
Experimental Results On Compression Quality of

aiNet

Thomas Stibor
Department of Applied Science
University of California, Davis
California 95616, United States

Email: tstibor@ucdavis.edu

Rao Vemuri
Department of Applied Science
University of California, Davis
California 95616, United States

Email: rvemuri@ucdavis.edu

Abstract—AiNet is an immune-inspired algorithm
for data compression, i.e. the reduction of redundancy
in data sets. In this paper we experimentally inves-
tigate the compression quality of aiNet. Therefore, a
similarity measure between input set and reduced out-
put set is presented, which is based on Parzen window
estimation and the Kullback-Leibler divergence. Four
different artificially generated data sets are created
and the compression quality is investigated. Experi-
ments reveal that aiNet produced reasonable results
on uniformly distributed data sets, but poor results
on non-uniformly distributed data sets, i.e. data sets
which contain dense point regions.

I. Introduction

The immune system provides from a technical point
of view many problem oriented approaches for solving
pattern recognition and clustering problems [1], [2]. A
frequently applied immune-inspired algorithm for data
reduction is aiNet (artificial immune network) [3]. AiNet
is inspired by Jerne’s postulated immune network theory
and can be considered as a micro-evolutionary search al-
gorithm. Roughly speaking, the aim of aiNet algorithm is
to find a reduced set of points that closely represents the
set of input points, or in other words, find a compressed
input set representation with less redundancy. Once the
reduced set is found, established clustering techniques
like minimum spanning tree or k-means can be applied
to determine a clustering result1 [3], [5]. The aiNet
algorithm can therefore be considered as an immune-
inspired search technique in the problem domain: given
an input set of points, output a reduced set of points that
closely represents the input set.

In this context two fundamental questions arise: What

does“closely represent”mean? How to measure the quality

of the reduced output set? We address these questions
and organize as follows: In section II, Jerne’s immune
network theory is briefly summarized. In section III, the

1In [4] authors note an important fact on redundancy and knowl-
edge:“Unsupervised learning can only do anything useful when there
is redundancy in the input data. Without redundancy it would be
impossible to find any patterns or features in the data, which would
necessarily seem like random noise. In this sense redundancy pro-
vides knowledge”. From this fact follows that reducing redundancy
and subsequently to cluster seems not to be useful.

aiNet algorithm is outlined. In section IV, we briefly ex-
plain the nonparametric density estimation method and
show a (known) probability density approach to measure
the quality between input set and reduced output set
by means of Parzen window estimators. In section V,
the quality measure is experimentally investigated on
different artificially generated data sets. In section VI,
the obtained results are analyzed and discussed.

II. Immune Network Theory

The immune network theory proposed by Jerne2 [7]
postulates that the immune system consists of antibod-
ies and antigens which form a regulated network. In
Jerne’s theory antibodies recognize not only antigens3,
but also other antibodies. As a result, the network is
also regulated without antigenic influence. In addition
to this new perspective, the network structure — i.e. the
size and connectivity — is biased by network stimulation

and network suppression. A network stimulation results
in proliferation and memorization of antibodies, while a
network suppression results in a reduction of maintained
antibodies. According to Varela and Coutinho [8] three
major immune network characteristics can be empha-
sized:

• structure: types of interactions among the antibodies
and antigens, represented by matrices of connectiv-
ity

• dynamics : variation with time of the concentration
and affinities of cells and molecules comprising the
network

• metadynamics : continuous production of novel cells
and death of non-stimulated and self-reactive cells.

The network structure is a result of the amount and con-
nectivity strength of antibodies, and mirror the internal
structure of the immune system. A foreign antigen causes
a disturbance in this network structure and induces
a restructuring and resizing of the previous structure.
To accomplish the network restructuring and resizing,
network stimulation and suppression are triggered. In the
process of network stimulation, some antibodies are more

2He received the Nobel Prize for this theory.
3This is the classical viewpoint of immunologists.

strongly involved in recognizing and eliminating foreign
antigens than other antibodies. These highly adapted
antibodies are transformed into long-life memory anti-
bodies. As the immune system continually produces novel
antibodies, and since the total number of antibodies can-
not be arbitrary large, non-stimulated and self-reactive
antibodies are eliminated. This elimination and renewing
process enables the immune system to adapt continually
to arbitrary antigenic environments.

