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Abstract 

There are many ways to study, analyze, visualize and detect network traffic anomalies. Some of these are 

quite successful. However, it is difficult to compare the results obtained from these studies and to define the 

merits and demerits of each method. This difficulty is exacerbated while comparing visualization methods. 

A primary reason for this difficulty is the heterogeneous nature of the development process of these 

methods; they do not use a common framework for the development and testing. This study uses the S 

language for statistical computing and graphics as a unified framework for evaluating the applicability of 

seven exploratory multivariate analysis methods for anomaly detection and visualization. The methods are 

used to study, visualize and possibly detect computer network attacks. The k-means, hierarchical clustering, 

self-organizing maps, principal component analysis, independent component analysis, stars plots and 

mosaic plots are used to analyze and visualize selected network attacks from the DARPA 1998 data set. 

Visualization techniques associated with each method provide more in-depth representation of the nature of 

the network traffic with each method having its unique view of the data. Some of the results obtained may 

be used in identifying trends in the behavioral change in the traffic characteristics. Using this unified 

framework, a comparison of the performance, feature, graphical representation and applicability of each 

method is possible. 

 

1. Introduction 

 
Several successful implementations of Intrusion Detection Systems (IDS’s) have resulted from recent 

research. Each of these implementations generally uses its own set of home-grown software tools, scripts 

and programs in order to construct and validate every new IDS concept and method. The steps involved in 

developing and testing a new IDS method include data collection, pre-processing, algorithm development, 



data storage and visualization. In addition, the research and development process typically spans multiple 

disciplines including statistics, artificial intelligence (AI), mathematics and visualization. However, there is 

a lack of a unified framework for developing and testing these systems. This results in difficulties in 

comparing the results. Moreover, the software components developed for one system are not reusable by 

another system that is under development due to the lack of a common framework for reusability. 

 

Another issue arises when trying to evaluate and compare visualization methods that are created through 

different computer programs. In order to be able to do a meaningful comparison, several tools must be 

setup, each having its own flavor of graphical representation. In addition, these tools may be designed to 

run on different platforms making it even harder to compare these graphical representations. 

 

It is also desired to graphically characterize the development of the network traffic in general and the 

development of attack patterns in particular. This is an area where little research has been done. Tracking 

behavioral changes in the characteristics of the network traffic across time can enable earlier detection of 

attacks. This approach of characterizing the development of network attacks is inspired by the work of 

Herman and Montroll [1] in characterizing the development of countries. 

 

In order to address these issues, we propose in this chapter the use of S Language to provide a unified 

framework for studying, developing, testing and comparing the results of various methods for the 

implementation of anomaly detection systems with emphasis on visualization. Seven exploratory 

multivariate analysis algorithms are studied namely: the k-means, hierarchical clustering, self-organizing 

maps, principal component analysis, independent component analysis, stars plots and mosaic plots. Using a 

single program, data sets can be loaded and post-processed. Then each method is applied to the data sets. 

The generated statistics are displayed and graphical views of data provide for an intuitive visual approach 

for finding relationships amongst the different data elements. 

 



A comparison of the results obtained from running different algorithms reveals that some methods are 

suitable for detecting certain anomalies while the others provide for a more powerful visualization of the 

data. 

 

The rest of the chapter is organized as follows: Section 2 provides a brisk summary of the problem of 

intrusion detection only to the extent relevant to the methods presented in this chapter. Section 3 introduces 

S Language and Environment. Section 4 provides an introduction to multivariate analysis methods used in 

this study. Section 5 describes Denial-of-Service and Network Probe attacks. Section 6 details the process 

of data collection and preprocessing and the creation of feature vectors. Section 7 discusses the results 

obtained and suggests a method of detecting intrusions using these results. 

 

2. The Intrusion Detection Problem 

 

Currently, three approaches to intrusion detection have gained some degree of popularity. The first, a 

signature-based method [2], creates a database of known intrusion signatures and compares all user 

signatures with this database. The disadvantage of this model is its inherent inability to detect new attacks 

or known attacks that have significantly changed their behavior, that is, the signature. 

 

The second approach, referred to as anomaly detection, attempts to establish what the normal traffic 

patterns look like for a given network, and flags out any variations in traffic from this norm. Unlike 

signature-based detectors, anomaly detectors do not compare the traffic against any signature database; 

they rather attempt to identify anomalies in the traffic that suggest a possibility of an attack or intrusion that 

is taking place. The disadvantages of this model are high false alarm rates and the lack of an ability to 

easily cope with normal changes in network activity. In addition, anomaly detectors can flag out abnormal 

behavior, but may not be able to specify the exact type of attack or its nature. 

 



The third approach, referred to as specification-based intrusion detection, relies on manually specifying 

program behavioral specification that is used as a basis to detect attacks. It has been proposed as a 

promising alternative that combines the strengths of signature-based and anomaly-based detection [3]. 

 

The focus of this chapter is on evaluating the use of exploratory multivariate analysis methods as applied to 

anomaly detection with emphasis on visualization. Anomaly detection is a widely used method in the field 

of computer security, and there are many approaches that utilize it for detecting intrusions [4]. Various 

techniques for modeling normal and anomalous data have been developed for anomaly detection. A survey 

of these methods can be found in [5]. 

 

Clustering methods have been used in many fields including statistics [6], machine learning [7] and 

visualization. Some studies, summarized next, attempted to use clustering methods for anomaly detection. 

 

Portony [8] presents a method for clustering similar data instances together and uses distance metrics on 

clusters to determine an anomaly. The author makes two basic assumptions: First, data instances having the 

same classification should be close to each other in feature space under some reasonable metric, while 

instances with different classifications should be far apart. Second, the number of instances in the training 

set that represent normal traffic is overwhelmingly larger than the number of intrusion instances. Clusters 

were labeled automatically, and were later used to classify unseen network data instances. Both training 

and testing was done using subsets of KDD CUP 99 data [9]. On average, the detection rate was around 

40%-55% with a 1.3% - 2.3% false positive rate. 

