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Web-Based Knowledge Acquisition to 
Solve Inverse Problems Arising in Health-

Care Management 

V. Rao Vemuri and Na Tang 

Automated web-based knowledge acquisition can play a useful role 
in developing systematic methods for solving inverse problems 
arising in the context of healthcare management. As inverse prob-
lems are ill-posed, they are normally solved by using some regu-
larization procedure - a mathematical strategy that seeks to supply 
the "missing data."  We seek to fill the missing data by an auto-
mated knowledge discovery process via mining the WWW. This 
novel procedure is applied by first restoring missing information 
via web mining and next learning the structure and parameters of 
the unknown system from the restored data. We learn the Bayesian 
network structure by looking at various possible interconnection 
topologies. The parameters, i.e. the probabilities associated with 
the causal relationships in the network, are deduced using the 
knowledge mined from the WWW in conjunction with the data 
available on hand. Using heart disease data sets from the UC Irvine 
Machine Learning Repository, this procedure is tested and some 
preliminary results are presented. 
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1   Introduction: What are Bayesian 
Networks? 
Bayesian networks (also called belief networks) play an important 
role in many areas of research. A Bayesian network is represented 
as a directed acyclic graph. Each node represents a variable and 
each arc specifies the probabilistic cause-effect relation that exists 
between nodes. This information is often managed via a table, 
called a probability table. Each node can represent a simple binary 
true/false or Boolean variable, an array of discrete variables (e.g. 
cold, warm, hot) or even continuous data (e.g. temperature). For 
most systems these values are typically discrete.  

There is a whole family of Bayesian networks; the more complex 
the interdependence among the entities representing the nodes, the 
more complex the network. A simple (or Naive) Bayes model as-
sumes (rightly or wrongly) that two or more findings are independ-
ent with no statistical bearing on each other.  Figure 1 shows a Na-
ive Bayes model of the interdependence between heart disease and 
a number of factors.  A more realistic – and somewhat more com-
plex – topology, shown in Figure 2, is called the Tree Augmented 
Naive (TAN) Bayes model. Many more topological configurations 
are possible, depending on the nature of cause-effect relationships 
in a given problem.  

If the Naive Bayes assumption is true, and if all the probabilities 
are known, then estimating a posterior probability (say, the prob-
ability of a heart attack given the prior probabilities of precursor 
conditions) is straightforward. Clinically, however, to solve most 
diagnostic tasks, one cannot assume each piece of evidence is unre-
lated as the Naive Bayes model does. In medicine, as in other do-
mains, this conditionally independent state is usually an exception. 
But, to represent all the conditional probabilities (so that each pos-
sible combination of clinical findings is accurately represented) we 
would require enormous tables containing each possible condi-
tional probability. The task then becomes much more difficult, if 
not impossible. For example, if n represents each finding or clinical 
symptom, then we would need a conditional probability table with 



 

2n entries. If we were to represent heart disease with 13 clinical 
symptoms, then we would need 213 = 8,192 entries.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Naive Bayes Model. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 2. A Tree-augmented Naive (TAN) Bayes Model. 

In many medical applications, however, the findings (i. e. clinical 
evidence) are often dependent upon each other and the independ-
ence assumption of Naive Bayes will tend to over-estimate the 
likelihood of a given hypothesis. Since each finding is treated in-
dependently, the presence or absence of a finding (and its inherent 
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weight or probability) will have no bearing on the other. Although 
simple Bayes often performs well in the right environment, the de-
velopment of other Bayesian networks help to resolve this interde-
pendency of relationships between findings as well as make man-
agement of larger collections of evidence easier and more intuitive.  
Bayes theorem is a robust and extensible method for reasoning un-
der uncertainty. In medical applications Bayes methods can be im-
plemented, depending on the relative complexity of the problem, 
from a simple probability approach to more complex Bayesian 
probabilistic frames each representing a specific disease or diag-
nostic decision. Further, a disease or process may be represented 
within a Bayesian network containing many nodes representing a 
wide variety of causally dependent (or independent) disease condi-
tions. Simple Bayesian probability helps us to understand our be-
lief in a hypothesis given some prior - or a priori - evidence that is 
either explicitly known or estimated to determine the posterior 
probability given a new finding. 

2   Inverse Problems, Bayesian Nets and 
Knowledge Discovery 
The focus of this chapter is on solving inverse problems associated 
with Bayesian inference.  

What are inverse problems and where do they arise? Inverse prob-
lems arise anywhere data is collected which is related to the un-
known quantities by a mathematical model. The direct problem 
consists of predicting the output, given the model and the input. 
This problem, in general, does not pose any great difficulties. Other 
problems, in general, are more difficult:  

Identification: Given the input and the output, estimate the pa-
rameters of the model  

Inversion: Given the model and the output, estimate the input  
Blind inversion: Given the output, estimate both the input and 

the parameters of the model  
Design: Given a specification, design a system in such a way as 

to be able to solve optimally the aforementioned problems.  