III. aiNet Algorithm

The aiNet algorithm summarized in this section mim-
ics the immune network characteristics, i.e. it is an ab-
stracted implementation of the immune network theory
explained above. The algorithm is proposed by de Castro
and von Zuben [9], [3] and has the general purpose of
finding a compressed representation of the input set, by
eliminating redundancy in the input set.

The pseudo-code of aiNet is presented on page 3
(see algorithm 1). For the sake of clarity the following
notations and functions are used:

• B collection of antibodies,
• G collection of antigens,
• M collection of memorized antibodies,
• H collection of high affinity antibodies,
• C collection of cloned antibodies,
• C∗ collection of cloned and mutated antibodies.

Members of each collection are l-dimensional points
from R

l and denoted in small bold letters, e.g.
H = {h1,h2, . . . ,h|H|}, where |H| is the cardinality
of H. Moreover, r ∈R [0, 1] denotes a random value
generated uniformly from the interval [0, 1] and capital
bold letters denote matrices, e.g. matrix D with entries
Dij . Additionally the following functions are used:

dist(x,y) Euclidean distance between any two
vectors x,y ∈ R

l

ι-affinity(X ,Y) return the inverse distance matrix
Dij = 1/dist(xi,yj) ∀i, j

select(S,D, n) select n elements from collection S
which have the largest distance in
Dij ∀i, j

rnd(·) rounding function which gives the
nearest integer value

clone(e, n) duplicate element e, n times

mutate(e1, e2) change4 element e1 according to

4As we performed our experiments with the existing aiNet im-
plementation taken from [10], the presented mutation function is
for the sake of conformity derived from the Matlab source code.
The aiNet mutation function presented in [3], [9] is a local guided
greedy search, without any random influence, whereas the aiNet
mutation function presented in [6] contains a random component.
The same with the function for calculating the number of clones.
Line (9) is formulated according to [3], [6]. However, in the Matlab
source code, |B| is replaced with a fixed value c = 10. We used this
fixed value in our experiments.

e1 ← e1 + α (e2 − e1), where α ←
r · 1/dist(e1, e2) and r ∈R [0, 1]

σs-remove(E , σ) remove all elements from collection E
whose dist(ei, ej) < σ ∀i, j

σd-remove(E ,a, σ) remove all elements from collection E
whose dist(ei,a) > σ ∀i

concat(E1, E2) concat collection E1 with E2

IV. Nonparametric Density Estimation

In this section we briefly introduce the concept of
nonparametric density estimation and show a quality
measure in the context of density estimation for data
sets proposed by Fukunaga and Hayes [11].

Nonparametric density estimation is a method for
estimating an unknown probability density p(·). Given
samplesN = {x1,x2, . . . ,xN} ∈ R

l drawn independently
from p(·), the aim is to find an estimator p̂N (·) which
approximates p(·). Parzen window (also called kernel
estimator) is defined as

p̂N (x) =
1

N

N∑

i=1

K(x− xi) (1)

and is one feasible approach5 to estimate p(·). A kernel
function must satisfy the condition

∫ ∞

−∞

K(x) dx = 1 (2)

and therefore the (multivariate) Gaussian kernel function
is frequently employed

K(x) =
1

(2π)l/2hl
exp

(
−
‖x‖2

2h2

)
. (3)

The window width (also called bandwidth) h controls
the smoothness, i.e. the influence of the surrounding
points xi, whereas the kernel function K(·) determines
the shape.

A. A Quality Measure for Reduced Parzen Window

The Parzen window estimation method is com-
putationally expensive, because all stored samples
x1,x2, . . . ,xN are used to estimate p̂N (x). Fukunaga
and Hayes [11] proposed a data reduction algorithm for
finding a reduced sample set R = {y1,y2, . . . ,yr} ⊂ N ,
such that the Parzen density estimates over sample sets
N and R are as close as possible. The density at x is
then estimated by the reduced sample set as follows

p̂r(x) =
1

r

r∑

i=1

K(x− yi). (4)

To measure the similarity between p̂N(x) and p̂r(x)
Fukunaga and Hayes suggested to use the entropy

J =

∫
ln

[
p̂r(x)

p̂N (x)

]
p̂N(x) dx. (5)

5The other popular method is k-nearest neighbor estimator.