 

There are a number of research projects that focus on using statistical approaches for anomaly detection. 

 

Staniford-Chen et al [10] address the problem of tracing intruders who obscure their identity by logging 

through a chain of multiple machines. They use PCA to infer the best choice of thumbprinting parameters 

from data. They introduce thumbprints, which are short summaries of the content of a connection. 

 



Shah et al [11] study how fuzzy data mining concepts can cooperate in synergy to perform Distributed 

Intrusion Detection. They describe attacks using a semantically rich language, reason over them and 

subsequently classify them as instances of an attack of a specific type. They use PCA to reduce the 

dimensionality of the collected data. 

 

There are some studies that attempt to apply Self Organizing Maps as a tool to address network intrusion 

detection in general, and denial of service attack detection in particular. 

 

A system developed by Rhodes et al [12] uses multiple self-organizing maps for intrusion detection. They 

use a collection of more specialized maps to process network traffic for each layered protocol separately. 

They suggest that each neural network becomes a kind of a specialist, trained to recognize the normal 

activity of a single protocol.  

 

Another approach that differs from anomaly detection and misuse detection considers human factors to 

support the exploration of network traffic [[13]. They use self-organizing maps to project the network 

events on a space appropriate for visualization, and achieve their exploration using a map metaphor. The 

use of self-organizing maps combined with stars plots as a visualization tool in this study is motivated by 

the work of Herman  and Montroll [1]. These authors attempted to characterize the temporal evolution of 

countries by the use of labor force distribution data on a multidimensional phase plot so that the 

development of a country is represented by an evolutionary track of a phase point.  

 

In the above cited works a heterogeneous set of tools and software packages were used to develop and test 

each method leading to difficulties in comparing the results obtained and accurately assessing the method’s 

performance. This issue is also common in similar work in the field. Different tools generate different 

output formats, reports and graphics making it hard to compare their results. In addition, the preprocessing 

phase of data using different programs and techniques can lead to variable performance numbers amongst 

the different implementations which makes the process of evaluating comparative performance difficult. 

Using S creates a unified framework for evaluating the results and associated performance of each method. 



In addition, reusability of software components can become a much easier task when using a single 

framework. 

 

Common to the implementation of these anomaly detection approaches is a set of tasks that are performed 

in order to achieve the desired goal of detecting intrusions. These tasks can be summarized as follows: 

 

 Data collection and processing: For example, sniffing data off the network and processing it to extract 

the desired portions of packet data. 

 Application of detection algorithm: The desired detection algorithm or method is applied to the data 

previously collected. 

 Evaluation of results: By generating reports and using advanced visualization to assess the results 

obtained. 

  

In practice, each of these tasks may be implemented using one or more software segments. Many of the 

current projects evaluating new IDS concepts use a variety of different programs ranging from scripts and 

compiled executables to third-party tools and perhaps certain portions of code from an older project. All of 

the above tasks can be achieved within a single framework using S. 

 

3. The S Language and Environment 

 

The S environment is an integrated suite of software facilities for data analysis and graphical display. “The 

term environment is intended to characterize it as a planned and coherent system built around a language 

and a collection of low-level facilities, rather than the ‘package’ model of an incremental accretion of very 

specific, high-level, and sometimes inflexible tools” [[14]. One of the strengths of S is that functions 

implementing new statistical methods can be developed on top of the low-level facilities.  

 

For example, to create a single function to perform the three basic tasks of an IDS, as described in section 

2, the S code would look like: 



 

evalIDS ← function( indata ) { 

pd ← procData( indata ); 

intrusion ← detectIntrusion( pd ); 

evalResult ← evalResult( intrusion ); 

} 

 

The top-level function evalIDS accepts one argument, indata, and calls three functions namely procData, 

detectIntrusion and evalResult representing the three basic tasks. Each of the three functions in turn calls 

other lower level functions to implement their details. Specific examples of these functions will be 

discussed in details in section 7.2. 

 

Using S, it is quite easy to play around with the design decisions made by the original implementers in 

order to explore new ideas. For example, an existing library function uses linear interpolation. This 

behavior can be changed to reflect a non-linear model by re-writing the function. In the previous example 

the function detectIntrusion could be made a library function with some default algorithm to detect 

intrusions. This default behavior could easily be modified, by modifying the library function source, to 

implement variations of the default algorithm or a completely new algorithm while maintaining the same 

structure of the rest of the program. 

 

This flexibility is even more evident in the open-source R implementation where all the details of 

implementation are open for exploration. Indeed, R is used in this study to generate all results and graphics. 

 

The commercial implementation of S, called S-Plus, has an extensive Graphical User Interface (GUI), 

which provides menus and dialogues for many simple statistical and graphical operations. A full-featured 

student edition is available at no cost for students at accredited universities. The open-source R package can 

be downloaded directly from the project web site and is installable on many platforms including Windows 

and Linux. Almost all S scripts developed for S-Plus will run on R and vice versa. The main difference 



between S-Plus and R is that S-Plus, including the student edition, has a sophisticated GUI that is especially 

helpful for new users. 

 

Both S-Plus, including the student edition, and open-source R implementations provide a command-line 

interface for entering S commands. Once the program is started, this command line allows the user to enter 

S commands, create variables, call functions, draw graphs, create and manipulate data tables, and save and 

print results. Since S is also a full programming language in its own right, it provides for assignment 

statements, control structures, arithmetical expressions, array and matrix operations and calling conventions 

for functions, amongst other capabilities.  

