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Abstract. Sensitivity analysis should be an integral part of nearly every hydrologic study.
At an elementary level, sensitivity analysis is useful in studying the relative sensitivity of
the result to the data input. Studying the sensitivity of a hydrologic system to changes in
its parameters and initial conditions makes it possible not only to gain insight into a system’s
behavior but to derive simple computational algorithms for the identification of unknown
parameters. The fact that sensitivity analysis leads to simple initial-value problems makes it
ideal for mechanization on an analog computer. The computational steps involved in im-
plementing identification algorithms based on sensitivity analysis are relatively simpler
than those based on such other methods as quasilinearization. The applicability of this
method to identify; both lumped and distributed hydrologic systems with deterministic or

statistical input-output data is demonstrated.

INTRODUCTION

The general identification problem, in its
wider sense, includes all techniques devised to
determine and characterize a model numeri-
cally, either analytically or experimentally, from
measurements performed on the signals enter-
ing and leaving the system and from possible
additional knowledge of the structure and be-
havior of the system -and the statistical vari-
ation of its parameters. In a restricted sense,
identification is the process of finding the un-
known characteristics, say the parameters, of a
system from measured values of input-output
as data.

Such an identification will clearly involve a
method of taking measurements, a method of
processing these measurements to bring them
into a suitable format, and a decision, statistical
or deterministic, to estimate the unknowns. It is
implicit that the ‘input’ is not under the control
of the observer. Basically, there are two differ-
ent approaches to the process of ‘determining’
the unknowns. In one case, for example, the
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system is known a priori to be characterized by
a differential equation of a given order, but the
coefficients in the equation are unknown. In the
second case, the problem is made nonparametric
by making no assumptions either about linear-
ity or about the nature of the dynamic equa-
tions.

The sensitivity analysis method of system
identification belongs to the first category. The
method is applicable to lumped as well as to
distributed parameter models and also to deter-
ministic or statistical input-output data. In-
deed, sensitivity analysis should be an integral
part of the study of any physical system, in-
cluding hydrologic systems. For example, a
knowledge about the relative sensitivity of a
result to data input is very important in the
analysis and design of hydrologic systems.

WHAT IS SENSITIVITY ANALYSIS

Sensitivity analysis, in a sense, implies a
study of the sensitivity of a system’s response
due to disturbances. These disturbances may
have a widely differing character: they may be
small or large, momentary or permanent; they
may be related to initial conditions or to coeffi-
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cients. Without delving too much into the
mathematical niceties, the underlying theory of
sensitivity analysis can be presented in the fol-
lowing way [Tomovic, 1962].

Consider a dynamic system represented by
a differential equation

X PN Ty, X0 =X (D

where

F = {f, fa *++ , f.}, & vector function?. For
instance, F may characterize an nth-order
system of ordinary differential equations.

X = {2y, 2, -+, z,}, the state variable vector
of order n.

II = {my, s, -+, Tn}, an m-dimensional pa-
rameter vector that includes the initial
conditions as some of its components.

Since our interest is in the mathematical
modeling of physical systems, it is necessary to
stress some facts about (1). First of all, it is
necessary to make a clear distinction between
the vector-valued functions ¥ and X on one hand
and the vector IT on the other. The components
of the vectors F and X are functions and so are
represented by points in function (Hilbert) space,
whereas the components of IT are represented by
a point in the finite-dimensional parametric space.
This implies that the parameter vector is a con-
stant over a finite subinterval of the total ob-
servation interval [fo, £. This further implies
that the case where the vector IT is time-varying,
ie., II = II(f), is excluded from consideration
here.

To facilitate the definition of a sensitivity co-
efficient, let a simplified version of (1) be

g =flz, t;m); 0=z

where f, #, and 7 are now scalar quantities. We
are interested in determining the sensitivity of
x, the solution of (2), to a perturbation in the
value of the parameter =. Differentiating (2)
with respect to =

8/dr(9x/at) = (3f/92)(0x/dm) + of/dr  (3)

Equation 3 is valid only if « is independent of
¢, and this is precisely the reason for excluding

2 Tn this section, unless otherwise stated, capital
letters represent vectors and lower case letters
stand for scalars or for the components of the
corresponding vectors.
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functions like # = = (¢) in the discussion of the
preceding paragraph. If z is continuous and
differentiable in both ¢ and =, the order of dif-
ferentiation in (3) can be interchanged to yield

8/dt(3z/dr) = (9f/dz)(0x/dm) + df/dr (4

In (4), the derivative (dz/dw) has the follow-
ing meaning:

ox(t, m) _ e a(t, w + Ar) — x(t, 7
61r Ar—0 A7I'

and therefore gives a measure of the ‘influence
of a change in the parameter = on the solution
2’ and is defined as the influence coefficient or
sensitivity coefficient. Depending upon the situ-
ation, this ‘coefficient’ could be a constant or a
function.