Algorithm 1: aiNet

input : G = {g1,g2, . . . ,g|G|} ∈ R
l,

N (number of maintained antibodies)
σs (suppression threshold),
σd (natural death threshold),
n (number of best-matching antibodies),
ζ (% of antibodies to be selected as

memory),
maxg (number of maximum generations)

output: M = {m1,m2, . . . ,m|M|} ∈ R
l

begin1

//initialize randomly set B
B ← {b1,b2, . . . ,bN} ∈R [0, 1]l2

repeat3

//for each antigen
for i← 1 to |G| do4

//determine inverse distance from
//antigen gi to each antibody bj

D← ι-affinity({gi},B)5

//select n antibodies from B with
//the smallest distances to gi

H = {h1, . . . ,h|H|} ← select(B, D, n)6

//determine number of clones for each
//antibody in H and create this
//amount of clones
C ← ∅7

for j ← 1 to |H| do8

nc ← rnd(|B| − 1/Dij · |B|)9

C ← C ∪ clone(hj , nc)10

//mutate each clone with a rate
//proportional to the inverse
//distance of its parent antibody
C∗ ← ∅11

for j ← 1 to |C∗| do12

C∗ ← C∗ ∪ mutate(c∗
j ,gi)13

//determine inverse distance from
//antigen gi to each cloned antibody c∗

j

D∗ ← ι-affinity({gi}, C
∗)14

//select from C∗, ξ% of the antibodies
//with largest distances in D∗ and
//store them in M
M← select(C∗,D∗,rnd(|C∗| · ξ/100))15

//eliminate those memory clones from
//M whose distances > σd

σd-remove(M, gi, σd)16

//eliminate those memory clones whose
//distance < σs

σs-remove(M, σs)17

//concatenate antibody collection
//with resultant memory clones coll.
B ← concat(M,B)18

//eliminate those antibodies whose
//distance < σs

σs-remove(B, σs)19

//generate randomly new antibodies

Bdiversity ← {b1,b2, . . . ,bN−|B|} ∈R [0, 1]l20

//concatenate old antibody collection with
//new diverse antibody collection
B ← concat(B,Bdiversity)21

iter ← iter + 122

until iter = maxg23

returnM24

end25

If the equality p̂N (x) = p̂r(x) holds, then J = 0;
otherwise J < 0 [11]. Hence a larger entropy implies
that p̂r is closer to p̂N . A closer look at (5) reveals,
that by interchanging numerator with denominator one
obtains the well known Kullback-Leibler divergence with
a negative sign

−

∫
ln

[
p̂N (x)

p̂r(x)

]
p̂N (x) dx =

∫
ln

[
p̂r(x)

p̂N (x)

]
p̂N (x) dx. (6)

The Kullback-Leibler divergence [12] (also called relative
entropy) is a distance6 measure between two probability
distributions.

In order to discretize and simplify (5), Fukunaga and
Hayes used the expectation of (5) taken with respect to
p̂N (x), i.e.

E

[
ln

[
p̂r(x)

p̂N (x)

]]
≈

N∑

i=1

ln

[
p̂r(xi)

p̂N (xi)

]
p̂N (xi)︸ ︷︷ ︸

ρ

. (7)

By replacing ρ by 1/N one obtains a simplified approxi-
mation of (5), i.e.

J̃ =
1

N

N∑

i=1

[ln p̂r(xi)− ln p̂N (xi)] . (8)

Finally by substituting (1) and (4) in (8) one obtains

J =

1

N

N∑

i=1

ln

1

r

r∑

j=1

K(xi − yj)− ln
1

N

N∑

j=1

K(xi − xj)

 . (9)

They noticed that J ≤ 0 (and also J̃ ≤ 0) is no
longer guaranteed, but argued [11] that J represents a
significantly simplified closeness measure. Furthermore
they reported good and reasonable experimental results,
when applying this closeness measure.

In our experiments we will use (9) as a closeness
measure between the input data set and the aiNet output
data set. To be more precise, the probability densities
p̂N (·) and p̂r(·) are estimated by means of a Parzen
window estimator over the input set N and output set
R, respectively. The closeness between p̂N (·) and p̂r(·)
is then determined by means of term (9) and gives a
measure on the reduction quality of input set and output
set. The larger the value of J , the closer p̂r(·) to p̂N(·) and
consequently the more similar (in a probabilistic sense)
input set to output set.