 

Some of the language features found in S are found in other scientific analysis languages like Matlab and 

Mathematica, but S provides for some key features that make it more applicable for use in intrusion 

detection research. First, S is designed to be a statistical analysis tool and thus many of the specialized 

statistical functions are already available in its libraries and need not be written from scratch. These 

functions are typically the core functions that are used to develop intrusion detection engines. On the other 

hand, Matlab is essentially a numerical simulation tool that is designed to do linear algebra computations 

and simulation. For example, implementing statistical models from Becker et al [[15] (commonly known as 

the blue book models) in Matlab is a chore, whereas, it is essentially built-in S-Plus and R. 

 

Also, S’s ability to run on many platforms makes it ideal for use in intrusion detection research where the 

hosts under study are running a variety of operating systems and hardware. For example, R is available for 

over 14 different processor architectures and operating systems including the most common ones such as 

Linux, Windows, MAC OS and many Unix flavors. This is a key feature for distributed intrusion detection 

systems where detection sensor devices need to be installed on a network of hosts with different processor 

architectures that run different operating systems. In this case, each sensor binary executables (an R 

installation) can be built from sources according to the processor architecture used at each host. On the 

other hand Matlab is available for five different platforms, and only in binary executables form. 

 



Furthermore, S has a powerful object-oriented language structure that can implement quite complex 

algorithms and their variants. Finally, S-Plus student edition is free for use by students and the open-source 

R is free to everyone. Open-source software packages have proved to be effective for use by research 

institutions that can not afford costly software licenses. 

 

Several speed and feature comparisons are available which compares S-Plus and R to other data analysis 

packages including Matlab, being one of the most common ones. A speed comparison between these three 

packages and several others can be found in [[16]]. A detailed comparison of the features available in these 

packages including a comparison of mathematical functionality, graphical functionality, programming 

environment functionality, data handling, available operating systems and speed comparison can be found 

in [[17].  

 

Using S for intrusion detection enables a researcher to study and compare the results of several detection 

methods using a single tool. Since S runs from a command-line interface, the processes of data collection, 

preprocessing, conversion to S objects (such as arrays and matrices), manipulation of data using a method 

of choice, generating the required statistics and plotting the results can all be done using a single tool. 

 

S comes with many pre-implemented routines that can be used without being changed. These routines 

cover methods from exploratory multivariate analysis, including cluster analysis, factor analysis and 

discrete multivariate analysis to classification methods including discriminant analysis, neural networks 

and support vector machines to name a few. All the methods could be replaced or changed to explore newer 

ideas. 

 

 

4. Introduction to Multivariate Analysis Methods 

 

4.1. Exploratory Multivariate Analysis 

 



Multivariate analysis is concerned with data sets that have more than one response variable for each 

observational unit. The data sets can be summarized by data matrices X with n rows and p columns, the 

rows representing the observations, and the columns the variables. The main division in multivariate 

methods is between those that assume a given structure, for example, dividing the cases into groups, and 

those that seek to discover the structure from the evidence of the data matrix alone, also called data mining. 

In pattern recognition terminology the distinction is between supervised and unsupervised methods. Most 

of the emphasis of this chapter is on unsupervised methods with the assumption of no apriori knowledge of 

the structure of data. 

 

4.2. Visualization Methods 

 

A simple way to examine multivariate data is via a pairs plot or a scatterplot matrix. Pairs plots are a set of 

two-dimensional projections of a high dimensional point cloud. However, a pairs plot can easily miss 

interesting structures in the data that depend on three or more variables, and genuinely multivariate 

methods explore the data in a less coordinate-dependent way. Many of the visualization methods can be 

viewed as projection methods for particular definitions of “interestingness”. Feature vectors dimensions 

used in this study have p = 12 columns, therefore, several visualization techniques are applied that attempt 

to reduce the dimensionality of these vectors. 

 

In the following sections, a brief description of each of the methods used in this study is provided. 

 

4.3. Clustering Methods 

 

Cluster analysis is concerned with discovering groupings among the cases of an n by p matrix, where n is 

the number of observations and p is the number of variables in each observation. A comprehensive general 

reference can be found in [18]. 

 



Cluster analysis searches for groups (clusters) in data in such a way that objects belonging to the same 

cluster resemble each other, whereas objects in different clusters are dissimilar. In two or three dimensions, 

clusters can be visualized; with more than three dimensions, some kind of analytical assistance and 

simplified visualization are necessary. 

 

Generally speaking, clustering algorithms fall into two categories [[19]: 

 

(a) Partitioning Algorithms: A partitioning algorithm describes a method that divides the data set into k 

clusters, where the integer k needs to be specified. Typically, the algorithm is run for a range of k-

values. For each k, the algorithm carries out the clustering and also yields a quality index, which allows 

the selection of the best value of k afterwards. The S functions kmeans, pam, clara, and fanny 

implement algorithms of this type. 

 

(b) Hierarchical Algorithms: A hierarchical algorithm describes a method yielding an entire hierarchy of 

clustering for the given data set. Divisive methods start by considering the whole data set as one 

cluster, and then split up the clusters until each object is separate. Algorithms of this type are used in 

the S functions diana and mona. The seven functions daisy, pam, clara, fanny, agnes, diana, and mona 

make up the cluster library. Algorithms to implement these functions are described in [20]. 

 

4.3.1. Partitioning Methods 

  

Partitioning methods are based on specifying an initial number of groups, and iteratively reallocating 

observations among groups until some equilibrium is attained. 

 

4.3.1.1. k-means Clustering 

 

One of the best known partitioning methods is the k-means. In the k-means algorithm the observations are 

classified as belonging to one of k groups. Group membership is determined by calculating the centroid for 



each group (the multidimensional version of the mean) and assigning each observation to the group with 

the closest centroid. 