 

Examples of inverse problems can be found in many walks of life. 
Diagnosis of a disease from symptoms is a familiar example from 
the medical field. Here, the system can be visualized as a directed 
acyclic graph whose "top" layer of nodes can represent diseases 
and "bottom" layer can represent observed symptoms. The goal is 
to infer the posterior probability of each disease given the symp-
toms (which can be present, absent or unknown). In a densely con-
nected graph exact inference is impossible and various approxima-
tion methods can be used. 

Inverse problems are mathematically ill-posed and therefore are 
hard to solve. An inverse problem does not have a unique solution; 
indeed many different hypotheses (or models) may result from the 
same set of observations. This non-uniqueness is often resolved by 
using auxiliary information. In the modeling of dynamical systems 
(such as those described by differential equations), this auxiliary 
information will be in the form of initial, boundary or interface 
conditions. In probabilistic formulations (such as those described 
by Bayesian networks) this information will be in the form of prior 
and conditional probabilities. A very generic mathematical struc-
ture for the incorporation of auxiliary information is the well-
known regularization procedure [16]. 

Depending on the amount of insight one has about the graph, its 
topology, the various cause-effect pathways within the graph, the 
parameters associated with the nodes and edges, and so on, several 
flavors - from purely black box (nothing is known about the sys-
tem) to a completely white box (everything is known about the sys-
tem) - can be recognized.  

In the white box, or analysis, problem one assumes that the network 
structure is specified in advance and the variables characterizing 
the structure and the cause-effect relations among the nodes are 
given.  That is, there is sufficient “knowledge” (in the form of la-
beled training data) from which the structure and relations can be 
derived (learned). In this case, this problem can be treated as a di-
rect problem and the learning task is to estimate the conditional 
probabilities at the various nodes of the network. Then standard 
Bayesian methods can be used to draw necessary inferences in a 
probabilistic manner. The task here is not much more difficult than 



 

the calculations associated with the well-known Naive Bayes clas-
sifier. 

If one assumes that the network structure is given (that is, the num-
ber of nodes and how they are connected to each other), but not all 
of the variables are observable, then the learning problem is a bit 
more difficult. Indeed, it is possible to use a method similar to the 
Backpropagation method of neural nets (i. e., a gradient ascent pro-
cedure) and learn the entries of the conditional probability tables 
(CPT's). The objective function that is maximized during this 
gradient ascent is P(D | h), the probability of observing the data D 
given the hypothesis h. This, indeed, corresponds to a search for 
the maximum likelihood hypothesis. 

In parameter estimation problems complications can arise if direct 
access to the data necessary to estimate the unknown parameters 
becomes difficult or impossible. Perhaps some of the data items are 
missing. The missing data issue typically arises when an outcome 
is the result of the accumulation of simpler outcomes, or when out-
comes are clumped together in a ‘binning’ or histogram operation.  
This problem can be further complicated if the number of underly-
ing data points is unknown.  

The next level of difficulty arises if the network structure is not 
known in advance, although data is fully observable.  There has 
been some effort in learning network structure from data [5] [7], al-
though this problem is known to be NP-hard [7]. The learning pro-
cedure usually searches a space of possible networks to find a best 
structure fitting the data sets. The strategy is to consider a family of 
possible network structures and choose one among them. One way 
to tackle this problem is to use a scoring metric for choosing one of 
the many alternative networks (or hypotheses, in machine learning 
parlance). Two cases can be considered here: 

Case 1: The unknown network structure is inferred by search. Us-
ing heuristics, it is possible to search the space of possible net-
works. For example, the greedy strategy trades off network com-
plexity for accuracy over the training data. Alternatively, a genetic 
algorithm can probabilistically search the space of solutions. 



 

Case 2: The unknown network structure is inferred by exploiting 
the dependence/ independence relations in the observed data. This, 
in turn, will help in building a Bayesian network. 

The most challenging of inverse problems occurs when only a sub-
set of the relevant features is observable, that is, the problem of 
learning in the presence of unobserved variables. One possible way 
to address this issue is to use the observed data to infer information 
about unobserved variables. There is some hope in tackling this 
problem if one assumes some knowledge about the probability 
distributions to which the unobserved variables belong. A well-
understood method in this special case is the Expectation Maximi-
zation (EM) algorithm. Briefly, the EM algorithm searches for the 
maximum likelihood hypothesis h’ by seeking that h’ that maxi-
mizes E [ln P(Y | h’)] where Y stands for the entire data set, namely 
X U Z, in which X is the observed data and Z is the unobserved 
data.  

3   Architecture of a Stochastic Engine 
Stochastic Engine is the name given to the framework under which 
we propose to solve this family of inverse problems. The approach 
we wish to take is akin to the generate-and-test method of classical 
AI. To implement this, a generating procedure is required that sys-
tematically generates hypotheses and the testing step verifies 
whether or not a hypothesis generated satisfies certain criteria. The 
generating mechanism is data-driven in the sense that any gener-
ated hypothesis should be consistent with the training data. Por-
tions of these training data sets themselves are created via a knowl-
edge discovery process.   

