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ABSTRACT 
Detecting anomalous BGP routing dynamics is crucial 
to improving the stability of the Internet. In this paper, 
we investigate two unsupervised clustering methods, 
artificial immune network (aiNet) and evolving fuzzy 
neural network (EFuNN), for anomaly detection in 
BGP update messages. Both methods can categorize a 
large volume of raw data into a small number of 
clusters without a priori knowledge of the systems. We 
apply them to examine the BGP data collected during a 
period around the SQL worm attack. Experimental 
results show the effectiveness of clustering analysis in 
characterizing the BGP routing behaviors; the 
generated anomaly clusters are coincident in time with 
the anomalous BGP routing dynamics during the worm 
attack.  Furthermore, we demonstrate that clustering 
analysis can effectively identify certain abnormal BGP 
messages that are worthy of further investigation. 
These results indicate that clustering analyses can help 
network operators and researchers to filter out the 
trivial events and to focus on the most important BGP 
events.  This is an important step to determine the root 
cause of anomalous BGP routing behaviors. 

Categories and Subject Descriptors 
C.2.3 [Computer-Communication Networks]: 
Network-- Operations-network monitoring 

General Terms 
Algorithms, Management, Performance 

Keywords 
Clustering, BGP routing dynamics, anomaly detection, 
artificial immune networks (aiNet), evolving fuzzy 
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1. INTRODUCTION 
BGP, the Internet's Border Gateway Protocol, is 

an essential component that enables inter-domain 
routing. It is of great importance to understand the 
BGP routing dynamics, since they affect the stability, 
connectivity, and availability of the Internet. In recent 
years, the research community has focused on 
numerous BGP convergence and instability problems 
[1-4]. More recently, anomaly detection of BGP 
routing dynamics has gained growing attention, with 
several methods being proposed in literature [5, 6]. 

With the increased complexity of the Internet, the 
analysis of operational BGP dynamics is a challenging 
issue. It is often difficult to manually pinpoint BGP 
anomalies and their root causes in real time.  Suitable 
techniques are needed to learn the patterns embedded 
in the BGP data and to discover the knowledge for 
anomaly detection. Machine learning and data mining 
techniques have great potential to meet this need, as 
evidenced by their successful applications in the field 
of intrusion detection [7-9]. These learning techniques 
can be roughly classified into two categories: 
unsupervised (clustering) and supervised 
(classification). The supervised learning techniques 
require the label information associated with the 
training data. However, there is no systematic 
approach in practice to consistently label a BGP event 
as normal or abnormal. Since the operations of BGP 
involve multiple administrative domains, in certain 
circumstances, it is impossible for network 
administrators to unambiguously label a BGP event 
based on the single-domain knowledge. Considering 
the dynamic nature of BGP routing and the difficulty 
of labeling BGP data, clustering or unsupervised 
learning is more appropriate for BGP anomaly 
detection than supervised-learning-based methods.  

In this paper, we will conduct the unsupervised 
clustering analysis on BGP data and investigate its 
applications to BGP anomaly detection. The clustering 
methods used in this work include artificial immune 
network (aiNet) [10-12] and unsupervised evolving 
fuzzy neural network (EFuNN) [13, 14]. Both are 
biologically inspired learning algorithms capable of 
partitioning the data space. aiNet is an immune system 
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based algorithm to explore “self/no-self” space 
separation for clustering, while EFuNN uses a neuro-
fuzzy structure to perform clustering in an online 
adaptive fashion through unsupervised learning. An 
important advantage of clustering methods is their 
abilities to naturally categorize a large volume of raw 
data into a small number of clusters without a priori 
knowledge of the underlying systems. In particular, the 
online adaptive clustering methods like EFuNN can 
dynamically generate a new cluster for patterns unseen 
before. In the context of anomaly detection, this 
implies that on-line clustering has the potential to find 
new anomalous behaviors through its adaptive learning 
capabilities. This paper will demonstrate the 
advantages of the clustering-based anomaly detection 
through a set of experiments on BGP update messages. 
Experimental results show that clustering analysis can 
effectively identify certain abnormal BGP messages 
that are worthy of further investigation. Since 
clustering analysis provides an abstraction from the 
unstructured data space to the representative clusters, it 
enables network operators and researchers to filter out 
the trivial events and to put their focuses on the most 
important clusters. We will present case studies to 
demonstrate how to utilize the clustering results for 
further examination such as root cause analysis. Our 
experimental results indicate that clustering analysis is 
the important first step for anomaly detection and root 
cause analysis of BGP routing dynamics.  