 

The k-means clustering algorithm chooses a pre-specified number of cluster centers to minimize the within-

class sum of squares of the vectors for those centers. Since the algorithm needs a starting point, it chooses 

the mean of the clusters identified by group-average clustering. The k-means needs access to the data 

matrix and uses Euclidean distance. 

 

The k-means algorithm alternates between calculating the centroids based on the current group 

memberships, and reassigning observations to groups based on the new centroids. Centroids are calculated 

using least-squares, and observations are assigned to the closest centroid based on least-squares. This use of 

a least-squares criterion makes k-means less resistant to outliers. 

 

The S function kmeans performs k-means clustering. It is an older function that does not have special plot 

or summary methods. The main arguments to kmeans are dissimilarities as produced by daisy or dist and 

the number of clusters. Alternatively, a matrix of starting centroids may be specified in place of the number 

of centroids. If starting values are not specified, the initial centroids are obtained using the hierarchical 

clustering algorithm in hclust.  

 

4.3.2. Hierarchical Methods 

 

The partitioning algorithms discussed in the previous section are based on specifying an initial number of 

groups, and iteratively reallocating observations between groups until some equilibrium is attained. In 

contrast, hierarchical algorithms proceed by combining or dividing existing groups, producing a 

hierarchical structure displaying the order in which groups are merged or divided. 

 

4.3.2.1. Divisive Clustering 

 



Divisive analysis starts with one group and repeatedly divides groups to form many groups. The function 

diana implementation, of a divisive hierarchical method, is probably unique in computing a divisive 

hierarchy, because most other software for hierarchical clustering is agglomerative. Moreover, diana 

provides (a) the divisive coefficient, which measures the amount of “clustering structure”, and (b) the 

banner plot. 

 

In diana, the initial clustering (at step 0) consists of one large cluster containing all n objects. In each 

subsequent step, the largest available cluster is split into two smaller clusters, until finally all clusters 

contain but a single object. 

 

4.4. Self-Organizing Maps 

 

The Self-Organizing Map (SOM) [21] is a neural network model for analyzing and visualizing high 

dimensional data. It belongs to the category of competitive learning networks. The SOM is based on 

unsupervised learning to map nonlinear statistical relationships between high-dimensional input data into a 

two-dimensional lattice. This mapping is topology preserving. The property “topology preserving” means 

that points near each other in the input space are mapped to nearby map units in the SOM. 

 

SOM is a family of algorithms with no well-defined objective to be optimized, and the results can be 

critically dependent on the initialization and the values of the tuning constants used. Despite this high 

degree of arbitrariness, the method scales well and often produces useful insights in data sets whose size is 

way beyond, for example, Multi-dimensional Scaling (MDS) methods. 

 

If all the data is available at once, the preferred method is batch SOM. For a single iteration, assign all the 

data points to representatives, and then update all the representatives by replacing each by the mean of all 

data points assigned to that representative or one of its neighbors, possibly using a distance-weighted mean. 

The algorithm proceeds iteratively, shrinking the neighborhood radius to zero over a small number of 

iterations.  



 

4.5. Principal Component Analysis 

 

Principal Component Analysis [22] is a well-established technique for dimensionality reduction and 

multivariate analysis. Examples of its many applications include data compression, image processing, 

visualization, exploratory data analysis, pattern recognition, and time series prediction. A complete 

discussion of PCA can be found in textbooks [23], [[24]. The popularity of PCA comes from three 

important properties. First, it is the optimal (in terms of mean squared error) linear scheme for compressing 

a set of high dimensional vectors into a set of lower dimensional vectors and then reconstructing the 

original set. Second, the model parameters can be computed directly from the data – for example by 

diagonalizing the sample covariance matrix. Third, compression and decompression are easy operations to 

perform given the model parameters – they require only matrix multiplication. 

 

A multi-dimensional hyper-space is often difficult to visualize. Summarizing multivariate attributes by two 

or three variables that can be displayed graphically with minimal loss of information is useful in knowledge 

discovery. Because it is hard to visualize a multi-dimensional space, PCA is mainly used to reduce the 

dimensionality of p multivariate attributes into two or three dimensions. 

 

PCA summarizes the variation in correlated multivariate attributes to a set of non-correlated components, 

each of which is a particular linear combination of the original variables. The extracted non-correlated 

components are called Principal Components (PC) and are estimated from the eigenvectors of the 

covariance matrix of the original variables. Therefore, the objective of PCA is to achieve parsimony and 

reduce dimensionality by extracting the smallest number components that account for most of the variation 

in the original multivariate data and to summarize the data with little loss of information. The S function 

princomp calculates the principal components of a given data matrix. 

 

4.6. Independent Component Analysis 

 



Independent Component Analysis (ICA) has become a hot topic in data visualization. It is a method for 

finding underlying factors or components from multivariate (multidimensional) statistical data. What 

distinguishes ICA from other methods is that it looks for components that are both statistically 

independent, and non-gaussian. 

 

ICA looks for rotations of sphered data that have approximately independent components. This will be true 

(in theory) for all rotations of samples from multivariate normal distributions, so ICA is of most interest for 

distributions that are far from normal. The function fastICA performs independent component analysis on a 

given data matrix.  

 

4.7. Stars Plots 

 

There is a wide range of ways to trigger multiple perceptions of a figure, and these can be used to represent 

each of a moderately large number of rows of a data matrix by an individual figure. Perhaps the best known 

of these is the stars plots as implemented in the function stars. This glyph plot does depend on the ordering 

of the variables and perhaps also their scaling, and it does rely on properties of human visual perception. So 

it has rightly been criticized as subject to manipulation and one should be aware of the possibility that the 

effect may differ by viewer. Nevertheless, it can be a very effective tool for private exploration. 

