
Detecting Masqueraders Using One-class
Classification Methods

Alejandro Pasos†, V. Rao Vemuri∗† and Yihua Liao∗

∗Department of Computer Science
†Department of Applied Science
University of California, Davis

One Shields Ave, Davis
CA 95616, USA

Email: {apasos, rvemuri, yhliao}@ucdavis.edu

Abstract

Detecting masqueraders is one of the most difficult problems in intrusion detection. The masqueraders use a
password from a trusted user which makes the attack difficult to detect by traditional security mechanism. This work
presents a new alternative to handle this problem: one-class classification methods. These methods are based on
having a good knowledge of the normal class to discriminate everything different. Three methods were presented:
k-nearest neighbor (k=1), evolving clustering method and autoassociators. All methods were applied to a known
Unix dataset that contains the profiles of 50 users. The three methods run with different thresholds and the best
results were chosen. In the three cases the one-class classification methods improved the previous results on this
dataset.

1

Detecting Masqueraders Using One-class
Classification Methods

I. I NTRODUCTION

Detecting masqueraders in one of the most difficult
problems in intrusion detection. A masquerader is some-
one who enters the system using the password of a
trusted user. He usually guesses or steals that password.

One approach to handle this problem is the normal
behavior presented in [1]. This approach, uses examples
of normal behavior to build user profile. When some ac-
tivity is highly different from the profile it is considered
as abnormal. Therefore, the main goal to this approach is
to define the normal behavior. One of the best methods
to define only one class are the one-class classification
methods. Usually, these methods utilize thresholds to
decide if some activity belongs to a class or not.

We applied the one-class classification methods to a
Unix dataset presented by M. Schonlau in [2]. The one-
class classification methods improved the performance
from 60-67% of detection to 70-80% with an slight
increase of the false positive rate from 1% to 2-4%. How-
ever, there are two problems that remain in applying one-
class classification methods : The first is the threshold
selection. Different thresholds were applied and the best
was selected. In a real world application, the threshold
selection should be automatic. The second problem is the
dimensionality of the data. All methods presented here
utilize vectors of fixed dimensionality. If in the future
the dimensionality increases or decreases that would be
a problem.

The rest of the paper is organized as follows: In
section 2 we will show some related work, in section 3
the one-class classification approach will be presented,
in section 4 the dataset applied here will be explained, in
section 5 the results will be discussed and finally section
6 will present the conclusions of this work.

II. RELATED WORK

The first work on user profile for intrusion detection
was introduced in [3]. They presented different levels of
granularity to monitor users: keyboard level, command
level, session level and group level. They concluded that
command level was the best for user profile because
they are closer to user’s activity. This work will use that
assumption and will work in the command level. They
applied neural networks to predict the next sequence of

Fig. 1. General overview of the approach presented.

user commands. If the neural network fails in predicting
the next command, then that sequence was considered
abnormal.

The work in [4] utilized an algorithm that measures
the similarity of two sequences of user commands. In
addition, they updated the stored sequences based on
the Last Recent Strategy. Their results showed that se-
quences from the same user have higher similarity from
the sequences than other users. In [5] Hidden Markov
Models were applied in the same data.

[2] introduced statistical approaches to this prob-
lem. The methods applied were: Uniqueness(if there
is a command which was not present in the database,
then the sequence was abnormal), one-step markov(the
conditional probability of the next command given the
previous command), multi-step markov(the probability
depends on more than one previous command), sequence
match from [4]. In [6] naive bayes classifier was applied
to the same dataset and improved the performance.

III. O NE-CLASS CLASSIFICATION APPROACH

As mentioned in the previous section, this work will
focus on detecting masqueraders(intruders that imper-
sonate normal users). In [7] four classes of threats in
computer systems were defined : Unauthorized access
to information (disclosure), acceptance of false data (de-
ception), interruption or prevention of correct operation

2

(disruption) and unauthorized control of some part of the
system (usurpation). In this context, masquerading was
classified as a form of deception and usurpation.

There are some classical security approaches to avoid
masqueraders, for example, password, biometrics etc.
However, when those approaches fail, the systems cannot
defend against the intrusion. The approach presented
here could be applied as a second barrier of security
when the first failed.

The first step to a masquerader’s attack is to get a
password from some user. When the masquerader logs
in, the system cannot identify that he is not the user.
However, the masquerader’s behavior is different from
the regular user. Any proposed method in this area
must be able to detect this variation between the normal
behavior of the user and the masquerader.