This paper is organized as follows. Section 2 
presents the key concepts of aiNet and EFuNN. 
Section 3 describes the dataset of BGP update 
messages and presents feature extraction procedures 
used in the experiments. Section 4 discusses the 
experimental results on the clustering analysis. This 
paper concludes with a summary in Section 5. 

2. CLUSTERING METHODS 
2.1 Artificial Immune Networks (aiNet) 

Artificial immune systems (AIS), a new family of 
biologically-inspired learning algorithms, have been 
successfully applied to many application areas by 
exploring immune mechanisms [12, 15]. The aiNet is 
one such AIS approach for data clustering. We first 
summarize the immune principles involved in the 
aiNet, and then describe the aiNet algorithm. 

In the presence of infections, the immune system 
randomly produces many B-cells, which secrete 
antibodies to bind antigens and finally destroy them. 
The affinity between an antigen and an antibody 
describes the strength of their binding. The B-cells 
with high affinity to antigens are cloned. These cloned 
cells can easily recognize and bind antigens, and are 
called memory cells. This cloning process is called 
clonal selection. Memory cells have a longer life than 

normal B-cells and are thus useful when a similar 
infection occurs in future. The B-cells that have low 
affinity are mutated to obtain comparatively higher 
affinity to the antigens. This process of increasing 
affinity is called affinity maturation. Another related 
immune principle is the immune network theory, which 
indicates that the immune system involves not only 
antibody-antigen interactions but also antibody-
antibody interactions. Antibodies are connected to 
form a network representing an internal image of 
antigens. The general immune network model can be 
generalized into the following formula [16]: 

 
where RPV stands for the rate of the population variant 
of the network. 

In the aiNet algorithm [10], each data point is 
treated as an antigen (Ag). It evolves a population of 
antibodies (Ab) based on the immune network theory, 
clonal selection and affinity maturation. These 
antibodies form a network to represent the antigens. 
Eventually clusters are automatically generated via 
hierarchical agglomerative clustering (HAC). In detail, 
first we randomly generate a set of Abs and put them 
into an empty memory matrix called M, and then 
follow the steps below:  

(1) Affinity calculation: Calculate the affinity 
between the current Ag and each Ab from M. (2) 
Clonal selection: Select a subset of Abs with the 
highest affinity and clone them. The clone size is 
proportional to the affinities of Abs. (3) Affinity 
maturation: Mutate each Ab toward the current Ag with 
a rate inversely proportional to its affinity. (4) 
Reselection: Calculate the affinity between each Ab 
and the current Ag; Reselect a subset of Abs with 
highest affinity and remove the Abs with low affinity 
to the current Ag. (5) Network suppression: Remove 
redundant Abs and insert the resulting Abs into M. (6) 
Repeat (1)-(5) for each Ag. The memory matrix M 
would eventually contain the memory cells, i.e., the 
Abs that bind the Ag closely for each Ag. (7) Suppress 
M: Remove redundant Abs in M to maintain an 
appropriate size. (8) Add a set of new randomly 
generated Abs into M. (9) Repeat (1)-(8) until a pre-
defined number of iterations are reached. 

After the antibodies are built, clusters are detected 
from these antibodies via HAC. The suppression 
threshold ơs (step (5) and (7)), the threshold to 
eliminate redundant Abs, is the most essential 
parameter. It controls final network size and is 
responsible for the network plasticity. This parameter 
is generally determined based on the data dimension. 