V. Data Sets and Experiments

In order to quantify and measure the closeness between
input set and aiNet output set M, four artificially7

6The Kullback-Leibler divergence is not a true metric because
it satisfies not all metric properties and therefore is often termed
divergence instead of distance.

7A real-world benchmark for this kind of problem could be image
compression. However, the quantification of the compression quality
is frequently judged by subjective viewers and gives no objective
quality measure.

generated (input) data sets with different characteristics
are created (see figures 3(a),4(a),5(a),6(a)). Each data set
contains 400 points, sampled from different probability
distributions. The data sets are generated with the open
source program R [13]. Since some data sets are intricate
to characterize, we have shown the R source code used8

(see Fig. 1), but also give a brief description. Data
set (1) is generated from a two dimensional Gaussian
distribution (µ, I), where

µ = (0, 0) and I =

[
1 0
0 1

]
.

Data set (2) is generated by a mixture of six Gaussian
distributions with different mean vectors and covari-
ance matrices. Data set (3) is generated by a mixture
of two Gaussian distributions. The first has the same
parameters as distribution of data set (1), the second
the parameters 1/4(µ, I), i.e. it is a “dense” Gaussian
inside a Gaussian. Data set (4) contains of points which
are consecutively calculated from a sine/cosine function.
Additionally to each sampled point, noise in the form of
a Gaussian distribution with µ = 0 and σ = 0.2 is added.

As the cardinality of the output set of aiNet is
controlled by parameter σs [3], the experiments are
performed with different parameter settings σs =
{0.2, 0.1, 0.05, 0.01, 0.005} for obtaining different output
set reductions. The other algorithm parameters are set
as follows:

σd = 1, n = 4, N = 10, ζ = 20 %, maxgen = 10.

These parameter values are chosen, because reasonable
and good results on the compression quality for different
data sets is reported in [3] when using these parameter
settings. For the sake of the completeness, we have to
report that the min-max normalization component from
the aiNet algorithm was removed, as the optimal kernel
bandwidth h = 0.96 is derived for two dimensional
unscaled data sets [15].

In the performed experiments, 400 points from each of
the four probability distributions are sampled, and used
as the input data set. Since aiNet is a non-deterministic
randomized algorithm, we performed 50 runs on each
input set for each parameter σs. After all simulation runs
are completed, the entropy values according to (9) are
computed for each σs and each associated input/output
set. The mean (denote as Jµ) and standard deviation
(denote as Jσ) of the entropy value over all runs is finally
computed. Moreover, the cardinality of each computed
output set is determined and likewise averaged (denoted
as |M|µ and |M|σ). As it is difficult to quantify the
magnitude of Jµ — (recall: a larger entropy implies that
probability density p̂r is closer to p̂N , but how “good”
is a certain magnitude of Jµ) — a reference value is
computed. This is straightforward, because we know the
underlying probability distributions (see figure 1). More

8Source code of functions dataset2 and dataset3 is from [14].

specifically, |M|µ many points from each probability
distribution are sampled and the entropy value for each
associated input set is computed. This process is also re-
peated 50 times for obtaining comparative reference val-
ues denote as Jref

µ (mean) and Jref
σ (standard deviation).

According to (9) these reference values must be close
zero, because the sampled points in the input/output
set are generated from the same probability distribution
and therefore the estimated densities should be nearly
identical. This fact can be verified in table I (see Jref

µ

row of each data set).

#############################

dataset1 <- function(m) {

x <- c(rnorm(m), rnorm(m))

y <- c(rnorm(m), rnorm(m))

return(data.frame(x,y));

}

#############################

dataset2 <- function(m){

z<- c(rbinom(1,m,1/3))

z[2]<-rbinom(1,m-z[1],1/2)

v<- c(rbinom(1,m,1/3))

v[2]<-rbinom(1,m-v[1],1/2)

x <- c(rnorm(z[1])/2+2, rnorm(z[2])+6,

rnorm(m-z[1]-z[2])/2+3,

rnorm(v[1])/1+4, rnorm(v[2])/3+1,

rnorm(m-v[1]-v[2])+8)

y <- c(rnorm(z[1])/2+1, rnorm(z[2])/3+1,

rnorm(m-z[1]-z[2])/2+1.5,

rnorm(v[1])/3+2, rnorm(v[2])/3+2,

rnorm(m-v[1]-v[2])/3+1.5)

return(data.frame(x,y))

