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On a new approach to parameter estimation by the
method of sensitivity functions

V. VEMURI{ and A. RAEFSKY+

This paper investigates the advantages of combining the sensitivity analysis method
of parameter estimation with a new computational method for the solution of systems
of ordinary differential equations. It is shown that the new method allows one to
take advantage of the fact that the sensitivity equations have the same structure as
the model equations.

1. Introduction

The general identification problem, in its wider sense, includes all techniques
devised to determine and characterize a model from measurements performed
on signals entering and leaving a system and from possible additional know-
ledge of the structure and behaviour of the system. In a restricted sense,
identification is the process of finding the unknown characteristics, say the
parameters, of a system from measured values of input—output data. In this
restricted case the problem is a parameter estimation problem.

The theory of sensitivity functions and its applicability to the parameter
identification or estimation problem has been established and used with success
for over a decade (Tomovic and Vukobratovic 1972). The purpose of this
paper is to investigate the advantages of combining the sensitivity analysis
method with a new computational method for the solution of systems of
ordinary differential equations (Raefsky and Vemuri 1978). The resulting
new approach appears to have some advantages in solving the parameter
identification problem.

2. Approximation of ordinary differential equations

A first step in developing a numerical approximation to the solution of
systems of ordinary differential equations is to note that any differential
equation is an algebraic combination of differentiation operators and functions.
Therefore if one could find a numerical representation of these operators and
functions, one would then be able to proceed in the development of an approxi-
mation of the differential equation. The approximation which we shall develop
yields a rectangular matrix equation, which can then be solved with standard
routines to find its general solution (Stewart 1973). The general solution of the
matrix equation will correspond to the general solution of the given differential
equation (Eisemann 1973).

The operator d/dxz is the most basic operator in an ordinary differential
equation. To develop a rectangular matrix analogue to this operator, we
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396 V. Vemurt and A. Raefsky

follow a procedure that was first suggested by Csendes et al. (1973). Toward
this end, let

ye)= ¥ 9. L"@) M

where the [, are the nth order Lagrange interpolation polynomials defined on
the interval

I=Ja®), 2., g™, ., 2,01 8000 and =20 20

and y, is the value of y(v) at x =w;.
Now, using eqn. (1), we see

d d "
p (y(x)) e kgo Y™ ™)) (2)

Alternatively, one can regard dy/dx as another function g(x) and approximate
it as

d n—1
L —g@)= 2 D@ = T (g0 a) 3)
X 9=0

where I;~1)(x) are the (n— 1)th order Lagrange interpolation polynomials, and
(40 = - (o)
J dx J

Notice the set of points {x™} need not coincide with the set {x®-1)}.
Equations (2) and (3) imply that

(@) "=
?/k(")—kd;(x_)= ;0 g e ) (4)

s

K
Since the Lagrangian polynomials have the property, that (Ralston, 1965)

;™ (a;™) =8, (5)
where {2;™}, j=0, 1, 2, ..., n are the set of (»n + 1) points the nth order Lagrange
polynomials interpolate on. Therefore, eqns. (4) and (5) give

n

g, = (g, VY Z (m—l ) g, 0-1) ] (6 a)

or in vector-matrix notation
oy (60)
where
Y=o ¥1 YT
Y=o Y1 - Ya)*

and D® is a » by n+ 1 matrix with elements

d
d(n)i+1’j+1=d_x lj(")(x,i(”_l)), 'i=0, ]., ceey n—‘l, j=0, 1, R i) (7)
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The matrices D®) are called differentiation matrices of order n. Thus, the
derivative of y(x) at the discrete set of points x;®-1), j=0,1,...,n—1, is
obtained by using the D™) as operators on the set of discrete values, y,, %5, .-,
y,- That is, to differentiate the vector y we just perform the matrix multi-
plication D®)y. The numerical values of the differentiation matrices have been
evaluated for polynomials ranging from first to fourth order, assuming the
points {z;™} and {x;®~1)} are taken to be equi-spaced, and are presented in
Raefsky and Vemuri (1978).

It will be noticed that the rank of each differentiation matrix is one less
than the dimension of its domain and the row sums of all matrices are zero.
This is a necessary condition if y(z) is a constant, so that the result of differentia-
tion of a constant is zero. Thus the nullspace of a D®) matrix corresponds to
the nullspace of d/dx.