2.2 Evolving Fuzzy Neural Networks 
(EFuNN) with Unsupervised Learning 

EFuNN is one of the evolving connectionist 
systems developed by Kasabov [13, 14]  that is capable 
of modeling evolving processes through incremental 
online learning. It can learn spatial temporal sequences 
in an adaptive way through one pass learning and 
automatically adapt its structure and parameter values 
during the operation of the system. The unsupervised 
EFuNN provides one-pass clustering of an input data 
stream, where there is no predefined number of 
clusters. It is an effective clustering approach capable 
of tackling the “concept drift” problem in practical 
applications, and has been successfully applied to bio-
informatics, speech recognition, and intrusion 
detection [9, 13, 14]. 

EFuNN uses a three-layer neuro-fuzzy structure 
for clustering, which includes an input layer, a fuzzy 
input layer, and a pattern layer. Fig.1 shows this 
structure. The nodes at the input layer read the input 
vector  into the system. The 
fuzzy input layer transforms the original input vector 
into a fuzzy input vector  by using a membership 
function attached to the fuzzy input nodes. The pattern 
layer represents previously learned patterns, with each 
pattern node corresponding to a cluster in the input 
space. Each pattern node i uses a weight vector to 
represent the corresponding cluster.  

 
Fig.1. Three-layer structure of EFuNN. 

EFuNN uses a metric called local normalized 
fuzzy distance to measure the distance between a fuzzy 
input vector  and a weight vector  associated 
with pattern node i. This metric is defined as 

, where  

denotes the sum of all the absolute values of a vector 
that is obtained after vector subtraction (or summation 
in case of ). Based on the distance between a 
new input vector and the existing patterns, EFuNN 
either assigns the new input vector to one of the 
existing patterns and updates the corresponding pattern 
weight vector, or creates a new pattern node for the 
new input. To perform clustering for each new input 

vector X, we use the following algorithm: (1) calculate 
the fuzzy input vector ; (2) evaluate the local 

normalized fuzzy distance D between  and the 
existing pattern weight vectors; (3) calculate the 
activation A of the pattern layer. For pattern node i, its 
activation A(i) is defined as , 
where f can be a simple linear function, e.g., 

; (4) find the closest pattern node 

k to the fuzzy input vector ; (5) If ( : 
sensitivity threshold for pattern node k), allocate the 
new input X to pattern node k (i.e., X is categorized 
into cluster k) and update the weight vector  
according to the following vector operations: 

, where is the 
learning rate. Otherwise, create a new pattern node for 
the input X (in this case, X is categorized into this new 
cluster) and assign the weight vector of the new pattern 
node as .  

The parameters of sensitivity threshold S and 
learning rate l can be either static or self-adjustable. In 
our implementation, the learning rate l is pattern-
specific so that the pattern node that has more instance 
members will change less when it accommodates a 
new instance. For sensitivity threshold S, all the pattern 
nodes share the same static value. 

3. BGP UPDATE DATASET AND 
FEATURE EXTRACTION 

In this work, we use the BGP dataset collected by 
the Routing Information Service of RIPE [17]. The 
dataset consists of the information about BGP update 
messages for a set of IP prefixes in different AS peers. 
We choose the BGP messages from two different AS 
peers (AS 1103 and AS 3549), which were observed 
during January 2003 for the IP prefix 166.111.0.0/16. 
The reason we choose these messages is that we 
attempt to correlate our clustering analysis with BGP 
routing dynamics during the SQL worm outbreak, 
which attacked Internet on January 25, 2003.  While 
SQL worm does not intent to attack BGP routing 
architecture, BGP has been impacted during that 
period. Similar to previous work on statistics-based 
BGP anomaly detection [6], we extract three features 
for each BGP update message based on its arrival time 
and AS path information: 

BGP updates message arrival frequency: this 
feature is related to the inter-arrival time of a BGP 
update message and characterizes the BGP update 
burst. When a new update arrives, we calculate this 
feature as , where r is the decay 
factor and Dt is the inter-arrival time between the 
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current and the previous update. In this work, the 
decay factor r is set to be 1/300.  

Number of AS paths: this feature measures the 
variation of the number of AS paths and is calculated 
as , where current Q is 
the sum of the number of new AS paths detected in the 
current update message and decayed previous Q.  