The approach used here will the behavior model
presented in [1]. Figure III gives a general overview
of the approach. There is a predefined profile which is
created only with examples of one class. The method
inputs new activity that represents the current behavior
of the user. Comparing the new activity with the profile,
it decides if the activity and the profile belongs to the
same user or not. In addition, when the activity belongs
to the profile, this profile is updated to store this new
behavior (adaptive module).

There are two possibilities to build a profile: Store
all possible abnormal behaviors or profile the normal
behavior. Because of it is easier to get normal behavior
than abnormal behavior, the profile will be built with
normal behavior. In addition, the profile will be built
using one-class classification [8] methods. One-class
classification methods sometimes are called thresholded
methods because they need that parameter to assign the
activity to the normal class or not. Everything that is not
assigned to the normal class is considered abnormal. In
addition, there are two more requirements that are not
related to one-class classification methods but they are
needed in the masquerader problem:

• Online/Adaptive Learning.- The system will be run-
ning always which means that there is no separation
of training and testing. When it collects enough
information, it compares the information with the
stored profile to determine if the user is acting as
expected or not. Also, the system must be able
to detect changes in the user behavior. One main
assumption is that the user changes this behavior
briefly. If an abrupt change of behavior is found, it
will be declared as abnormal.

• Computationally inexpensive and transparent to the
user.- The system will be constantly making deci-
sions about user activity and updating the profile if

AUTOAS. ECM k-NN
Training Expensive - Inexpensive
Testing Inexpensive Inexpensive Expensive

Memory Medium Inexpensive Expensive

TABLE I

OVERALL CHARACTERISTICS OF THE THREE METHODS. NOTE

THAT ECM DOES NOT HAVE A TRAINING PHASE.

it is necessary. However, all this activity must be
transparent to the user. Therefore, it must be com-
putationally inexpensive to avoid any interference
with the user’s work.

In the rest of this section the three methods utilized
in this work will be presented. The main characteristics
of the methods are summarized on table I. In addition,
two important aspects of these one-class classification
methods will be discussed: the distance metric and the
decision of the threshold.

A. K-Nearest Neighbor

k-Nearest neighbor is one example of instance based
learning classifiers [9]. It is one of the simplest but
effective algorithms used. It assigns an instance to the
class of its closest neighbor based on a distance measure.
Given that we are dealing with one class classifiers(k=1),
it is necessary to assign an instance to the class based
on a threshold.

The k-NN algorithm is considered static learning
because the stored examples are not updated over time.
In addition, the process of calculating the distance with
all stored examples is time consuming.

B. Evolving Clustering Method

ECM is a one-pass, clustering method introduced in
[10]. In ECM, there is no separation between testing
and training. It clusters the data sequentially and the
algorithm is simple enough that allows to execute it
online. These characteristics make the method attractive
to this problem.

The basic algorithm of ECM is:

1) Calculate the distance between a new vector and
all created cluster centers. Choose the minimum of
all those distances.

2) If there are no clusters, then create a new cluster
with center equal to the new vector.

3) If the distance is less than a threshold assign the
vector to that cluster and if is necessary update the
center and radius of the cluster

3

4) If the distance is great than a threshold then create
a new cluster with the center equal to the new
vector.

The ECM only creates clusters. In order to utilize
this algorithm on intrusion detection it is important
to add a new step. After N vectors are clustered, all
created clusters are analyzed. If any vector contains
small number of elements, then that cluster and all its
elements are considered as anomalous. This process adds
a drawback to this method: it delays the process of
detection because we have to wait to cluster N vectors
before making a decision. The decision of the parameter
N is important because a small N means faster detection
but it could leads to increase the false positive rate. On
the other hand, a big N would delay the process allow
the intruder to finish his attack. In this work this process
will be executed after all input vectors are clustered

Other important aspect is how small should be the
cluster to be considered as an intrusive. All clusters with
less than the 15% of the total number of vectors clustered
are considered abnormal.

C. Autoassociators

Autoassociators are Neural Networks with the number
of inputs equal to the number of outputs [8]. The goal
of the network is to output the same vector as the input.
Based how similar are the input and the output it is
decided if the vector belongs to the class or not. The
autoassociators tries to store in the hidden layers the
principal patterns of the learned vectors. For classifica-
tion problems, autoassociators utilize one network for
each class. Each network learns only from vectors of the
same class. To test a new vector, this vector is propagated
through all networks and is classified to the class whose
network reproduce the most similar output. Usually, the
autoassociators uses the backpropagation algorithm with
online gradient descendent. The number of hidden units
is usually smaller than the inputs.