In the present case, defining a sensitivity
function u(z, t, 7) as

u = u(z, t, ) = 9z(t, m)/0r (5)

equation 4 becomes

% — (8f/dzx)u = 3f/om; u(0) = uy = 0 (6)

Equation 6 is called the sensitivity equation.
In general, if there are m parameters, as in (1),
there will be m sensitivity equations whose so-
lutions correspond to the m sensitivity funec-
tions. The sensitivity equation plays an impor-
tant role in the study of dynamic systems, and
it is useful to list some of its important proper-
ties [Bihovski, 1964] :

1. All the sensitivity equations are of the
same order as the original equation.

2. The sensitivity equations are always
linear, regardless of the linearity or nonlinear-
ity of the original system.

3. If the original equation is also linear, then
the structure of the sensitivity equation is iden-
tical to that of the former.

4. If the initial conditions of the original
equation are independent of the parameter
values, then the initial conditions of the sensi-
tivity equation are zero.

From this it is clear that the sensitivity equa-
tion and its solution provide a good deal of in-
sight into the dynamic behavior of a physical
system. Furthermore, the linear character of
the sensitivity equation facilitates its analytical
treatment.
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ROLE OF SENSITIVITY ANALYSIS IN
PARAMETER IDENTIFICATION

A parameter identification problem, which is
our main concern in this paper, may be formu-
lated as follows. A dynamic system is described
by (1) and the form of the equations, given by
F, is assumed to be known. The goal is to con-
struct a model, characterized by

¥ Ey P); YO=1, (D

such that the model response Y and the dy-

namic response X of the actual system are

close to each other in some acceptable sense. In
- (7), the vector

i : {plvar P ’pm} (8)

represents the model parameters, as against IT
representing the system parameters.

if the error vector E(¢, P) is defined as
B, P) £ Y(t, P) — X(9) (9

then a convenient and acceptable measure to
judge and achieve closeness of Y (t) to X (¢) is to
minimize

J(P) = J(E(, P) & f “wEa (10

In (10), the prime denotes a transpose. There-
fore the argument under the integral sign is a
scalar-valued function of time, and therefore J
is a mere number. Essentially, the value of J is
a function of the parameters, and therefore it
can be minimized by adjusting the parameter
values. If we can determine how J varies in the
vicinity of P, then it becomes possible to find a
direction in which to change P so as to reduce
J in an optimum fashion.

If J(P) is a smooth function of P, it can be
expanded in Taylor series about a nominal P
as

J(P + AP) = J(P) + (grad J)' AP

-+ higher order terms (11)
where (grad J) stands for the vector
dJ/dp,
aJ/dp,
(grad J) = (12)

aJ/dp
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and AP = (Ap,, -++, Ap,)’ is a vector indicating
the changes in parameter values; this is essentially
what the computer has to evaluate. If (AP) is
sufficiently small, the higher-order terms of (AP)
in equation 11 can be neglected, leaving only
linear terms. Once (11) is linearized in the said
fashion, the choice of (AP) becomes less com-
plicated.

It is instructive to note that the vectors
(grad J) and AP are both of the same dimension
and can be geometrically represented by two
lines of different lengths and directions in the
m-dimensional vector space. Therefore, a rota-
tion and multiplication of one of the vectors by
a positive scalar can make both of them identical.
Mathematically, this process can be represented
by [Bellman, 1962]

AP = kT(grad J) (13)

where % is the positive scalar, and T is an
orthogonal matrix representing a rotation.