AS path occurrence frequency: this feature 
measures the frequency distribution of AS paths 
occurrence and is calculated as 

, where  is the relative 

frequency with the m-th AS path has occurred in the 
history,  is the relative frequency with which the 
m-th AS path has occurred in the recent past (which 
ends at the nth received update message),  is the 
approximate variance of the . Detailed 
computation of these variables is discussed in [18]. 

4. EXPERIMENTAL RESULTS 
We apply aiNet and EFuNN clustering methods 

on the BGP data to test whether they are able to 
partition data space of BGP messages into clusters and 
whether this clustering analysis can help analyze BGP 
routing dynamics.  

 
(a) clustering method: aiNet 

 
(b) clustering method: EFuNN 

Fig.2 Clustering analysis for dataset #1 (AS 1103). 

 
(a) clustering method: aiNet 

 
(b) clustering method: EFuNN 

Fig3. Clustering analysis for dataset #2(AS 3549). 

Figs. 2 and 3 show the clustering results on two 
BGP datasets; dataset #1 is from AS1103 for the prefix 
166.111.00/16, and dataset #2 is from AS3549 for the 
same prefix. Both aiNet and EFuNN have successfully 
clustered the BGP update messages into two 
categories: the majority of the BGP message before 
and after the worm attacks are clustered into the 
“normal cluster”, while many BGP messages observed 
during the worm day (Jan. 25 2003) are in the 
“abnormal cluster”. We will present the detailed 
discussion on these results in the next two paragraphs. 
These figures show the distance between the feature 
vector of each BGP message and the center of the 
“normal cluster” (Y-axis) with the date information of 
the BGP messages (X-axis). The green circles indicate 
the updates in the “normal cluster”, while the red 
crossed data points indicate the “abnormal cluster” 
updates. As Figs. 2 and 3 show, the generated 
“anomaly clusters” from clustering analysis are 
coincident in time with the anomalous BGP routing 
dynamics observed during the worm attack. 

For aiNet clustering, we set the suppression 
threshold ơs to be 0.3 because of the relatively low 
dimension (3-D) of the BGP data. The aiNet first 
generates a small set of antibodies to represent the 
BGP updates (antigens) via an evolutionary process 
and then detects two clusters among the constructed 

tr
naspathsnewn QNQ D´-
- ´+= 21_

[ ]å -=
=

M

m
mmnmn VfgP

1

2
, )( mf

nmg ,

mV

nmg ,



antibodies via HAC. For the dataset #1, aiNet detected 
the first anomalous attack at 05:49:08 GMT on the 
attack day (note that the SQL worm began propagating 
itself in the wild around 05:30 GMT [19]) and 
categorized 32 messages (out of total 48 messages 
observed in the worm day) as “anomalous”. For the 
dataset #2, the “anomaly cluster” emerges at 06:16:51 
GMT, and there are 63 messages (out of 161 messages 
observed in the worm day) in the “anomaly cluster”. 

For EFuNN clustering, we use the triangular 
membership function in the fuzzy input layer, and set 
the sensitivity threshold S to be 0.45 for dataset #1 and 
0.6 for dataset #2. As an on-line adaptive clustering 
method, the EFuNN either updates the centers of 
existing clusters or creates a new cluster when a new 
input arrives. For both datasets, the EFuNN method 
generates only one cluster prior to the worm day, i.e., 
all BGP updates observed before the attack day are 
classified into the “normal cluster”. For the dataset #1, 
the EFuNN method creates the “anomaly cluster” at 
06:06 GMT on the attack day, and it categorizes 21 
messages into the “anomaly cluster”. For the dataset 
#2, the “anomaly cluster” emerges at 06:16, and there 
are 63 messages in the “anomaly cluster”.  

Figs. 2 and 3 also show that the BGP routing 
dynamics from two observation points (AS 1103 and 
AS 3549) exhibit similar patterns, which are generally 
consistent across time. For the data from different 
ASes, the generated anomaly clusters emerged around 
the same time. Exploring this spatio-temporal 
correlation among multiple ASes could provide helpful 
information to understand the global BGP operations, 
which is a topic deserving further investigation.  

 
Fig. 4. Clustering analysis on dataset #2(AS3549) 

using K-means clustering method. 