 

4.8. Mosaic Plots 

 

Most works on visualization implicitly assume continuous measurements. However, large-scale categorical 

data sets are becoming more prevalent. There are some useful tools available for exploring categorical data, 

but it is often essential to use models to understand the data. Mosaic plots divide the plotting surface 

recursively according to the proportion of each factor in turn (so the order of the factors matters). For 

mosaic plots, the feature vectors created from the network traffic are viewed as categorical data to explore 

additional information in the data. 

 



5. Denial of Service and Network Probe Attacks 

 

In a Denial-of-Service (DoS) attack, the attacker makes some computing or memory resource too busy, or 

too full, to handle legitimate users’ requests. But before an attacker launches an attack on a given site, the 

attacker typically probes the victim’s network or host by searching these networks and hosts for open ports. 

This is done using a sweeping process across the different hosts on a network and within a single host for 

services that are up by probing the open ports. This process is referred to as Probe Attacks. 

 

Table 1 : Description of DoS and Probe Attacks 

Attack Name Attack Description 

Smurf  

(DoS) 

Denial of Service ICMP echo reply flood 

Neptune 

(DoS) 

SYN flood Denial of Service on one or more ports 

IPsweep 

(Probe) 

Surveillance sweep performing either a port sweep or ping on 

multiple host addresses 

Portsweep 

(Probe) 

Surveillance sweep through many ports to determine which 

services are supported on a single host 

 

Table 1 summarizes the types of attacks used in this study. The attacks are described in more details below. 

Smurf attacks, also known as directed broadcast attacks, are a popular form of DoS packet floods. Smurf 

attacks rely on directed broadcast to create a flood of traffic for a victim. The attacker sends a ping packet 

to the broadcast address for some network on the Internet that will accept and respond to directed broadcast 

messages, known as the Smurf amplifier. These are typically mis-configured hosts that allow the translation 

of broadcast IP addresses to broadcast Medium Access Control (MAC) addresses. The attacker uses a 

spoofed source address of the victim. For Example, if there are 30 hosts connected to the Smurf amplifier, 



the attacker can cause 30 packets to be sent to the victim by sending a single packet to the Smurf amplifier 

[25]. 

 

Neptune attacks can make memory resources too full for a victim by sending a TCP packet requesting to 

initiate a TCP session. This packet is part of a three-way handshake that is needed to establish a TCP 

connection between two hosts. The SYN flag on this packet is set to indicate that a new connection is to be 

established. This packet includes a spoofed source address, such that the victim is not able to finish the 

handshake but had allocated an amount of system memory for this connection. After sending many of these 

packets, the victim eventually runs out of memory resources. 

 

IPsweep and Portsweep, as their names suggest, sweep through IP addresses and port numbers for a victim 

network and host respectively looking for open ports that could potentially be used later in an attack. 

 

6. Data Collection and Preprocessing 

 

6.1. Data Collection 

 

The 1998 DARPA Intrusion Detection data sets were used as the source of all traffic patterns in this study. 

The training data set includes traffic collected over a period of seven weeks and contains traces of many 

types of network attacks as well as normal network traffic.  

 

This data set has been widely used in intrusion detection research, and has been used in comparative 

evaluation of many IDSs. McHugh [26] presents a critical review of the design and execution of this data 

set. Attack traces were identified using the time stamps published on the DARPA project web site.  

 

6.2. Data Preprocessing 

 



Data sets were preprocessed by extracting the IP packet header information to create feature vectors. The 

resulting feature vectors were used to calculate the principal components and other statistics. The feature 

vector chosen has the following format: 

 

SIPx Sport DIPx Dport Prot Plen 

Where 

 

• SIPx = Source IP address nibble, where x = [1-4]. Four nibbles constitute the full source IP address. 

• Sport = Source Port number 

• DIPx = Destination IP address nibble, where x = [1-4]. Four nibbles constitute the full destination IP 

address. 

• Dport = Destination Port number 

• Prot = Protocol type: TCP, UDP or ICMP 

• Plen = Packet length in bytes 

 

This format represents the IP packet header information. Each feature vector has 12 components 

corresponding to the p columns in section 4. The IP source and destination addresses are broken down to 

their network and host addresses to enable the analysis of all types of network addresses. 

 

Seven data sets were created, each containing 300 feature vectors as described above. Four data sets 

represented the four different attack types, one for each shown in Table 1. The three remaining data sets 

represent different portions of normal network traffic across different weeks of the DARPA Data Sets. This 

allows for variations of normal traffic to be accounted for in the experiment. 

 

One of the motives in creating small data sets (i.e. 300 feature vectors each) for representing the feature 

vectors is to study the effectiveness of this method for real-time applications. Real-time processing of 

network traffic mandates the creation of small sized databases that are dynamically created from real-time 



traffic presented at the network interface. Since DARPA data is only available statically, seven small data 

sets were created to mimic the case of dynamic real-time operation. 

 

With each packet header being represented by a 12 dimensional feature vector, it is difficult to view this 

high-dimensional vector graphically and be able to extract the relationships between its various features. It 

is equally difficult to extract the relationship between the many vectors in a set. Therefore, the goal of using 

the several methods in this study is to reduce the dimensionality of the feature vector using various 

techniques. It is also important to be able to graphically show the distinctions between normal and attack 

traffic for each data set. 

 

7. Results 

 

The seven multivariate analysis methods described in section 4 were applied to the data sets described in 

section 6. The objective is to evaluate the ability of each method to separate the first 300 feature vectors 

(containing normal traffic) from the next 300 feature vectors (containing attack traffic) into a different 

cluster. If the method can isolate all attack feature vectors into one or more clusters consistently, then its 

graphical representation is compared to other methods in terms of overall visual detection ability and 

computational performance. The goal is to do all these steps within S. 

 

Using S, the three common tasks discussed in section 2 are performed as follows: 

 

7.1. Data Collection and Processing 

 

The following code snippet shows how the feature vector data sets are loaded into R, and how the different 

calls to the methods are made. 