Figure 3 shows the architecture of an interactive stochastic engine 
that facilitates the generate-and-test cycle. The Front-end, dubbed 
the Graphical Bayesian Network Constructor (GBNC), assumes 
that all necessary data is already available in a relational format 
and the Back-end, dubbed the Web Mining Engine (WME) combs 
the WWW and supplies (missing) data to these tables. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Architecture of the Stochastic Engine. Knowledge acquisition is done 
in the back-end and the hypotheses space is explored in the front-end. 

4   Exploring Hypotheses Space via 
Families of Bayesian Networks (Front-
end) 
The "front-end" of the stochastic engine facilitates an exploration 
of the hypotheses space. In the "automatic mode" this exploration 
can be conducted using a genetic algorithm that works with popu-
lations of Bayesian networks. In the "interactive mode," the front-
end allows for the construction of a variety of Bayesian networks. 
The interactive mode allows either the use of pre-programmed to-
pologies or user-defined, interactively generated, topologies. At 
this time, two pre-programmed topologies are available in our 
model library: Naive (or simple) Bayes and Tree Augmented Naive 
Bayes (TAN). A GUI to accomplish these functions is shown in 
Figure 4. 
 
Any Bayesian network can be visualized as consisting of two parts: 
(a) a qualitative part and (b) a quantitative part. The qualitative part 
captures the network structure in the form of a directed acyclic 
graph containing nodes and edges. In such a network the nodes 
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stand for domain variables and the edges stand for the (probabilis-
tic) dependences over these variables. The quantitative part defines 
the probabilities required, namely, the prior probabilities and the 
conditional probability tables, if sufficient data is available to per-
form these calculations. When the required data is not available, 
sufficient or reliable, then one option is to actively search for the 
information on the WWW. This knowledge acquisition step is per-
formed by the back-end. 

 

 
 

Figure 4. Screenshot of the GUI to help build a family of Bayesian networks. 

4.1 The Qualitative Part 

At this time the GUI shown in Figure 4 permits the construction of 
virtually any Bayesian network topologies. 

4.1.1 Naive Bayes Model  
The Naive Bayes network is the simplest Bayesian network given 
all the attributes Ai and the class variable C. It assumes C is the root 
and the parent of each Ai, and there are no dependence between any 
two attributes Ai and Aj (i ≠ j). Although this strong assumption of 



 

independence does not hold in the real world (e.g. the value of the 
attribute “Age” apparently affects the value of the attribute “Max-
HeartRate”), the experimental results still show its good accuracy 
and it proves to be very useful in many applications. Figure 1 
shows the Naive Bayes network for heart disease data sets. 

4.1.2 Tree Augmented Naive (TAN) Bayes Model 
The TAN, on the other hand, is defined as the set of all possible 
trees in which the class variable C is the parent of any attribute Ai 
and each Ai has at most one more parent Aj. This is more general 
than Naive Bayes, yet operating in a restricted search space [5]. 
Figure 2 shows a TAN Bayes model for the same heart disease data 
set. TAN provides a conditional log-likelihood scoring function to 
evaluate each candidate network in a restricted search space. The 
restricted search space is a set of all possible trees in which the 
class variable C is the parent of any attribute Ai and each Ai has at 
most one more parent Aj. The conditional log-likelihood (CLL) 
scoring function in TAN is given as follows: 
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…
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Here B is a candidate Bayesian network, D is the dataset, C is the 
class variable, A1…An are the attributes, N is the number of classes 
we need to predict and Ci stands for the ith value of the class vari-
able.  

This CLL scoring function is a sub item in the minimum descrip-
tion length (MDL) scoring function. TAN uses this function be-
cause experiments show that a non-specialized scoring function 
such as Bayesian scoring and MDL may get poor results when the 
number of attributes becomes large. Thus TAN chose a specialized 
part (CLL) from MDL scoring function. In addition, TAN searches 
a restricted space of Bayesian networks, which leads to a much 
smaller complexity compared to unrestricted learning.  

The implementation of TAN adopts a greedy strategy for search-
ing: 

  



 

  1. Compute the conditional mutual information 
between each pair of attributes:      

I(Ai; Aj |C) = ∑ai, aj, c PD(ai, aj, c) log
)|()|(

)|,(
caPcaP

caaP

jDiD

jiD  
 

(2) 

    2. Build the undirected complete graph by 
connecting each pair (A

i
, A

j
); then build a Maxi-

mum Spanning Tree by using the I(A
i
; A

j
 |C) as the 

weight for the edge (A
i
, A

j
).  

  3. Transform this undirected tree into a di-
rected one by choosing an attribute as the 
root.  

  4. Add additional edges from the class vari-
able to each attribute of the tree generated 
from this procedure to get TAN model. 

 
The time complexity for TAN is O(n2N), where n is the number of  
nodes and N is the number of classes (i.e. the number of class vari-
ables).  