In a similar manner, if an operator contains a function of z, the function
may be discretized by multiplying the vector of coefficients of y(x) by a diagonal
matrix containing the values of the function at the interpolation points.

An additional type of matrix is needed to maintain algebraic consistency in
the approximation of ordinary differential equation. The need arises whenever
two expressions of differing order are to be added. Consequently, a projection
matrix is defined to map higher order polynomials into lower order ones so that
the least squares norm is a minimum. These matrices shall be called the
projection matrices, P™ (Raefsky and Vemuri 1978).

For example the differential equation

d
d—z+xy=x, <<l (8)

can be discretized by letting y(x) be approximated by, say a quadratic poly-
nomial. Then eqn. (8) reduces to

D®y + P®xy =x (9)
or
Ay =x (10)

Equation (10) is a rectangular matrix equation, which can be solved by
generalized matrix inversion. The general solution of eqn. (10) will correspond
to the general solution of eqn. (8). The method of using this approach in
conjunction with sensitivity analysis will be demonstrated in § 4.

3. Sensitivity analysis
Consider a dynamic system represented by a differential equation

i=f(x9 t; )‘)a X(O) =X, (11)
where f=(f;, fa, ..., f,)T may characterize an nth order system of ordinary
differential equations, z=(z,, «,, ..., &,)T, the state vector of order n and
A=(Ag, A, --.5 A,)T, is & parameter vector.
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To facilitate the definition of a sensitivity coefficient (Graupe 1972), let
a simplified version of eqn. (11) be

2=1(z, 1, A); 2(0)=2, (12)

We are interested in determining the sensitivity of x, the solution of (12), to a
perturbation in the value of the parameter A. Differentiating (12) with respect

to A, we find
o () _2ofdox of o
bt B0 bl

Equation (13) is valid only if X is independent of ¢. If « is continuous and
differentiable in both ¢ and A, the order of differentiation in (13) can be inter-

changed to yield
o (o) 0ofow 0of
é?(ﬁ)‘a_xﬁfﬁ e

Defining a sensitivity function u(z, ¢, A) as

£ _ox(t, A)
w=u(x,t, )= ) (15)
eqn. (14) becomes
0 0
QZ_<E£)“=E_;; u(0)=u,=0 (16)

Equation (16) is called the sensitivity equation. In general, if there are m
parameters, as in (11), there will be m sensitivity equations whose solutions
correspond to the m sensitivity functions. The sensitivity equation plays an
important role in the study of dynamic systems, and it is useful to list some of
its important properties (Tomovic and Vukobratovie 1972) :

(1) all the sensitivity equations are of the same order as the original equa-
tion ;

(2) the sensitivity equations are always linear, regardless of the linearity
or non-linearity of the original system ;

(3) if the original equation is linear, then the structure of the sensitivity
equation is identical to the original system ;

(4) if the original equation is non-linear, then the structure of the sensitivity
equation is identical to those equations generated by the quasi-lineariza-
tion process (Bellman and Kalaba 1965).

4. The sensitivity equation in parameter identification

To develop the parameter identification algorithm, which is the main
concern of this paper, we define the dynamic system of # first order differential
equations, with m parameters A;, A,, s o A toibe

x=f(x,t, ) (17)

with boundary conditions x(0) =x,, X(1) =Xx,.
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We shall assume the form of the vector functions f, is known. The idea is
to construct a model, characterized by

y="£(y. ¢t p) (18)

such that the model response y and the dynamic response x of the actual
system are close to each other in some acceptable sense. In eqn. (18) the
vector

P=(P1, P2 -5 Pm)T (19)

represents the model parameters, as opposed to A, which represents the unknown
system parameters.
If we define the error vector e(t, p) as

e(t, p)=y(¢, p) —x(¢) (20)

then a convenient measure of the closeness of y(t, p) to x(¢) is to minimize
d
J(p)= | eTedt (21)
&