}

#############################

dataset3 <- function(m){

x <- c(rnorm(m)/4, rnorm(m))

y <- c(rnorm(m)/4, rnorm(m))

return(data.frame(x,y))

}

#############################

dataset4 <- function(m,noise=0.2) {

x <- c(1:2*m);

y <- c(1:2*m);

for (i in 1:m) {

x[i] <- (i/m) * pi;

y[i] <- sin(x[i]) + rnorm(1,0,noise);

}

for (j in 1:m) {

x[m+j] <- (j/m + 1/2) * pi;

y[m+j] <- cos(x[m+j]) + rnorm(1,0,noise);

}

return(data.frame(x,y))

}

Fig. 1. R source code for generating data sets from different
probability distributions

VI. Results

The obtained simulation results are shown in table I
and figures (3)-(6). First, one can notice, for parameter
values σs = {0.01, 0.005} the output set contains more
points than the input set. That means, one has to
choose a suitable parameter σs for obtaining the proper
cardinality (compression quantity) of the output set —
a similar result is reported in [3]. Second, one can see
that aiNet outputs unsatisfiable results for σs = 0.2, on
data sets (1)-(3). These data sets contain “dense” point
regions which are not properly captured by aiNet (see
figures 3(b),4(b),5(b)). This can also be verified by means
of results shown in table I. The difference between Jµ

and Jσ is significantly high especially for data set (3),
moreover this is also clear identifiable when comparing
figures 5(a) and 5(b).

This large dissimilarity between input set and output
set can be explained by investigating the dependency of
parameter σs and the optimization criterion of aiNet.
The aiNet optimization criterion is guided by the three
functions:

1: D∗ ← ι-affinity({gi}, C
∗)

2: M← select(C∗,D∗, round(|C∗| · ξ/100))

3: σ-remove(M, σs)

(10)

Statement in line 1 and 2 causes the finding of all
points in M which are close (with regard to the Eu-
clidean distance) to points in the input set. Statement
in line 3 causes the removal of all points in M whose
neighborhood9 distance is < σs. That means, the final
output set M, consists only of points whose distance
is ≥ σs to all points (see figure 2). The parameter σs

not only controls the compression ratio, but also the
neighborhood distances of each point in the output set.
It is obvious that, the smaller σs the more points aiNet
will find, which satisfies criterion (10). For a very small
σs, e.g. σs = 0.005, all points from the input set are
satisfying the criterion and therefore one obtains a nearly
identical input set. Furthermore, one can also verify (see
figures 3(f), 4(f), 5(f), 6(f)) that for such a small σs the
output set contains several points that overlap, because
this is the only way to satisfy criterion (10) with more
points in the output set than in the input set. From
this insight it is now clear, why aiNet outputs good
and reasonable results on data set (4). Recall, data set
(4) contains of sampled points without any dense point
regions. As aiNet finds points, all which have to satisfy
criterion (10), and points in data set (4) properly satisfy
this criterion because they are uniformly distributed,
one obtains good and reasonable results, especially for
σs = 0.2.

9Distance to adjacent points.

(a) Given some points from an
unknown probability distribu-
tion

(b) The final output set M sat-
isfies the criterion that all points
in M have neighborhood dis-
tances ≥ σs

Fig. 2. aiNet optimization criterion

TABLE I

aiNet results of entropy values and cardinality of the

output set

data set 1
σs 0.2 0.1 0.05 0.01 0.005
Jµ -0.117852 -0.031902 -0.016569 -0.010274 -0.009244
Jσ 0.006373 0.002765 0.002818 0.003604 0.003484

|M|µ 130.04 284.12 379.94 470.84 484.74
|M|σ 4.69 4.92 5.33 7.48 9.44

J
ref
µ -0.004868 -0.002365 -0.005553 -0.003208 -0.000568

J
ref
σ 0.018443 0.011041 0.012714 0.011754 0.011975

data set 2
σs 0.2 0.1 0.05 0.01 0.005
Jµ -0.072474 -0.019583 -0.009615 -0.003313 -0.002143
Jσ 0.008152 0.001887 0.002239 0.002914 0.002816

|M|µ 144.66 293.26 388.48 483.08 500.36
|M|σ 4.39 3.85 6.76 10.02 11.84

J
ref
µ -0.004136 -0.006214 -0.005241 -0.003856 -0.005415

J
ref
σ 0.007414 0.010635 0.007737 0.007215 0.009109

data set 3
σs 0.2 0.1 0.05 0.01 0.005
Jµ -0.235993 -0.133765 -0.076392 -0.024572 -0.024088
Jσ 0.008587 0.004041 0.005003 0.003903 0.003718