4.1.3 User-defined Model  
The User-defined option allows for the construction of networks 
with arbitrary topology, based on user's inputs and preferences. Us-
ers are responsible to specify nodes and edges and their relation-
ships. This model is usually used by domain experts who have suf-
ficient domain knowledge for all attributes of the problem. Domain 
knowledge can be used as a guide for Bayesian network construc-
tion (front-end) as well as a source to serve as the knowledge base 
in the back-end. In this paper, we only focus on discovering 
knowledge from the web. 

4.2 The Quantitative Part  

The probabilities associated with the nodes of the network are of 
two types: (a) the prior probability for the class variable, which is 
the root, and (b) the conditional probabilities for the other nodes.  

 
The prior probabilities of the class variables are calculated using 
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Here the notation N(Pr) stands for the number of records where the 
predicate Pr holds.   

 
The conditional probabilities are calculated using  
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Ai. Standard textbooks should be consulted for details of these 
methods as well as the smoothing techniques [9]. Once all the 
above probabilities are calculated, the specification of the Bayesian 
net is complete.  
Smoothing Methods to Avoid Zero Probabilities: It is possible that 
the conditional probability associated with the attribute value aj,k 
and some class ci is 0. Then the value of the P(C = ci | A1, …Aj = 
aj,k, … An) would be 0 no matter what values of the other attributes 
are. Thus the log score for ci would be less than any other class 
values. Therefore, even if the values of the other attributes strongly 
indicate the class value ci, the prediction result would not be ci be-
cause of this bias. Several smoothing methods are available to 
modify the probability calculation that avoids 0/1 probabilities.  

 
Two smoothing methods are considered: Laplace estimate and m-
estimate. The Laplace estimate simply modifies every probability 
in the same direction:  

P(Ai = aij | Parents(Ai)) = 
n N
1N

p

a

+
+  (5) 



 

Here n is the number of the attributes. The m-estimate modifies the 
probability in the direction of the prior probability of the attribute 
Ai:  

P(Ai = aij | Parents(Ai)) = 
 mN

)(N

p

a

+
+ iAmP  

(6) 

Here m is the equivalent sample size. Reference [5] uses a similar 
method for the m-estimate:  
    P(Ai = aij | Parents(Ai)) = α·

 N
N

p

a + (1- α)·P(Ai), where α = 
5)P(AN

)(N
i +⋅

⋅ iAP (7) 

This smoothing operation also modifies the probability in the direc-
tion of prior probability of the attribute Ai. This operation is 
termed, prior smooth in this chapter. 

In the experiments conducted and reported here, the smoothing op-
eration seems to improve TAN but not Naive Bayes. A possible 
explanation is that the probabilities in Naive Bayes network are 
well balanced and not likely to be 0/1 while the probabilities in 
TAN have higher chances to be 0/1, but this explanation needs fur-
ther investigation. 

4.3 Experimental Results  

The methods NB, TAN, along with some variations in smoothing 
strategies, were tried on the heart disease data sets and some pre-
liminary results are shown in Table 1. The metrics used, namely, 
Accuracy and True Negative, are defined as follows: 

    Accuracy = Number of correct predctions
Total Number of predictions

 

 
    True Negative = 
                   
Number of incorrect predctions that predicted no heart disease

Total number of predictions
 



 

 

Table 1.  Experimental results for different methods on heart disease data sets 

Experi-
ments NB 

  Laplace 
Smoothed 

 NB 

Prior 
Smoothed  

NB 
TAN 

Laplace 
Smoothed 

TAN 

Prior 
Smoothed 

TAN 
Accu-
racy 78.2% 79.8% 77.4% 79.0% 79.7% 81.8% 

True 
Neg. 16.2% 15.4% 18.2% 15.9% 16.1% 14.7% 

 
These preliminary results indicate that although the Prior 
Smoothed TAN performed slightly better than the others, further 
study is necessary to draw any meaningful conclusions.  

5   Restoring Missing Data by Mining the 
WWW (Back-end) 
When data is incomplete, the scoring function for evaluating net-
work structures is not in a closed form, which makes the Bayesian 
learning very difficult. Several statistical methods are available to 
deal with missing data for Bayesian network construction: 
(1) Filling in missing data values using available data as a guide 
[14]. 
(2) Expectation-maximization (EM) algorithm [2] [4]: The EM al-
gorithm estimates the parameters by iteratively finding the expecta-
tion of the parameter and then finding the maximum likelihood es-
timate (MLE) using the parameter from the expectation step. 
Reference [4] starts an initial structure and passes the structure to 
the EM algorithm. The MLE returned by EM algorithm is consid-
ered as the score for the structure. A new structure is generated by 
adding, deleting or reversing an edge in the previous structure and 
the new structure is passed to the EM algorithm again and the score 
for the new structure is returned and compared to the previous 
score. The process is repeated until there is no improvement for the 
score. One of the problems with the EM method is that the deter-
ministic search tends to find the local optima. Multiple restarts are 
suggested to avoid this problem [8]. 



 

(3) Evolution Algorithm (EA) [10]: The EA uses a genetic algo-
rithm to evolve both network structures and missing values in order 
to find an optimal Bayesian network. It can also avoid local maxi-
mization because of the stochastic search. Another probability is to 
use simulated annealing. 