For comparison, we also use the simple K-means 
clustering method, which was mentioned in previous 
work [5] but there was no results on its performance. 
Fig.4 shows the analysis results on dataset from 
AS3549. For this dataset, the K-means clustering 
performs badly in partitioning BGP messages; there is 
no obvious correlation in time between the generated 

clusters and the BGP routing dynamics. It tends to 
classify lots of BGP update messages before the worm 
day into the “anomaly cluster”, leading to a high false 
positive rate. In this sense, aiNet and EFuNN are more 
accurate than K-means methods, and achieve better 
clustering performance on BGP data.  

As previous work [6] has noticed, it is difficult to 
validate the identified anomalies, because conducting 
validation requires the necessary information from a 
real BGP run-time environment and may involve 
cooperation among different ASes. The lack of such 
information makes it impossible to provide accurate 
analysis for speculative anomalies [6]. This is also the 
case for our study. While it is difficult to thoroughly 
evaluate our methods at the current stage, the 
generated “anomaly clusters” from aiNet and EFuNN 
analyses are coincident in time with the anomalous 
BGP routing dynamics during the worm attacks, 
indicating the effectiveness of these methods in 
partitioning BGP messages. Through naturally 
categorizing BGP data into a small number of clusters, 
clustering analysis can help operators and researchers 
to filter out the trivial events and to focus on the most 
important BGP events for further examination.  

Table 1. Abnormal BGP messages from AS 1103. 

Time AS PATH 

07:10:02 1103 11537 22388 7660 2516 3561 1239 
9405 4538 

07:12:21 1103 11537 22388 7660 2516 3561 1239 
9407 9407 4538 

07:13:44 Path withdrawal 
07:15:11 1103 11537 9405 4538 
07:19:31 1103 11537 22388 7660 4538 

Based on the clustering results, we conduct further 
examination on some BGP message sequences in the 
“anomaly clusters”, and attempt to determine their root 
causes. Table 1 shows a sequence of identified 
anomalous BGP updates from AS 1103 around 7:00 on 
Jan.25 2003. Recall that the AS path listed here is for 
the prefix 166.111.0.0/16. Prior to the worm day, this 
prefix had a steady path of (1103 11537 9405 4538). 
During the worm day, this previously stable path was 
seldom used, and the AS 1103’s path to this prefix 
became unstable and changed frequently. At time 
7:13:44, the BGP withdrawal message causes the 
prefix unreachable. By examining the AS-path 
changing patterns in these abnormal messages, we 
speculate that the peer link between AS 9405 and AS 
4358 was instable during the worm outbreak, which 
could be the possible root cause of the BGP routing 
instability. In fact, both AS 9405 and AS 4538 are 
owned by a national research network in China, and 
the report in [20] confirmed that the connectivity of 
China’s networks has been severely affected by the 
SQL worm. This example shows that our clustering 



analysis method can effectively identify certain 
abnormal BGP messages that are worthy of further 
investigation. The detailed examination on these 
messages could provide an insightful understanding of 
the BGP operations in the underlying ASes. 

5. CONCLUSION  
In this paper, we investigated aiNet and EFuNN 

for clustering analysis of BGP data, and discussed their 
applications to detect anomalous BGP update 
messages. Experimental results indicated that both 
methods are effective in characterizing the BGP 
routing behaviors; the generated “anomaly clusters” 
are coincident in time with the anomalous BGP routing 
dynamics observed during the worm attacks. In 
addition, we observed that aiNet and EFuNN are more 
accurate than K-means clustering in partitioning BGP 
messages. Moreover, we demonstrated that aiNet and 
EFuNN clustering could effectively identify certain 
abnormal BGP messages that are worthy of detailed 
investigation. These abnormal BGP messages can be 
further examined to determine the source of anomalous 
behaviors. These results show that clustering analysis 
is an important starting point for anomaly detection 
and root cause analysis of BGP routing dynamics. 

In the future work, we plan to apply the clustering 
approaches to examine BGP data measured in a 
controllable testbed environment, which can enable us 
to conduct in-depth evaluation of the clustering results.  
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