 

Library(cluster) 

library(MASS) 



library(class) 

library(fastICA) 

 

## Load Regular data frames 

regular1 <- read.table(“regular300.txt”, row.names=NULL) 

 

## Load Attack data frames 

smurf     <- read.table(“smurf300.txt”, row.names=NULL) 

ipsweep   <- read.table(“ipsweep300.txt”, row.names=NULL) 

portsweep <- read.table(“portsweep300.txt”, row.names=NULL) 

neptune   <- read.table(“neptune300.txt”, row.names=NULL) 

 

The first four lines load pre-installed R libraries namely: Cluster library, MASS library which contains 

many data sets and a number of S functions, classification library and a fast ICA library. 

 

Next, data frames are created, by reading their corresponding files from disk. The data frames are named 

by their type. A data frame is an S object normally used to store a data matrix. 

 

7.2. Application of Multivariate Analysis Algorithms 

 

7.2.1. k-means Clustering 

 

k-means clustering is applied to each data set of the different attack types after binding (combining) each of 

their data frames with the normal traffic data in regular1 to form a new data frame called “master” with 

600 rows and 12 columns. This binding process is used for the remaining data sets as well: 

 

for (dataset in masterlist){ 

    master <- rbind (regular1, dataset) 



    kmeansout <- kmeans(master[1:12], 2) 

    plot(kmeansout$cluster, type = “b”, main=masterlistnames[counter] , 

         xlab=”Packet Number”, ylab=”Cluster Number”) 

} 

 

The function kmeans performs k-means clustering on the combined data frame. Two arguments are given 

to kmeans. First, is the “master” data frame, which is the result of binding the attack dataset to the regular 

dataset. Second, is the number of clusters required.  In this case, kmeans will attempt to cluster the 600 

feature vectors, given as its input, into two clusters without any other prior knowledge of the nature of the 

data. 

 

The results of kmeans are then plotted using the “plot” function. The resulting four plots are shown in 

Figure 1. The function plots the assignment of each input vector to an output cluster. This information is 

stored in the kmeansout$cluster variable. Since the number of desired output clusters is two, each input 

feature vector is assigned to either cluster one or two as shown in the figure. A line connects the output 

points on the graph to provide visual continuity. In the case of Smurf, all the attack feature vectors (301 to 

600) were assigned to cluster two, while all normal feature vectors (0 to 300) were assigned to clusters one 

and two. Similar results can be seen for IPsweep, Portsweep and Neptune data sets. For these sets, some of 

the attack vectors were clustered in a different cluster than the majority of the packets. Careful study of 

these packets shows that few normal instances of traffic existed in the midst of the attack. 

 

 



 

 

Figure 1: k-means clustering plot 

By increasing the number of output clusters to four, some attacks were exclusively clustered in one cluster 

where no normal instances were assigned, thereby, giving better clustering results than using two clusters. 

 

7.2.2. Hierarchical Clustering 

 

Hierarchical clustering is applied to the data sets as follows: 

 

for (dataset in masterlist){ 

    master <- rbind (regular1, dataset) 

    hclustout <- hclust(dist(master[1:12])) 



    plot(hclustout, main=masterlistnames[counter],xlab=”PacketNumber”) 

  } 

 

The hclust function performs hierarchical clustering on the combined data sets. Prior to starting the 

hierarchical clustering process, the function dist is called to compute the distance matrix for the “master” 

data set. The distance matrix is computed by using a specified distance measure, in this case Euclidean, to 

compute the distances between the rows of the data matrix. 

 

The output “hclustout” is plotted using the plot function and is shown in Figure 2. 

 

 

Figure 2: Hierarchical Clustering Plot 



Figure 2 shows the dendrograms created by the hclust function. A dendrogram is a convenient method 

used to visualize the clustering results. It is a tree graph that is used to examine how clusters are formed in 

hierarchical cluster analysis. The vertical axis indicates a distance or dissimilarity measure. The height of a 

node represents the distance of the two clusters that the node joins. The larger the height, the more 

dissimilar the two clusters are. The horizontal axis lists all the 600 observations and their cluster 

assignments. Dendrograms have two limitations: First, because each observation must be displayed as a 

leaf they can only be used for a small number of observations. This is clear in this figure where the text of 

the observations on the horizontal axis is not readable. Second, the vertical axis represents the level of the 

criterion at which any two clusters can be joined. Successive joining of clusters implies a hierarchical 

structure, meaning that dendrograms are only suitable for hierarchical cluster analysis [[27]]. 

 

7.2.3. SOM Clustering 

 

SOM algorithm is applied to the combined data sets as follows: 

 

for (dataset in masterlist){ 

    master <- rbind (regular1, dataset) 

    gr <- somgrid(topo = “hexagonal”) 

    som.out <- SOM(master[1:12], gr) 

    plot(som.out, main=masterlistnames[counter]) 

  } 

 

The function somgrid records the coordinates of the grid to be used for SOM and it has a plot method. The 

plot method for class “SOM” plots a stars plot of the representative at each grid point, thereby combining 

the output of SOM and stars plots together in a single diagram. A hexagonal topology is selected. The 

function SOM implements the Kohonen’s SOM algorithm and takes the “master” data set as its input 

argument along with the grid output from the somgrid function. The stars plot output is plotted and shown 



in Figure 3. Stars plots may be used directly on the data as discussed in section 7.2.6 or superimposed on 

the output of other functions as in the case of somgrid. 