Most of these methods do not work well when a large percentage 
of data is missing and they do not work well with non-random 
missing data (e.g. a whole column is missing). Alternatively, we 
propose a novel approach to deduce the missing information via a 
knowledge discovery process and content mining of the WWW. 
Reference [1] shows a methodology of extracting useful informa-
tion to fill a knowledge base. This idea is modified and explored 
further in our approach to facilitate Bayesian learning. 

There are some other statistical methods - the so-called imputation 
techniques (mean substitution, regression imputation, hot-deck im-
putation etc. [12]) - to fill in missing data for classification tasks. 
These methods can also be used when some attributes are totally 
missing.  While we strive to fill in missing values using the exist-
ing data as well as the new knowledge obtained from the web, 
these imputation techniques accomplish the task by relying on sta-
tistical methods applied only on the existing data, while our ap-
proach mines the web for new data. The imputation approach, 
however, is simple - even simpler than the EM algorithm. On the 
debit side, the imputation methods cannot reach high accuracy. For 
example, when applied to a specific example, the imputation 
method achieved an 80% accuracy with a complete dataset, and 
74% accuracy when fill-in values. Work reported in this chapter 
did better than this. 

The starting point for this phase of the work is the "heart disease 
data" available at the UCI Machine Learning Repository [15]. Four 
distinct data sets on heart disease are available at this location. 
Each of these data sets has fourteen attributes. Many values of the 
attribute “Cholesterol” are missing in the "Va data set" (see Table 
2). We call the attribute containing missing values incomplete 
attribute. 

 
Table 2.  “Va” Data Set (one of the four heart disease data sets) from UCI re-

pository. All “-1”s stand for missing values. 



 

 

 

5.1 System Framework 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5.  Implementation Architecture for Generating Missing Information 
 
The crux of the idea for retrieving the missing information from the 
WWW is to look for patterns of relationship between the incom-
plete attribute and some or all of the other attributes of the prob-
lem. It is assumed that the sought after relationship information 
appears in a web document either as a natural language sentence or 
as an item in a table.  In either case the relationship indicates how 
the other attributes influence the incomplete attribute or how the 
incomplete attribute influences the other attributes. The implemen-
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tation architecture is shown in Figure 5, (which constitutes the 
back-end of Figure 3). 
The three components C1, C2 and C3 are explained in the follow-
ing subsections. In this content it is assumed that “Cholesterol” is 
an incomplete attribute in the heart disease data set. 

5.2 Box C1: Documents Collection and 
Classification 

Document Collection Phase: We collected N (= 300 or more, typi-
cally) documents from Google by searching on keywords about the 
incomplete attribute and other attributes. In our case, since “Cho-
lesterol” values are missing, we want to get the probability infor-
mation between “Cholesterol” and other attributes. To extract 
documents about “Cholesterol” and “Outcome”, for example, we 
used the keyword set: <cholesterol "heart disease”>. (Similarly, the 
keyword set <cholesterol age> was used to get documents contain-
ing relationship information between “Cholesterol” and “Age” and 
so on.) We chose Google because it is a very general, and widely 
available, search engine; it can deal with all sorts of topics making 
it a convenient framework applicable to many fields. A specialized 
search engine and a specialized database, such as Medline, may 
work better for the healthcare field. 
Document Classification Phase: A trained Naive Bayes Classifier 
(Rainbow [13]) was used to divide the resulting documents into 
two classes: the positive class containing information on heart dis-
ease causes and probability data and the negative class comprising 
of all other documents. As documents in the positive class (positive 
documents) contain the probability information we want, they are 
retained for further processing; the negative class documents are 
discarded.  Figure 6 shows a segment of a positive document in 
which the sought after information is shown highlighted with an 
underline. 
 
 
 
 
 

PROPERTIES OF CHOLESTEROL 

Cholesterol is a fatty, waxy substance made by your liver and found in every living cell in your 
body. It is necessary for certain essential functions, such as the production of hormones. Many 
people who eat a diet rich in fatty foods have high cholesterol. Elevated cholesterol levels in the 
blood are caused by many factors, including being overweight, certain inherited tendencies, 
smoking and lack of exercise.  

Too much cholesterol in your blood can create deposits on the inside of your arteries. Over time, 
these build-ups may clog the arteries and restrict blood flow - forcing your heart to work harder 
to keep the blood moving. And if the blood can't bring enough oxygen to the heart muscle, chest 
pain - and even heart attacks - can result. Experts believe that most people should have a total 
cholesterol level under 200 mg to reduce these risks absolutely, but a level of 200-240 may not 
increase risk significantly. In people older than 70, there is no current data that proves that low-
ering cholesterol helps increase life span or decrease illness or death, but many doctors feel that 
it is wise to control cholesterol in older people just as in younger people.  