Substituting (13) in (11) and neglecting
higher-order terms

J(P + AP) = J(P)

+ k(grad J) - T-(grad J) » (19

i.-e.
J(P + AP) — J(P)/k = (grad J)'T(grad J)

or

(d/dk) J(P + AP) = (grad J)'T(grad J) (15)

From (15) it is clear that a change in P by
AP produces a decrease of the value of J if and
only if the right-hand side is negative, that is

(grad J)'T(grad J) < 0 (16)

This is equivalent to saying that the trans-
formation matrix T be negative definite [Bell-
man, 1962]. If T is any negative definite matrix
and if it is envisaged to change the parameter
vector according to (13), then the method is
called the gradient-descent method. However,
if T is chosen to be the negative of a unit
matrix, then (13) becomes

AP = —FI(grad J) 17

and then the method is called the steepest-
descent method.

Computationally, therefore, the steepest-
deseent method attempts to modify the param-
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eter vector by iteratively updating the vector
used in the preceding step of the calculation.
In other words, the value of P at the (7 4 1)st
iteration is given in terms of its value at the
ith iteration as

P(s’+l) 2 P(i) + m(AP) (18)

where the superseript ¢ is the iterative index,
and AP is given by (17). In this method, com-
putation of (grad J) is perhaps the biggest
computational task. In some cases a good deal
of ingenuity is required to arrive at the best
method of evaluating the gradient.

One way, for instance, is to compute the
ith component of (17), after substituting (10)
in (17) as

a ty Z

Ap; = —k ——‘f e; dit 19

: ,Zap,v o5 ( )
e

; to ap; ( )

= —2 Y f e g o)
5ot dp;

Equation 21 follows from (20) by virtue of the
relation in (9). Invoking the definition of the
sensitivity function, namely

u; = (3y;/0p)) (22)
equation 21 can be rewritten as
t1
Ap; = —2k f eus dt - (23)
7 Yt

Therefore, if the sensitivity function u is
known, the gradient method described above
can be implemented by computing Ap; using
equation 23, and the parameter values are up-
dated according to the relation in (18). The
sensitivity function %, in turn, is evaluated by
solving the sensitivity equation.

IDENTIFICATION ALGORITHM

The computational process involved in the
application of this method may be summarized
as follows.

STEP 1: Assign a nominal value to the param-
eter vector P. This choice may be
arbitrary and may be governed by
physical considerations. Denote this
vector by P with 7 = 0.
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STEP 2: With the current value of P solve
the system equations using a suitable
computational algorithm.

STEP 3: Solve the associated sensitivity equa-
‘tions using appropriate initial and
boundary conditions.

STEP 4: Using a suitable computational tech-
nique, compute the gradient of the
criterion function J with respect to the
parameters.

STEP 5: Update the parameter vector according
to the relation in (18) until

IPH+1) eE P(i)l < Ep; p > 0 (29)

STEP 6: If the above condition is not satisfied,
replace ¢ by ¢ + 1 and go back to
Step 2. If the above condition is
satisfied, take the value PG+D as an
estimate of the unknown vector II.

The computational process described in the
preceding steps may be represented pictorially
in the form of a block diagram as shown in
Figure 1 and is valid irrespective of the type
of computer used.

APPLICATION IN HYDROLOGY

This computational process, termed the
sensitivity analysis method of system identifica-
tion, appears to hold great promise in hydrol-
ogy research. The identification problem is not
new in hydrology, and the literature is replete
with examples of systems and their studies
based on input-output data. Indeed, the scope
and applicability of the method presented here
can be widened by considering an identification
problem as a branch of the so-called inverse
problems. The other branch of the inverse
problem is the more familiar synthesis or de-
sign problem. Even though the mathematical
philosophy is the same, the goals of identifica-
tion and design are different. The goal of design
is to construct a physically realizable system
that satisfies a specified type of input-output
relation. In this section the utility of the sensi-
tivity analysis method in the design and identi-
fication of systems will be considered by means
of two examples.

The Design Problem (Example 1)

In the design of surge tanks, penstocks, navi-
gation locks, and several other seemingly un-
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related hydraulic systems, the following non-
linear ordinary differential equation occurs
[Reisman and Silvers, 1967] :

d’z/d6® + Y(dz/d6) |dz/db|

+ o’z = f(6)  (25)

After the cessation of flow, the right-hand side
becomes zero and then one is also interested in
the decay of the transient to the steady state.
From an engineering point of view, getting a
solution is only a means but not an end in
itself. The interest perhaps is to study the
stability (inverse of sensitivity in a loose sense)
of the system to be designed or to study the
influence of the damping parameter ¢ or the
constant o® on the response of the system.