In eqn. (21), the argument under the integral sign is a scalar-valued function of
time, and J is a scalar function. The value of J is a function of the parameters p.
Therefore, it can be minimized by adjusting the parameter p. If we can
determine how J varies in the vicinity of p, then it can become possible to find
a direction in which to change p so as to reduce J in an optimum fashion.
Computationally, this can be accomplished by the steepest descent method
which attempts to modify the parameter vector by iteratively updating the
vector used in the preceding step of the calculation. In other words, the value
of p at the (¢ + 1)th iteration is given in terms of its value at the ¢th iteration as

pitl=pi+Ap (22)
where the superscript ¢ indicates the iteration, and Ap is given by
Ap= —Fkgrad J (23)

In this method, computation of grad J is perhaps the biggest computational
task. In some cases a good deal of ingenuity is required to arrive at the best
method of evaluating the gradient. With this in mind, let us compute the ith
component of eqn. (22).

a te
Api= kY — [ e?dt, i=1,2,..,m (24)
7 0D i,
te ae,
S Bl i 25
JZ ?‘; ? op; L
te ay.
]Z i‘; ! op; i

Equation (26) follows from eqn. (25) by virtue of the relation in eqn. (20).
Now, using the definition of the sensitivity function,

= 7
i (27)
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eqn. (26) can be rewritten as
te
Ap;=—2kY. | eu;dt (28)
iy

i=1,2,...,m, the sum j is over the number of points at which the error
function is evaluated. Therefore, if the sensitivity functions u; are known, the
steepest descent method described above can be implemented by computing
Ap;, using eqn. (28). The sensitivity functions u; are evaluated by solving the
sensitivity equations.

The modified sensitivity algorithm can now be expressed as follows :

(1) Assign a nominal value p° to the parameter vector p. This choice may
be arbitrary and may be governed by physical considerations.

(2) With the current value of p?, solve the model equations, with the new
method described in § 2. If the equation is linear, the process of solving the
sensitivity equations by the new method is relatively easy ; the reason being
that the set of sensitivity equations can be solved, with the original linear
equation, by augmenting the right-hand sides of each sensitivity equation to
the augmented matrix used to solve the model equation (Raefsky and Vemuri
1978). This can be done because the model equation and the sensitivity
equations have the same forms and only differ in the right-hand sides.

If the equation is non-linear, the set of sensitivity equations can be solved,
with the linear equation obtained through the quasi-linearization process, by
augmenting the right-hand sides of each sensitivity equation to the augmented
matrix used to solve the linearized model equations. This can be done because
the linearized model equation and the sensitivity equations have the same forms
and only differ in the right-hand side.

(3) Using a numerical integration technique, compute the gradient of the
criterion function J, with respect to the parameters, i.e. compute eqn. (28).

(4) Update the parameter vector according to eqn. (22), until
|pitl—pi| <e
where € is a tolerance defined by the user.

(5) If the test in step (4) is not satisfied, go to step (2). If the above test
is satisfied, take the values pi*! as the estimate of the unknown vector.

5. Examples
Example 1. Linear equation

To illustrate the procedure for linear equations, consider the following
differential equation

& =kyyv +kypy }
(29)

Y =koy +kooy

with the measured outputs on z and y as shown in Table 1.
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The problem is to identify the parameters kq, k1q, ko, ko from the data in
Table 1. Problems of this kind occur in studies of pharmacokinetics using
compartmental models (Jacquez 1972). First, we assume the initial values of
the parameters k,q, £y, koy, sy as being equal to zero. The time domain [0, 1]
is divided into 2 elements of length, 2=0-5. Equation (29) is approximated in
each element by assuming

4
2®(t)= Y a;®1,9)

i=0
: (30)
YOO = 3 g O L0
i=0
Therefore, our approximation to eqn. (29) is
D@x @ _ hPWF,, ) x@ _ hP@F,,® y@ _0
(31)

D@Wy® _ P@F, @ x@) _ jP@F,,®) y@® — 0

where the matrices D@, P® are defined in Raefsky and Vemuri (1978). The
matrices F;;@®), F;,®, F,, @, F,,® are 5x5 diagonal matrices, with constant
entries kyq, kqs, Koy, ks Tespectively on each diagonal.