By testing your blood, your doctor can measure several substances relating to cholesterol: total 
cholesterol triglycerides (another type of blood fat) as well as LDL and HDL (low- and high-



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  A Segment of a Positive Document. The underlined parts express the relation 
between “Cholesterol” and “Outcome” 

Training data: The Naive Bayes Text Classifier needs to be trained 
before the preceding step can be implemented. This training is per-
formed manually as follows. Using a number of professional web 
sites that specialize in heart disease [6] 292 documents were col-
lected, manually inspected and hand-labeled as positive and nega-
tive (78 for the positive class and 214 for the negative class). Dur-
ing this stage we were looking for documents that contained 
relevant probability information. The Naive Bayes Text Classifier 
was trained using this as a training set. 
The parameter setting for the classifier is as follows: 1) Token op-
tion: The classifier skips HTML tags, i.e. it does not treat HTML 
tags as words in documents. It also uses stop list, i.e. it skip a list of 
heavily-used words which do not indicate the content of the docu-
ments. These words include "a", "an", "the", "because" etc. It does 
not apply stemming operation, which is a method to convert words 
into its root. For example, "continue", "continuous" and "continua-
tion" has the same root "continu". 2) Event model: Different event 
models represent different ways to represent the probabilities. 
There are two commonly used event models: word-based (multi-



 

nomial) and document-based (multivariate, Bernoulli). The former 
considers the word frequency for a word in a document as its real 
occurrences in that document, while in the latter model, if a word 
appears in a document, the word frequency is set to unity no matter 
how many times this word appears in that document. It is shown 
that the document-based model works well with small-sized vo-
cabulary while the word-based model works well with large-sized 
vocabulary [11]. We use word-based event model because the 
documents we obtain from the web involve a large size of vocabu-
lary. Also, the word-based model gave us the higher classification 
accuracy. 3) Smoothing method: Smoothing methods are used to 
avoid 0/1 probabilities, i.e. the bias of a probability that the training 
data induces. We use no smoothing methods in our classification. 

5.3 Box C2: Text Analysis and Information 
Extraction 

Because the documents are HTML files coming from the web, the 
embedded knowledge may reside in free text as well as semi-
structured text (e.g. tables). For the latter, some HTML tags are 
very useful for our extraction. The probability information we want 
to extract, i.e. the relations between the incomplete attribute and 
other attributes, is divided into two categories: Point probabilities 
and Qualitative influences. Other forms of probability information 
such as comparison and qualitative synergies would also be useful. 
Formal definitions of all these items are given in [3] but we only 
focus on the above two categories. Rules are used to extract these 
two types of probability information. 

(1) Point probabilities: These are probabilities expressed in the 
mathematical form P(ai|aj) = c , where c stands for some constant. 
Consider the relation between “Cholesterol” and “Outcome” as an 
example. The degree of risk for heart disease for different levels of 
cholesterol is usually explicitly described in the relevant docu-
ments. For example, the probability information indicated by the 
text in Figure 6 is that P(Outcome = 1 | Cholesterol < 200 mg/dl) 
is low, P(Outcome = 1 | 200 mg/dl < Cholesterol < 239 mg/dl) is 
borderline high and P(Outcome = 1 | Cholesterol > 240 mg/dl) is 
very high.  



 

In the documents we examined, we found that the point probabili-
ties are typically expressed in two ways: (a) by the use of tables 
(semi-structure text, see Example 1) and (b) by the use of regular 
sentences (free text, see Example 2).  

Example 1: Figure 7 (a) and (b) illustrate how the relation between 
“Cholesterol” and “Outcome” could appear in a table. The rule to 
extract useful information from that table is shown in Figure 7 (c). 
If the table fits the regular expression in Figure 7 (c), we extract the 
cholesterol levels and the degree of heart disease risk. 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

HTML 
source  

a) 

(b) 

<table border="1" cellpadding="3" cellspacing="0"> 
     <tr><td colspan="2" bgcolor="#FFFFFF"><p 
align="center"><strong>Total Cholesterol Levels</strong></p></td></tr> 

<tr><td>&lt; 160 mg/dL</td> 
       <td>optimal for people with a history of heart disease</td></tr> 
 <tr><td>&lt;   200 mg/dL</td> 
        <td>desirable for the general population</td> </tr>  
 <tr><td>200 mg/dL to 239 mg/dL</td> 
        <td>borderline high blood cholesterol</td></tr> 
 <tr><td>240  mg/dL or greater</td> 
        <td>high  blood cholesterol</td> 
 </tr> 

</table> 

(a) 

Table =  TableStartTag * TableEntryTag * level * degree * TableEndTag 
 | TableStartTag * TableEntryTag * degree * level * TableEndTag, 
Length(table) < 1500 , 
Contains(“total cholesterol”, Table) = True, 
 
     TableStartTag = “<table*>”, TableEndTag = “</table>”,  
     TableEntryTag = “<tr*>”, 

level  = LeftOp Number (“mg/dl” | “”)  
  | Number (“mg/dl” | “”) MidOp Number (“mg/dl” | “”)  

   | Number (“mg/dl” | “”)  RightOp, 
degree = degree1 | degree2 | degree3 | degree4 
degree1 = “optimal” | “ideal” | “ideally” … 
degree2 = “desirable” | “ok” | “healthy”… 
degree3 = “borderline” … 
degree4 =  “high” | “serious” … 
LeftOp  = “less than” | “lower than” | “below” | “under” | “&lt;”  

   | “greater than” | “over” | “&gt;”  
MidOp  = “to” | “-”



 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Point Probabilities Expressed in Tables and Extraction Rule. (a) Text 
that appears in the web browser; (b) Text that read by computers; (c) Extraction 

Rule.  Here “*” stands for any character and “|” for “or”. 

