q). Simulation results demonstrate that the self-
configuration method proposed here demonstrably improves the performance of the original Ad-Hoc
On-Demand Distance Vector (AODV) protocol, reducing protocol overhead by 43% and end-to-end
delay 29% while increasing the packet delivery ratio by up to 11%.
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