 

 

Figure 3: SOM Plot 

The results of Figure 3 reveal interesting features of the data. First, the distinction between normal and 

attack traffic is quite clear from the graphs where the stars with longer and irregular segments are clustered 

in one area while the remaining stars with shorter and more regular segments are clustered in another. The 

SOM algorithms plots stars from the bottom left corner of the graph to the top and then goes back to the 

bottom drawing the next star while maintaining the hexagonal structure. This reveals the fact that normal 

feature vectors are clustered first using stars with shorter and more regular segments, while attack feature 

vectors resulting in stars with longer and irregular spans. Second, this distinction can be used to study the 



evolution of network traffic. Using this combination of SOM and stars plot can provide an intuitive 

graphical approach to studying and identifying trends in the behavioral change in the traffic characteristics. 

 

7.2.4. PCA 

 

PCA is applied to the data set as follows: 

 

for (dataset in masterlist){ 

  master <- rbind (regular1, dataset) 

  master.pca <- princomp(master[1:12], cor = T) 

  master.pc <- predict(master.pca) 

  eqscplot(master.pc[ , 1:2], type = “p”, main= 

    masterlistnames[counter], xlab = “First principal component”,ylab = 

    “Second principal component”) 

  text(master.pc[,1:2], labels = as.character(master$V13), col = 

    c(“SkyBlue”, “Orange”) ) 

} 

 

The function princomp performs principal component analysis on the input numeric data matrix and 

returns the results as an object of class “princomp”. The argument “cor” is a logical value indicating 

whether the calculation should use the correlation matrix or the covariance matrix. The function predict is 

a generic function for predictions from the results of various model fitting functions. The function invokes 

particular methods, which depend on the ‘class’ of the first argument. The function eqscplot is a version of 

the function scatterplot with scales chosen to be equal on both axes. This function is available in the 

MASS library. The resulting plot for PCA is shown in Figure 4. 

 



 

Figure 4: PCA Plots 

In Figure 4 the distinction between normal and attack traffic is not clear. Perhaps there is a better way of 

marking the data on the graph, an issue that needs further experimentation. The PCA algorithm mapped 

each of the observations with p = 12 dimensions onto 2 components. For each observation, the value of 

each component is plotted respectively on the x and y axis. 

 

7.2.5. ICA 

 

ICA is applied to the data sets as follows: 

 

for (dataset in masterlist){ 

    master <- rbind (regular1, dataset) 



    nICA <- 2 

    master.ica <- fastICA(master[1:12], nICA) 

    plot(master.ica$S, main=masterlistnames[counter], xlab = “First ICA 

      Component”, ylab = “Second ICA Component”,  col = c(“Black”, 

      “Red”)) 

    text(master.ica$S, labels = as.character(master$V13), col = 

      c(“Black”, “Red”)) 

} 

 

The function fastICA is available from the FastICA library. It is an implementation of the fastICA 

algorithm of Hyvarinen et al [28] to perform Independent Component Analysis (ICA) and Projection 

Pursuit. The value nICA = 2 is the number of components to be extracted. The resulting plot for ICA is 

shown in Figure 5. 



 

Figure 5: ICA Plots 

Figure 5 shows (similar to the results from PCA) that there is no clear distinction between normal and 

attack traffic. This may be due to the high dependency that exists amongst the columns of the data set.  

 

There are dependencies between the different nibbles of SIPx and DIPx. There are also dependencies 

between Sport, Dport, Plen and Prot.   

 

7.2.6. Stars Plots 

 

Stars plots are applied to the data sets as follows: 

 

for (dataset in masterlist){ 



    master <- rbind (regular1, dataset) 

    stars(master[1:12], full = FALSE, labels = NULL, main= 

      masterlistnames[counter] ) 

} 

 

The function stars draws star plots or segment diagrams of a multivariate data set. With one single 

location, also draws spider (or radar) plots. The argument “full” is a logical flag: if ‘TRUE’, the segment 

plots will occupy a full circle. Otherwise, they occupy the (upper) semicircle only. Missing values are 

treated as zeros. Each star plot or segment diagram represents one row of the input x.  Variables (columns) 

start on the right and wind counterclockwise around the circle. The size of the (scaled) column is shown by 

the distance from the center to the point on the star or the radius of the segment representing the variable. 

The resulting stars plot is shown in Figure 6. 

 

 



 

Figure 6: Stars Plots 

As shown in Figure 6, the graph of each attack type contains 25 rows and 24 columns totaling 600 stars for 

each data set. That is, each of the 600 observations is represented by one star. Each star has 12 segments 

corresponding to the p = 12 columns of the data set.  

 

 

SIP1

SIP2

SIP3

PLEN 



Figure 7: A sample star from the Stars plot 

A sample star is shown in Figure 7. Each of the 12 feature vector elements described in section 6 is drawn 

as a segment of the semicircle. Comparing this sample star with the results obtained in Figure 6, a close 

look at the stars reveal that there is a relatively clear distinction between the normal traffic in the upper half 

of the graph and the attack traffic in the lower half. This method of analyzing multivariate data is clearly 

simple and effective.  

 

7.2.7. Mosaic Plots 

 

Mosaic plots are applied to the data sets as follows: 

 

for (dataset in masterlist){ 

    master <- rbind (regular1, dataset) 

    names(master) <- c(“Src1”, “Src2”, “Src3”, “Src4”, “Sport”, “Dst1”, 

               “Dst2”, “Dst3”, “Dst4”, “Dport”, “Prot”, “Plen”, 

               “TrafType”) 

    mosaicplot(master[1:12], color = T, main=masterlistnames[counter], 

               xlab = “Packet Number”, ylab = “Packet Fields”) 

} 

 

The function mosaicplot plots a mosaic. Extended mosaic displays show the standardized residuals of a   

loglinear model of the counts by the color and outline of the mosaic’s tiles. Standardized residuals are often 

referred to as standard normal distribution.  Negative residuals are drawn in shades of red and with broken 

outlines; positive ones are drawn in blue with solid outlines. 