The output resulting from the processing shown in Figure 7 is (“< 
160 mg/dl”, “optimal”[degree1]), (“< 200 mg/dl”, “desir-
able”[degree2]), (“200 mg/dL to 239 mg/dl”, “borderline 
high”[degree3]) and (“240 mg/dl or greater”, “high”[degree4]). 
The output (level, degree) can be interpreted in probability format 
as P(Outcome  = 1| Cholesterol ∈ level) = degree.  

Example 2: An example of probabilities expressed by regular sen-
tences (free text) is given below: 

“In general, total cholesterol is considered high when 240 or 
more, borderline when 200-239, and desirable when 200 or less.”  

The above sentence is from the document in Figure 6. Figure 8 
shows the rules to extract the required information. 

If the sentence matches the expression in Figure 8, we extract cho-
lesterol levels and the degree of heart disease risk. The output for 
the sentence above is (“200 or less”, “desirable”[degree2]), (“200-
239”, “borderline”[degree3]) and (“240 or more”, 

(c)  



 

“high”[degree4]). The output (level, degree) can be converted to 
probability information in the same way with the table extraction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Extraction Rule for Point Probabilities in Regular Sentences. “&lt;” is 
“<” and “&gt;” is “>” in HTML documents. 

(2) Qualitative Influences: This kind of relation describes how one 
attribute influences another in a qualitative way. A positive qualita-
tive influence from attribute Ai to Aj means choosing a higher value 
for Ai makes the higher value for Aj more likely. A sentence exam-
ple to describe the relation between “Age” and “Cholesterol” is 
“As people get older, their cholesterol levels rise”. This describes a 
positive qualitative influence from “Age” to “Cholesterol”.  

 
Example 3: An example of extracting information about qualitative 
influences is given below. 

 
 “As people get older, their cholesterol levels rise.” 
“Cholesterol levels naturally rise as men and women age.” 
“Old people have higher cholesterol levels than the youth.” 
“Women have lower total cholesterol levels than men of the 

same age.” 
 

Sentence = * level * degree * | * degree * level *; 
Contains(“cholesterol”, Sentence) = True; 
 
     level  = LeftOp Number (“mg/dl” | “”)  

   | Number (“mg/dl” | “”) MidOp Number (“mg/dl” | “”)  
   | Number (“mg/dl” | “”)  RightOp; 
degree  = degree1 | degree2 | degree3 | degree4; 
degree1  = “optimal” | “ideal” | “ideally” … 
degree2  = “desirable” | “ok” | “healthy”… 
degree3  = “borderline” … 
degree4  =  “high” | “serious” … 
LeftOp   = “less than” | “lower than” | “greater than” | “&lt;” | “&gt;”; 
MidOp   = “to” | “-”; 
RightOp = (“and” | “or”) (“lower” | “less” | “below” | “more” | “greater”  

    | “higher”  | “above”) 
 

Output: (level, degree)  



 

The above four sentences all match the rule in Figure 9. The output 
of the first three confirms a positive influence from “Age” to “Cho-
lesterol” and the output of the fourth confirms a positive influence 
from “Sex” to “Cholesterol” (here, we assume “women” < “men” 
as the order of the attribute “Sex”). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.  Extraction Rule for Qualitative Influence 

Each sentence and each table from the documents retrieved in C1 
(i. e. the positive documents) are analyzed, examined to find if they 
matched any of our rules and collected the outputs of the probabil-
ity information for the next stage, namely C3. 
We assumed that the probability information published in most 
websites is the most reliable information. For example, if most 
websites show that it is optimal to have cholesterol less than 
200mg/dl while a few websites regard 160mg/dl as the separation 
line, then we choose to believe the former. In addition, the 
information we obtained came from the top of the list returned by 

Sentence = * description(Ai) * description(cholesterol) *  
      | * description(cholesterol) * description(Ai) *  

    | * description(Ai)1 * description(cholesterol) * “than”  
      * description(Ai)2,  
 where  IsSameLevel(description(Ai)1,  description(Ai)2) = False 

Length(sentence) < 150; 
Contains(“cholesterol”, Sentence) = True; 
 

 description(cholesterol)  = subject(cholesterol) * level(cholesterol)  
       |  level(cholesterol) * subject(cholesterol); 
description(age)  = subject(age)* level(age); 
distance(subject, level)   < 20 ; 
description(gender) = level(gender); 
subject(age)  = “people” | “human” | “woman” | “women”  
       | “man” | “men”; 
subject(cholesterol) = “cholesterol”; 
level(Ai)  =  higher(Ai) | lower(Ai) ; 
higher(cholesterol)  = “higher” | “high” | “rise” | “increase”; 
lower(cholesterol)  = “low” | “low” | “decrease”; 
higher(age)   = “older”| “old”; 
lower(age)   = “younger”| “young”; 
higher(gender)   = “female”| “woman” | “women”; 
lower(gender)   = “male”| “man”| “men”; 