|M|µ 100.48 197.58 287.90 432.04 445.72
|M|σ 3.08 3.64 5.20 10.06 7.78

J
ref
µ -0.004953 -0.003212 -0.000835 0.000213 -0.000147

J
ref
σ 0.015143 0.013324 0.011609 0.009977 0.010159

data set 4
σs 0.2 0.1 0.05 0.01 0.005
Jµ -0.014436 -0.002651 -0.003337 0.001812 0.003771
Jσ 0.008660 0.002786 0.002448 0.002337 0.002043

|M|µ 49.66 168.70 305.20 432.44 454.04
|M|σ 3.66 4.70 6.57 6.76 8.73

J
ref
µ 0.000599 -0.001215 -0.000293 0.000213 -0.000147

J
ref
σ 0.004204 0.002903 0.002378 0.009977 0.010159

Furthermore, results in table I reveal that the dif-
ference between Jµ and Jref

µ for σs → 0 tends to be
zero. However for very small values of σs the output
set contains more points than the input set and this
consequently results in a data expansion rather than in
a compression. Moreover for very small values of σs,
the aiNet algorithm outputs nearly the identical input
set (with many overlapping points). That means, aiNet

seems to be inappropriate as a technique to sample points
from an estimated probability distribution [16].

To summarize, aiNet guided its search of finding the
reduced output set by means of the optimization crite-
rion (10). The criterion, however, is inappropriate for
non-uniformly distributed data sets, because it induces
the finding of points whose distance to adjacent points
must be greater-equal than a pre-defined threshold. It is
clear, that this criterion is best to satisfiable when the
input set is uniformly distributed.

VII. Conclusions

We have experimentally investigated the compression
quality of the aiNet algorithm. A closeness measure
between input set and compressed output set was pre-
sented. This closeness measure is based on the Parzen
window estimation and the Kullback-Leibler divergence.
Experiments reveal that aiNet produced reasonable re-
sults on the uniformly distributed data set, but poor
results on the non-uniformly distributed data sets, i.e.
data sets which contain dense point regions. This unsat-
isfactory result on non-uniformly distributed data sets
was caused by the optimization criterion of aiNet.

As aiNet is an algorithm whose search is guided in
an evolutionary fashion, it should be feasible to modify
the old optimization criterion according to term (9) to
overcome this problem.

Acknowledgments

Work reported in this paper is supported in part by
AFOSR’s grant, FA9550-04-1-0159.

References

[1] L. N. de Castro and J. Timmis, Artificial Immune Systems: A
New Computational Intelligence Approach. Springer Verlag,
2002.

[2] E. Hart and J. Timmis, “Application areas of AIS: Past,
present and future,” in Proceedings of the 4th International
Conference on Artificial Immune Systems (ICARIS), ser. Lec-
ture Notes in Computer Science, vol. 3627. Springer-Verlag,
2005, pp. 316–329.

[3] L. N. de Castro and F. J. V. Zuben, “aiNet: An artificial im-
mune network for data analysis,” in Data Mining: A Heuristic
Approach, H. A. Abbass, R. A. Sarker, and C. S. Newton, Eds.
Idea Group Publishing, 2001, ch. 12, pp. 231–259.

[4] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the
Theory of Neural Computation. Addison-Wesley, 1991.

[5] N. Tang and R. V. Vemuri, “An artificial immune system
approach to document clustering,” in Proceedings of the 20th
ACM Symposium on Applied Computing (SAC). ACM Press,
2005, pp. 918–922.

[6] L. N. de Castro, “The immune response of an artificial immune
network (aiNet),” in Proceedings of Congress On Evolutionary
Computation (CEC). IEEE Press, 2003, pp. 146–153.

[7] N. K. Jerne, “Towards a network theory of the immune sys-
tem,” Annales d’ immunologie, vol. 125C, pp. 373–389, 1974.

[8] F. J. Varela and A. Coutinho, “Second generation immune
networks,” Immunology Today, vol. 12, no. 5, pp. 159–166,
1991.