D. Threshold selection

All classifiers introduced have in common the need
of a threshold. We assume that the threshold is specific
for each user. All approaches compared the results us-
ing different thresholds and selecting the threshold that
optimizes the results for each user. However, an optimal
approach should have an automatic way to select this
threshold.

E. Distance Metric

Another important aspect to these methods is how to
calculate the distances between vectors. On other words,

Fig. 2. Example of how the original files were preprocessed.

What is the best distance metric for this problem?. We
considered the following metrics:

1) Euclidean:

Diste(x, y) =

√√√√ n∑
k=1

(xk − yk)2 (1)

2) Cosine:

Distc(x, y) =
∑n

k=1 xk · yk√∑n
k=1 x2

k ·
√∑n

k=1 y2
k

(2)

3) Hamming:

Disth(x, y) =
n∑

k=1

| xk − yk | (3)

IV. DATASET

Schonlau’s dataset was presented in [2]. The original
files consist of 50 unique users, each user information
is stored into a text file consisting of a sequence of
1500 commands in atcsh shell. Each sequence of 100
commands was considered a session. Therefore, each
user has 150 sessions. Given that it is difficult to obtain
intrusive sequences, sequences from other users were
used as intrusions. The first 50 sequences contain com-
mands only from the same user and the remaining 100
commands were contaminated based on the following
rule: If the current sequence is normal, the probability
that the next sequence is an intrusion is 1%, otherwise
the probability is 80%.

4

AUTO1 AUTO2 AUTO3 AUTO4
Distance Cosine Cosine Hamming Hamming

Error 0.009 0.009 0.009 0.09
Hid.Layer 75% 50% 50% 75%

TABLE II

CHARACTERISTICS OF THE FOURAUTOASSOCIATORS. THE

HIDDEN LAYER IS SHOWN AS A PERCENTAGE OF THE INPUT

LAYER

Using that strategy leads to have different kind of data,
there are users with no intrusions at all, users with few
intrusions and users with many sequences of intrusive
behavior.

In order to apply the data to the one-class classi-
fication methods the original files were preprocessed.
Instead of the original sequence of commands, this work
used feature vectors. For a sequence of commands in
the original files the frequency of each command was
calculated. Then, we created vectors based on those
command frequencies. Figure IV shows an example of
how the data was preprocessed: On the left side there is
a sequence of 24 commands. The middle square shows
the first step that is add the frequency of all commands.
The right square (step 2) calculate the percentage of
frequency dividing the frequency of each command with
the sequence length . Finally, the square at the bottom
(step 3) shows the feature vector which is only the listed
percentage of frequencies of step 2. In order to compare
our results with the previous results, we decided to use
the sequence length of 100.

V. RESULTS

The best results applied over the Schonlau’s dataset
were One-Step Markov (1S-MV) from [2] and Naive
Bayes from [6]. Both results are presented on table III.

We run the k-NN using the three metrics introduced
on section III-E. KNN-C, KNN-E, and KNN-H on table
III are the results applying K Nearest Neighbor method
with cosine, euclidian and hamming metrics respectively.
For ECM the Euclidean distance was used. Finally, for
the autoassociator we combine the distance metrics, the
convergence error and the number of hidden layers.
Table II summarizes the four networks topology. The
hidden layers are shown as a percentage of the input
layer. For example if there are 100 input layers, the first
autoassociator of table II will have 100x0.75 = 75 hidden
layers.

There are only two possible outcomes on our classi-
fication: normal or abnormal. Therefore, we have four
possible situations:

• Normal classified as Normal (True negative).

Previous Work Current Work
1S-MV. N.BAYES KNN-C KNN-E KNN-H

HITS 69.3 61.5 80.5 73.1 80.0
F. P. 6.7 1.3 2.5 4.7 2.9

Current Work
ECM AUTO1 AUTO2 AUTO3 AUTO4

HITS 77.0 71.4 77.4 70.9 72.7
F. P. 4.4 3.2 4.2 3.6 4.4

TABLE III

RESULTS OF ALL METHODS. THE FIRST TWO METHODS

CORRESPOND TO THE PREVIOUS WORKS.