… 
Output: If (IsSameLevel(description(Ai), description(cholesterol)) || 
         IsSameLevel(description(Ai)1 , description(cholesterol)) ) 
    Then Positive influence from Ai to “cholesterol” 
    Else  Negative influence from Ai to “cholesterol”



 

mation we obtained came from the top of the list returned by the 
search engine. We are implicitly making the assumption that the 
higher-ranked search results are more reliable.  

5.4 Box C3: Missing Information Restoration  

There are two types of output from Box C2: point probabilities and 
qualitative influences. The point probabilities for the relation be-
tween “Outcome” and “Cholesterol” can be represented by:  

 
P(Outcome = 1 | Cholesterol = v1) = v2 (8) 

Here v1 stands for a range of cholesterol levels and v2 stands for 
some constant value. The second type of output from Box C2 in-
cludes a positive influence from “Age” to “Cholesterol” and a posi-
tive influence from “Sex” to “Cholesterol”. A positive influence 
from “Age” to “Cholesterol” means that with lager value of “Age” 
the risk of getting higher values of “Cholesterol” is greater. This 
fact can be represented by:  

 
P(Cholesterol > v | Age = a1) > P(Cholesterol > v | Age = a2) given a1 > a2 (9) 

A positive influence from “Sex” to “Cholesterol” can be inter-
preted in a similar way. Given all these probability outputs from 
Box C2 and given the probability constrains such as P(Age, Sex, 
Outcome) = v from the available data, we can elicit the probabili-
ties P(Cholesterol| Age, Sex, Outcome) based on the approach de-
scribed in [3]. This method allows us to convert all the probability 
information into a linear system of equalities and inequalities, from 
which bounds on the probabilities of interest are calculated. From 
these bounds, it is possible to elicit the required probabilities, 
namely, P(Cholesterol| Age, Sex, Outcome). Now we can fill the 
missing values in the data set based on these probabilities. For 
example, we get: 

 
   P(Cholesterol < 200|Age < 50, Sex = female, Outcome = 1) = v1, 

   P(200 < Cholesterol < 240|Age < 50, Sex = female, Outcome = 1) = v2, 
(10) 



 

   P(Cholesterol > 240|Age < 50, Sex = female, Outcome = 1) = v3, 

If a patient’s age is less than 50, is female, and has heart disease, 
then we set her missing cholesterol number to one of the values 
from the set {< 200, 200 - 240, > 240} respectively with probabili-

ties 
v
v1 , 

v
v1  and 

v
v1 , where v = v1+v2+v3. 

5.5 Experiments 

We did our experiments on the Cleveland data set, which is a table 
with no missing data. We chose 2/3 of the data for training and the 
remaining 1/3 for testing. Using the complete data set (i.e. no miss-
ing values) we obtained 80.2% accuracy with Naive Bayes method 
and 81.1% with the TAN method. Then we assumed all the choles-
terol values in the training data as missing and applied our method 
to fill in these values. Using the two sets of training data with the 
filled-in values, we trained our front-end respectively. We then 
tested the trained network with the testing data set and were able to 
obtain 79.2% accuracy with Naive Bayes and 83.2% with TAN 
(see Table 3). It is clear that the filled-in data set performed almost 
as good with Naive Bayes and even better with TAN. If we ran-
domly fill in the missing values in the training data instead of using 
our mining approach, we can only obtain 78.2% accuracy with Na-
ive Bayes and 77.8% with TAN, which proves that the filled-in 
data via our approach outperforms randomly filled-in data.  

Table 3. A Comparison of prediction accuracies with complete and filled-in data 

Prediction Accuracy Naive Bayes TAN 
Complete  Data 80.2% 81.1% 
Incomplete Data with filled-
in values via our approach 79.2% 83.2% 

Incomplete Data with ran-
dom filled-in values 77.2% 76.8% 



 

6   Summary 
This chapter is only a proof of concept for a new method of solving 
ill-posed inverse problems. The WWW was used as a source for 
gathering missing information in relational tables. The filled-in ta-
bles are, in turn, used to simulate two Bayesian network models of 
the unknown system under study. Several interesting questions 
need to be addressed before this method can be effectively used to 
solve realistic problems. The most obvious questions pertain to the 
reliability, scalability and performance of the method. Reliability 
depends on the confidence one can place on the filled-in numbers 
generated by this method. Scalability refers to the performance of 
the method as function of the percentage of missing values in the 
data set. Performance refers to the computational complexity of the 
method. Furthermore, as the filled-in values are only estimates, for 
the purpose of tracking changes, there has to be some cognizance 
as to which of the data items have been filled in. This will facilitate 
sensitivity analysis. 
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