 

Mosaic plots can be seen as an extension of grouped bar charts where width and height of the bars show the 

relative frequencies of two variables: a mosaic plot simply consists of a collection of tiles whose sizes are 

proportional to the observed cell frequencies [29]. 



 

Sequential horizontal and vertical recursive splits are used to visualize the frequencies of more than two 

variables, each new variable conditional to the previously entered variables. A first extension by uses a 

color coding of the tiles to visualize deviations (residuals) from a given log-linear model fitted to the table, 

that is, from the expected frequencies under independence. This approach does not only work in 2-way 

tables but also in log-linear models fitted to multi-way tables. 

 

In this extension, positive and negative signs of the residuals are coded by rectangles with solid and dashed 

borders respectively. Furthermore, residuals exceeding an absolute value of 2 are shaded light blue and red 

respectively, those that even exceed an absolute value of 4 are shaded with full saturation. The heuristic 

behind this shading is that the Pearson residuals are approximately standard normal, which implies that the 

highlighted cells are those with residuals individually significant at approximately the 5% and 0.01% level. 

But the main purpose of the shading is not to visualize significance but the pattern of deviation from 

independence. 

  

The input data should be a data frame or matrix containing the variables to be cross-tabulated.  In this case, 

after possibly selecting a subset of the data as specified by the ‘subset’ argument, a contingency table is 

computed from the variables given in ‘formula’, and a mosaic is produced from this. Missing values are not 

supported unless ‘data’ contains variables to be cross-tabulated, when rows containing missing values are 

omitted. The resulting mosaic plots are shown in Figure 8. 

 



 

Figure 8: Mosaic Plots 

The results shown in Figure 8 are not intuitively obvious. Further elaboration is necessary. First, a large 

number of observations are shown in one graph. Second, four graphs are combined into one figure resulting 

in loss of resolution needed for such graphs. To better illustrate the graph, a zoomed-in version of the 

Smurf results is shown in Figure 9. In this figure only feature vectors at the border between normal and 

attack traffic are considered. More specifically, only feature vectors 295 through 305 are considered while 

adding a legend to the graph. This would capture 6 feature vectors of the normal traffic and 5 feature 

vectors of Smurf attack traffic. The legend shows the color-coding used to mark both negative and positive 

residuals. It is easily seen that the normal traffic represented by the first 6 bars in the chart have very 

similar residual values. Since these residuals represent deviations from the standard distribution, and the 

fact that these residuals look very much alike reflect some common properties of this data. On the other 



hand, the five remaining bars to the right which represent the attack traffic also have residual values which 

are quite different than those of the normal traffic.  

 

In the light of these results, an analogous explanation can be given to the graphs of Figure 8. For the Smurf 

attack the height and the width of each bar in the graph show the relative frequencies of the variables. The 

attack packets which are the last 300 feature vectors in the data set had a smaller width of the bars and thus 

were shown as compacted (black) block at the right side of the graph. So the distinction between normal 

and attack data is easily visualized. Similar explanations are given for the remaining three graphs.     

 

 

Figure 9: Mosaic Plot for Feature Vectors 295 Through 305 of the Smurf Attack 

 



7.3. Evaluation of Results 

 

From the results obtained using the different methods as applied to the data sets, it is evident that each 

method gave an interestingly different view of the nature of the data. To be able to effectively compare the 

results, several factors should be considered.  

 

First, the ability of the each method in distinguishing between normal and attack traffic in the context of 

explanatory multivariate analysis. It should be emphasized that these methods do not have any apriori 

knowledge of the data, neither that they are trained to know what the structure of the data is. These methods 

are comparable to unsupervised learning methods in the field of AI and soft computing. To this end, k-

means, hierarchical clustering and SOM provided a clear distinction between normal and attack traffic, 

while the remaining methods did not provide such a clear view. 

 

Second, the effectiveness of each method  in its visual presentation by conveying the underlying structure 

in the data. Several methods performed really well here, most notably the k-means, the SOM and the 

Mosaic Plots. One of the compelling features of the graphical output for these methods is that the 

relationship between the original data to its final transformation is relatively clear. In the case of k-means 

there is a direct relationship between the packet number and its cluster assignment. In the case of SOM and 

Mosaic plots the relationship between the packet number and its final representation is somewhat 

preserved. On the contrary, using the output from PCA and ICA, it is not clear as to the relationship 

between the packet numbers and the final transformations. 

 

Finally, the time each method takes to execute the algorithm. Table 2 shows the execution time of each 

algorithm. Three times are shown: User time indicates the time (in seconds) consumed for the user process, 

system time indicates the time consumed by the operating system and the elapsed time indicates the total 

time consumed by the overall operation. The difference between user time and system time is that user time 

is the CPU time used while executing instructions in the user space of the calling process, while system 

time is the CPU time used by the system on behalf of the calling process. It should be noted that the times 



given include the time for applying the algorithms for all four data sets, the time to generate the graphics 

related to the method and finally the time to write this information to the disk. From this perspective, the k-

means performed best. FastICA, PCA and SOM were next. Stars plot and hierarchical clustering used 

relatively high user time. Finally, Mosaic plots performed very poorly in terms of their user time. 

 

 

Algorithm/Time User (s) System (s) Elapsed (s)

k-means 0.31 0.04 0.42

Hierarchical 37.02 0.49 38.76

SOM 1.94 0.03 2.2

PCA 1.28 0.03 1.59

fast ICA 1.07 0.02 1.36

Stars 9.56 0.4 12.18

Mosaic 224.32 2.73 243.46

Table 2 : Algorithms Execution times 

With these results, the best overall performance and visualization is achieved using k-means and SOM. The 

remaining methods provide interesting insights into the data and may be used to supplement the results 

obtained through k-means and SOM. However they have several performance and visual limitations 

making them inappropriate for use as a primary method for analyzing network traffic anomalies. 
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