After the system reaches steady state, (25)
can be written as

&4+ Y@ sgn (@) + o’z =0 (26)
where the dot over z stands for differentiation
with respect to the dimensionless time 6 and

ng={+1 r a0 o
-1 if <0

and also let

[£lik e (29)

Equation 29 sets a limit on the acceleration of
flow, which is a realistic physical constraint.

The coefficient of the second term in (26) has
very important physical significance: ¢ is the
damping coefficient. It is very useful to study
the sensitivity of the solution z to changes in ¢.

Differentiating (26) with respect to ¢ and
rearranging terms, the sensitivity equation be-
comes

i + 2¢ud + ou = —(2)° sgn ()
u(0) = 0 (30)
2(0) = 0

Equations 26 and 30 can now be solved on an
analog computer, and the solution of (30) is the
required sensitivity function.

If, for instance, it is required to determine
the ‘best’ damping coefficient to get a desired
response, this sensitivity function is used in
the computation of (grad J) and the algorithm
of the preceding section implemented to ‘iden-
tify’ the ‘best’ ¢.

Let the initial conditions on (26) be This example is chosen to illustrate another
- important point that is often ignored. It is known
z(t) = P P : s :
(28) from the theory of differential equations that the
#(t) = o solution z of (25) depends continuously on the
1
UNKNOWN MEASURED
PHYSICAL OUTPUT DATA
SYSTEM o* 4 5
(BLACK-BOX) S eu AP
e @___._..__ MULTIPLIERS INTEGRATORS {w
INPUT
DATA
Q 4
MATHEMATICAL OUTPUT OF
| MODEL BEING MODEL = ¢
IDENTIFIED

(WHITE-BOX

3
A MODEL OF

]

THE SENSITIVITY
EQUATIONS

Py map® i

(+)

CORRECTION 6

mapt)

O

CURRENT ESTIMATE
OF THE PARAMETER
VALUES

Fig. 1. A general block diagram showing the computational steps involved in the identi-
fication algorithm.
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initial conditions and on the parameters. In this
case, at the instant when [&| = ¢, the solution
does not depend analytically on the parameters.
Designating this instant as ¢ = {,, it is seen
that for ¢ > t,, equations 26 and 30 become

vi® sgn (£) + o’z = —c¢ (31)

z(0) = =(t.)
and
2yiu + o’z = —i° sgn () (32)
u(0) = u(t.)

This situation calls for two different analog
computer circuits, and the switch from one eir-
cuit to the other at the instant ¢ = ¢, can be
done automatically by means of amplitude com-
parators and switching circuits.

Identification of a System with a Random
Input (Example 2)

In many problems in hydrology, the data col-
lected historically, say ¢*(z, t), are not a de-
terministic quantity, not only because of the
errors in the measurement but also because of
an inherent randomness in the process itself. For
instance, in modeling rainfall-runoff phenomena
the rainfall and runoff are random processes, the
rainfall being the input to and runoff the out-
put from a watershed, regarded as a system
here. Knowing the statistics [Chow, 1964] of
the data on the rainfall Q and runoff ¢¥*, the
task is to estimate the unknown values of the
system parameters.

Let us assume that the input @ and the out-
put ¢ of the model are related to each other via
a partial differential equation, linear or non-
linear. For concreteness, let this model equation
have the general structure

F(L¢, Q,P) =0 (33)

where L is a row matrix of partial differential
operators, @ represents the distributed rainfall
as a function of time, and P is an m-dimensional
parameter vector. Let us further assume that
the measured input Q* and output ¢* can be
separated into a stationary signal part, @, and
¢, and a random noise part, i. e.

= ¢, + A¢* ¢ = ¢, + A (34)
Q=0.+ AQ

¢*
and
Q* = Q. + Ag*

and that their statistics are given respectively
by the auto- and cross-correlation functions

Rype(X, t, 7)

L ElA¢*(X, 1) A¢*(X, t — 7)]
Ryge(X, t, 7)

L E[a¢*(X, §)-AQ*(X, t — 7)]

With the above assumptions, the problem is
to estimate the parameter vector P that mini-
mizes the expected value of the criterion func-
tion. That is

1\/£in Ty IV‘Ipin <fR ftt (Ag* — Ag)”

(35)

-(Ap* — Ag) di dR> (36)

where (z) = E[z] is the expected value of the
random variable z.