[9] L. N. de Castro and F. J. V. Zuben, “An evolutionary immune
network for data clustering,”in Proceedings of the 6th Brazilian
Symposium on Neural Networks. IEEE Computer Society,
2000, pp. 84–89.

[10] L. N. de Castro, “aiNet implementation in matlab,” 2000,
ftp://ftp.dca.fee.unicamp.br
/pub/docs/vonzuben/lnunes/demo.zip.

[11] K. Fukunaga and R. R. Hayes, “The reduced parzen window
classifier,” IEEE Transaction on Pattern Analysis and Ma-
chine Intelligence, vol. 11, no. 4, pp. 423–425, 1989.

[12] S. Kullback, Information Theory and Statistics. John Wiley
& Sons, 1959.

[13] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2006, ISBN 3-900051-07-0.
[Online]. Available: http://www.R-project.org

[14] D. Metzler, “Algorithmisches lernen in der bioinformatik,”
2004, lecture Notes (http://www.informatik.uni-
frankfurt.de/∼metzler/VorlesungSS04/).

[15] B. W. Silverman, Density Estimation for Statistics and Data
Analysis. Chapman and Hall, 1986.

[16] D. J. C. MacKay, Information Theory, Inference, and Learn-
ing Algorithms. Cambridge University Press, 2003.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(a) data set (1) consists of 400
points sampled from a Gaussian
distribution µ = (0, 0) and unit
matrix I

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(b) aiNet output of simulation
run 10, with σs = 0.2 and re-
sulting output |M| = 126

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(c) aiNet output of simulation
run 10, with σs = 0.1 and re-
sulting output |M| = 276

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(d) aiNet output of simulation
run 10, with σs = 0.05 and
resulting output|M| = 386

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(e) aiNet output of simulation
run 10, with σs = 0.01 and re-
sulting output |M| = 471

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(f) aiNet output of simulation
run 10, with σs = 0.005 and
resulting output|M| = 496

Fig. 3. Data set (1) and the resulting aiNet output data sets with different parameter settings σs

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) data set (2) consists of 400
points sampled from mixtures
of Gaussian distributions with
different mean vectors and co-
variance matrices

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) aiNet output of simulation
run 23, with σs = 0.2 and re-
sulting output |M| = 144

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c) aiNet output of simulation
run 23, with σs = 0.2 and re-
sulting output |M| = 296

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(d) aiNet output of simulation
run 23, with σs = 0.2 and re-
sulting output |M| = 401

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(e) aiNet output of simulation
run 23, with σs = 0.2 and re-
sulting output |M| = 491

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(f) aiNet output of simulation
run 23, with σs = 0.2 and re-
sulting output |M| = 503

Fig. 4. Data set (2) and the resulting aiNet output data sets with different parameter settings σs

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(a) data set (3) consists of 400
points sampled from a “dense”
Gaussian distribution inside a
Gaussian distribution

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(b) aiNet output of simulation
run 17, with σs = 0.2 and re-
sulting output |M| = 99

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(c) aiNet output of simulation
run 17, with σs = 0.1 and re-
sulting output |M| = 200

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(d) aiNet output of simulation
run 17, with σs = 0.05 and
resulting output |M| = 286

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(e) aiNet output of simulation
run 17, with σs = 0.01 and
resulting output |M| = 420

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(f) aiNet output of simulation
run 17, with σs = 0.001 and
resulting output |M| = 436

Fig. 5. Data set (3) and the resulting aiNet output data sets with different parameter settings σs

0 1 2 3 4 5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a) data set (4) consists of
400 points sampled consecu-
tively from a sinus/cosine func-
tion, with added noise in form
of a Gaussian distribution with
µ = 0 and σ = 0.2

0 1 2 3 4 5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(b) aiNet output of simulation
run 25, with σs = 0.2 and re-
sulting output |M| = 49

0 1 2 3 4 5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(c) aiNet output of simulation
run 25, with σs = 0.1 and re-
sulting output |M| = 164

0 1 2 3 4 5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(d) aiNet output of simulation
run 25, with σs = 0.05 and
resulting output |M| = 306

0 1 2 3 4 5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(e) aiNet output of simulation
run 25, with σs = 0.01 and
resulting output |M| = 431

0 1 2 3 4 5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(f) aiNet output of simulation
run 25, with σs = 0.005 and
resulting output |M| = 451

Fig. 6. Data set (4) and the resulting aiNet output data sets with different parameter settings σs