Time

Y

0-00000000D 00
0-12500000D 00
0-25000000D 00
0-37500000D 00
0-50000000D 00
0-62500000D 00
0-75000000D 00
0-87500000D 00
0-10000000D 01

0-00000000D 00
—0-14200846D 00
—0-32434973D 00
—0-55847901D 00
—0-85910497D 00
—0-12451138D 01
—0-17407556D 01
—0-23771682D 01
—0-31943326D 01

0-10000000D 01
0-11420085D 01
0-13243497D 01
0-15584790D 01
0-18591050D 01
0-22451138D 01
0-27407556D 01
0-33771682D 01
0-41943326D 01

Table 1. Measured data.

Equation (31) is rewritten in matrix form as
Aq,=b,
where A is the matrix

D& — hPWF,, @ —hPWF,,@
Al e e (32)
—hP@WF, @ | D& _pPWF,,®
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q, and b, are the vectors (x® : y®)T, (0 : 0)T respectively. Now the sensitivity
equations for the parameters : kyy, ky5, ky;, kpp are found to be

. 3\
Uyy =Kyythyy +Fygtley +2

gy =kgytyy + Koot
where {250
ox oy

5]0_11 = U115 ﬁc;

=Ugy

Uyy =kyythyo +K1tee +y )

Uhgg =Kgythqa +KagUan (33 b)
where

ox oy &
TR O

—_—=u SR
ok e okyy J
Uyg =KyyUsg +K19Uas

Ugg =Ko tyg +KooUay + X | (33 ¢)
where

oy ox
ék—zl‘ =Ugs, ﬁc; =U3

Uyg =kyyttyg +kygtios

Ugg =Kogytyg +Kagtas +Y ( (33 d)
where

ox - oy
e

=Ugq

As can be seen from the above equations, the sensitivity equations and the
original eqn. (29) have the same form except for the right-hand sides.

Therefore, each of the eqns. (33) can be approximated by the same discrete
analogue as eqn. (29), i.e. the above set of equations become

Aq,=b, (34 a)
where
q,=(u;; @ e A gt 0)T
and
Aq;=b, (34 )
where :
Qs = (U3, ® 1 Up®)T,  by= (AP@y® : O)T
and
Aq,=b, (34 ¢)
where

Qa=(Uss® : U®)T, b= (0: AP@x@®)T
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and
Aq;=b; (34 d)
where
Q5= (u® 1 uy )T, by=(0: AP@y@)T

The matrix A in the above equations is defined in eqn. (32).
The solutions to eqns. (31) and (34) can be found simultaneously from the
augmented matrix

{A:b :b,:b;:b,:b;} (35)

i.e. the matrix formed by augmenting the matrix A with each of the right-hand
sides of eqns. (31) and (34).
Therefore, in the ith element the solutions to eqns. (31) and (34) are

q,=Atb, + Nz, (36 @)
q,=A*b,+ Nz, (36 b)
q;=A*b;+ Nz, (36¢)
q,=Atb,+ Nz, (36 d)
q;=A*b; + Nz; (36 ¢)
where the vectors q; and b; (j =1, 2, ..., 5) are the same as above. The vectors
z; (j=1, ..., 5) are the vectors of arbitrary constants in the general solutions.

Now to eliminate the arbitrary constants for each of the eqns. (36) in each
of the i elements, we must apply the interelement continuity conditions and the
five sets of boundary conditions

z(0)=0
(37 a)
z(1)= —0-319 433 6
uy;(0)=0 }
(370)
uy(1)=0
u15(0) =0 }
(37 ¢)
Uy5(1)=0
u13(0)=0 }
(37 d)
uy3(1)=0
u14(0)=0 }
(37 e)
uyy(1)=0

where the values of 2(0) and z(1) in eqn. (37 @) are read directly from Table 1.
For eqn. (31), the application of interelement continuity and boundary
conditions (37 @) results in the matrix equation

Ba, =g, (38 @)
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The matrix B and the vector g; contain the 2n (where » is the number of
elements in the domain) interelement continuity and boundary conditions.
The vector a, will be the vector of 2n arbitrary constants in the general solution
to eqn. (29).

In a similar manner the matrix equations

Ba,=g, (38 b)
Ba; =g, (38¢)
Ba,=g, (38d)
Ba,=g; (38¢)

can be defined for each of the sensitivity eqns. (33).

Again the important point to note is that each of the eqns. (38) involve
the same matrix B. The vectors a; (j =2, 3, 4, 5) are the vectors of arbitrary
constants in the general solutions to the sensitivity eqns. (33) respectively.
The values of the constants can be found simultaneously from the augmented
matrix

{B:g :8:8:84:8;5) (39)

Once the values of the constants are found, they are eliminated from the
general solutions.