The procedure to minimize J will be demon-
strated now for the case of a scalar function ¢,
which greatly simplifies the algebra.

Using sensitivity analysis, it can be shown
(see Appendix 1) that A¢ in this case is

Ad — fth uw(z, t — 7)-AQ*(x, 7) dr (37)

where % is the time derivative of the partial
sensitivity function between A¢ and AQ. Inserting
(37) in a simplified version of (36)

= <fR f {A¢*(x, i fu(:c o

-AQ*(zx, 7) dr}2 dt dR> (38)

The expected value of the gradient of J with
respect to the parameters is now computed
(see Appendix 2), and the ith component of
(grad J) is found to be

(grad J),;
a2 ﬂ>
0 (39)
= f dR{—Z Ol S e ey
R to 9p;

4 t
s MR e

to

‘Ry(t — o) dr da}
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Once the gradient is computed, the steps in-
volved in the identification procedure are once
again the same as the ones described earlier.

COMPUTER SIMULATION

So far the discussion has been deliberately
kept independent of the nature of the computer
used. From Figure 1 it is clear that one has to
solve the system equations appearing in box 2
and the sensitivity equations appearing in box
3. Fortunately, both these equations are posed
as initial value problems, and analog, digital,
and hybrid computers are all suitable and effi-

_cient in solving initial value problems.

It is important to note the structural sim-
ilarity between the system equations and the
sensitivity equations, for this facilitates to a
certain extent the programming of analog and
digital computers. For instance, if a digital
computer is used, the same numerical algorithm
can be applied to solve both the equations.
Some of the coefficients in both the equations
are identical, which results in some savings in
digital computer memory.

In studying systems characterized by ordi-
nary differential equations, such as in example
1, the analog and hybrid computers lend them-
selves very efficiently to calculating the sensi-
tivity functions. For instance, in example 1, the
task of peak detection by amplitude compara-
tors and the subsequent switching from one set
of equations to another can be very effectively
done by an analog computer. The task of com-
puting m-sensitivity functions in the general
case is another case in point. If P is an m-di-
mensional vector, the sensitivity equation must
be solved repeatedly m times to get the m
first-order sensitivity coefficients. This straight-
forward method is inefficient, because the homo-
geneous part of the sensitivity equation remains
unchanged during each of these calculations,
and only the independent term changes. There
are elegant analog computer techniques to get
all the sensitivity coefficients in a single com-
puter run [Tomovic, 1963]. Furthermore, the
steepest descent algorithm can be very con-
veniently implemented on the analog computer.

If the system under study is governed by a
partial differential equation, then analog com-
puters are not ideally suited to solve the equa-
tions, and digital computers are extremely time
consuming. On such occasions, the hybrid com-
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puter [Karplus, 1964; Vemuri and Dracup,
1967] becomes very competitive with other
computational tools. In any event, the choice of
the computer used depends largely upon the
particular problem under study and the com-
puter available.

CONCLUSION

The sensitivity analysis of system identifi-
cation is introduced, and an outline of imple-
menting the algorithm on a computer is pre-
sented. The applicability of this method in hy-
drology research is discussed. The potential of
this method in modeling rainfall-runoff relations
of small watersheds is currently under investi-
gation.

APPENDIX 1

Consider a linear, time-invariant, constant-
coefficient system characterized by an ordinary
differential equation with specified initial con-
ditions. From elementary system theory it is
well known that the impulse response of this
system is the system-weighting function W(t).
Also, it is well known that the time derivative
of the step response is identical to the impulse,
response. Therefore, if G (t) is the step response
of the given system, one can relate G(t) to
W (t) by the relation

W) = G(t) = dG()/dt (A1)

Recalling that the parameter vector P in-
cludes the initial conditions, we can legitimately
talk about the sensitivity of the solution of the
system differential equation to a change in the
initial conditions. If the system is characterized

by

d: f(x’ tl P)

P = {pOy Pives S0 pm—-l}; Do = x(O)
then (dz/dp,) is the sensitivity of the solution

x(t) to a step change in the initial conditions.
That is

(A2)

u(t, po) = 92/9po (A3)
If the initial conditions, to start with, were to
be zero, then u (¢, p,) can be represented as the
step response G(t) of the system. Therefore
G() = u(t, po) (A9
Combining (A1) and (A4)