• Normal classified as Abnormal (False positive).
• Abnormal classified as Abnormal (True positive).
• Abnormal classified as Normal (False negative).

To evaluate the results, the two most important aspects
are the hit rate (true positives) and the false positive rate.
They can be calculated as follows:

FalsePositive = FalsePositive
TrueNegative+FalsePositive

HitRate = TruePositive
TruePositive+FalseNegative

The hit rate is important because it defines how effec-
tive is the method detecting intruders. The false positive
rate measures how well the system could discriminate
the normal from abnormal. The goal is to maximize the
hit rate and minimize the false positives. The best result
possible is a 100% of hit rate and 0% of false positive
rate.

The results are summarized on table III. The k-NN
method produced the best results overall. However, it
is important to note that k-NN is a computationally
expensive method because it compares each new vector
with all vectors in training data. In addition, it requires
storing all those vectors in memory, which consume
many system resources. These are the reasons that diffi-
cult to implement k-NN online. Therefore, k-NN method
should be considered for learning in batch (off-line)
mode.

The best results of autoassociator were using cosine
metric. The autoassociator only require memory to store
all the weights of the neural network. In addition, the
process of detection is faster because it only needs to
propagate the new vector and compare the similarity
between the input and the output. The main problem of
this method is that the training phase is time consuming
because the neural network must converge to a minimum
error.

Finally, ECM result was good considering that it is a
computationally inexpensive method in execution and in

5

memory. The main problem with ECM is that it must
delay the detection in order to be sure that suspicious
activity is abnormal.

VI. CONCLUSIONS

The three methods presented here improved all previ-
ous results. In addition, the characteristics of these meth-
ods make them more attractive because they consume
less system resources and can be executed adaptively
(except k-NN). The two most important problems to face
are the threshold selection and the dimensionality of the
vectors.

All one-class classification methods chose the thresh-
old that improved the results. However, in a real applica-
tion the threshold selection must be done automatically
by the system. Future work on these methods must
implement some way to have an automatic threshold
selection that optimizes the results.

The dimensionality is another important aspect. Each
element of the vectors represents each program executed
by the user. However, if in the future the user executes a
new program (adding a new feature) this will become
a problem. There are two alternatives to handle this
problem: Modify the methods to allow variable vector
dimensionality or classify programs into a fixed set of
predefined features. The first solution can affect the per-
formance of the system. In addition, the new programs
executed by the user could grow infinitely leading the
methods to the curse of dimensionality problem. The
second solution is better because a good classification
of these programs could help to a better classification
of users. However, it requires user intervention and
knowledge to pre-classify each program to a feature and
to store a database of each program belonging to each
class.

REFERENCES

[1] E. Amoroso,Intrusion Detection, 1st ed. Intrusion.Net Books,
1999.

[2] M. Schonlau, W. DuMouchel, W. Ju, A. Karr, M. Theus,
and Y. Vardi, “Computer intrusion: Detecting masquerades,”
Statistical Science., vol. 16, no. 1, pp. 1–17, 2001. [Online].
Available: citeseer.nj.nec.com/schonlau01computer.html

[3] M. B. H. Debar and D. Siboni, “A neural network component
for an intrusion detection system,” inIEEE Symp. on Research
in Computer Security and Privacy, 1992, pp. 240–250.

[4] T. Lane and C. E. Brodley, “Detecting the abnormal: Machine
learning in computer security,” Department of Electrical and
Computer Engineering, Purdue University, West Lafayette,
IN 47907, Tech. Rep., Jan. 1997. [Online]. Available:
citeseer.nj.nec.com/lane97detecting.html

[5] T. Lane, “Hidden markov models for human/computer
interface modeling,” 1999. [Online]. Available: citeseer.nj.nec.
com/lane99hidden.html

[6] R. A. Maxion and T. N. Townsend, “Masquerade detection
using truncated command lines,” inInternational Conference on
Dependable Systems and Networks, Bethesda, Maryland, 2002.

[7] M. Bishop, Computer Security: Art and Science, 1st ed. Ad-
dison Wesley, 2002.

[8] D. Tax, “One-class classification,” Ph.D. dissertation, Delft
University of Technology, 2001.

[9] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[10] Q. Song and N. Kasabov, “Ecm - a novel on-line, evolving

clustering method and its applications.” [Online]. Available:
citeseer.nj.nec.com/526700.html