Now that we have the solutions of the model equation and the sensitivity
equation, we can calculate the value of the error vector (eqn. (20)) and carry
out step (3)in § 4. We then update the parameter vector and test for conver-
gence, i.e. step (4). We repeat the above procedure until, we achieve conver-
gence for the parameter pi, i=1, 2, ...

Iteration Value Value Value Value
number of of of of
n kyy kyy ky koo
0 0 0 0 0
3 0:264792 —0-164845 —0-368245 0-195728
6 0-683642 —0-792365 —0-783028 0-596736
9 0-837053 —0-916395 —0-927375 0-834672
2 0-998571 —0-999129 —1-:00469 1-:002716

Table 2. The values of the parameters for eqn. (29).

The values of the parameters for eqn. (29) with iterations are shown in
Table 2. The exact values are

RN
- I
ey el o

kg =1+0
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The solution to eqn. (29) after the 12th iteration is shown in Table 3. The
C.P.U. time under an Extended H Fortran compiler on I.B.M. 370/158 system
was 1-8 seconds.

Time @ i Y

0-000 —0-:00000000 0-99993891
0-125 —0-14201727 1-14195618
0-250 —0-32434332 1-32428223
0-375 —0-55845037 1-55838928
0-500 —0-85908838 1-55838928
0-625 —1-24513131 2:24507023
0-750 —1-74074490 2-74068381
0-875 —2-37711380 3:37705271
1-000 —3-19433260 4-19427151

Table 3. Solution of eqn. (29) after the 12th iteration.

Ezxample 2. A non-linear equation
To illustrate the procedure for non-linear equations, consider Van der Pol’s
equation
G+ Aa?—1)E+x=0 (41)

with measured data on x as shown on Table 4.

Time i

0 1-0
05 0-8604301689
1-0 —1-448279578
1-2 —2-004112696
1-5 —1-983369609
20 —1-948005012
3:0 —1-878810212
4 —1-802578908
50 —1-719109739
6-0 —1-62273326
7-0 —1-521198856
80 —1-34134059
9-0 —1-220283685
10-0 —0-7772658874

Table 4. Observed data on « for the Van der Pol’s equation.

Since, eqn. (41) is non-linear, we must linearize the equation to get the
model equation, i.e. the linearized version of eqn. (41) is
wktl = pk+1
; K (42)
Pkl = — (2 ek 4 1)uk+l — Ne((uk)2 — 1)pk+1 4 2 Xkok(uk)2,
k=001 :25 .
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where the value of A¥ is obtained from eqn. (22). The sensitivity equation
for Ais

b K+ — gp K+l
o —

w2k+1 e (2 Akukvk + 1)wlk+l i Ak((uk)2 st 1)w2k+l L ((uk)2 e ].)'Uk (43)
where
ou ov
=2y ands L= Y

Notice once again that both eqns. (42) and (43) are of the same form.

We can find the value of A by taking eqn. (42) as our model equation for the
kth iteration and eqn. (43) as our sensitivity equation for the kth iteration.
We then proceed in exactly the same manner as we did for the linear problem.

The value of the parameter A for eqn. (41) was found to be 10-00034 after
seven iterations. The results with iterations are shown in Table 5. The
C.P.U. time under an Extended H Fortran compiler on I.B.M. 370/158 system
was 2-95 seconds.

Iterations A

0-5
3-64318
5-71842
8-93415
9-13416
9-99863
10-00034

~1 O Ot W= QN =

Table 5. Convergence of A with iterations.

6. Discussion

This paper demonstrates the feasibility of using a new computational
method for systems of ordinary differential equations in combination with
sensitivity analysis to estimate the parameters in systems of ordinary differen-
tial equations. The method allows one to take advantage of the fact that the
sensitivity equations have the same structure as the dynamic equations.
Therefore, the model equations and the sensitivity equations can be solved
simultaneously, in the same solution procedure.

In general to estimate m parameters, an augmented matrix is formed from
the rectangular matrix approximation to the homogeneous equation, and the
m + 1 right-hand sides of the model and sensitivity equations.
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