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ABSTRACT

There is a long felt need for a general theoretic frame work for hydrologic systems research which
imbeds dynamical, structural, spatial and behavioral aspects of modeling with predictive powers. Many
of these problems can be effectively studied by systems analysis. The process of system modeling for
large-scale, nonlinear, time-lag systems can be rationalized by suitably identifying and modeling
subsystems. When computers are used as modeling tools methods of formulating the problem, choice
of the computer used, and choice of performance criteria greatly influence the results. This in turn
imposes certain limits on the validity of computer simulated models. These aspects are discussed by
studying the nature of hydrologic systems and the nature of the associated inverse problems and
requirements for validating the models.

INTRODUCTION

During the past decade study of the hydrologic cycle and its various components has
undergone a substantial change. At the turn of this century most of the research was confined
to a delineation of the components of the hydrologic cycle and a descriptive discussion of the
intervening phenomena. Since the 1930’s, however, some significant advances were made
in the quantification of hydrologic information and a great deal of work was done in this
area by many eminent hydrologists.

During the current decade, there has been a considerable upsurge of activity in a systematic
study of the theoretical and computational aspects of hydrological problems. Incidentally,
this period coincided with the International Hydrological Decade. T his world-wide activity is
partly responsible for a movement to upgrade the status of hydrology and relieve the empiricism
involved in it. It is not an exaggeration to say that this goal has been achieved, at least in part.
The fact that many mathematicians and engineers from other disciplines are currently engaged
in research activities that traditionally belonged to the hydrologist speaks for itself the changing
nature of problems that hydrology can offer. Due to this widened interest in hydrology, from
without, the subject has been flooded by numerous papers. In particular, the concept of a
system, borrowed from electrical engineering, found widespread use by the hydrologist. The
deluge of material written on system theory (mostly by electrical engineers and mathematicians)
concerns general theorems but very little of usable techniques for obtaining practical results.
Early attempts to bring this new tool to the aid of the hydrologist also caused some problems
of communication which were accentuated by a proliferation of alien terminology. This resulted
in a gap—a gap due to a lack of understanding of the meaning of a system as it was conceived
and developed by its originators. This gap is widening as new generations of hydrologists
bring in new tools of research which are regarded so far as lying beyond the frontiers of interest
of the traditional hydrologist.
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 So far, a couple of attempts have been made (Amorocho and Hart, 1964; Dooge, 1968)
along the lines similar to the one taken in this paper. This paper complements the above two
works. The presentation starts with some notions about a system and then attempts to classify
the nature and role of various classes of problems that a systems engineer faces. Even though
many illustrative examples from hydrology are cited, the expose is valid for any engineering
system.

NATURE OF AN ENGINEERING SYSTEM

The essence of all engineering endeavors lies in the study of physical systems. Let us, for
a moment, leave the concept of a system undefined and let us tacitly assume that the general
nature of a system can be understood intuitively. A basic problem in natural and behavioral
sciences is first to describe the behavior of a system in some convenient fashion, then use the
description to predict the future behavior, and finally apply this clairvoyance in some useful way.

In mathematical parlance the goal is to determine the state of a system at some future time
from a knowledge of its present or initial state. For example, we may wish to determine
tomorrow’s weather from today’s weather conditions. To determine the behavior of the weather
at a particular time in the future, generally we must be able to determine the weather at any
time in the future. This is a formidable computational job and the problem of avoiding the
generation of this proliferation of data is of fundamental importance.

The mathematician attempts to solve this problem by using a very simple device—by using
differential equations. If x(7) represents the state of a system at any time ¢, one can use a
differential equation of the form

dx(1)
dt

=g(x); x(t=0)=x, (1)

to obtain the value of x(z) at all future times and therefore at any particular time. In the majority
of cases, the basic equation is a nonlinear partial differential equation, or a functional equation
more complicated in form than the ordinary differential equation shown above.

Hydrology is the science of studying the properties of water and its movement in various
parts of the water cycle and the science of engineering and managing this water as a natural
resource. If this definition is accepted, problems in hydrology can be divided into two classes:
(1) The scientific or technological aspects of the problems and (2) the management or behavioral
aspects of the problem. Even though science and technology are vital to the continued
development of natural resources to serve mankind’s needs, the social structure within which
technology is applied is equally vital. Hydrological systems are some of those that have to
operate within a constraining behavioral frame of reference and study of one aspect (say,
the technological) without due regard to the other (behavioral) aspect will be meaningless.

TECHNOLOGICAL SUBSYSTEM

Problems typical of environmental sciences are characterized by their large size and are
responsible for a new genre of mathematical sciences—the study and control of large scale
systems. A significant practical aspect of the problem here is not even a question of control;
that is, far too ambitious. It is a question of learning enough about a system to permit the
development of a meaningful policy for operation. The general problem of operating a large
system with limited amount of time available for observation, data processing and implemen-
tation of control generates new kinds of mathematical questions that have not yet been precisely
formulated and certainly not resolved.

Uncertainty in the measurement process is another factor of fundamental importance in
the study of large scale systems. The problem of decision making in complex situations is
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- meaningful only if we know how to deal with this element of uncertainty during the model-
building phase.

A third problem of importance in techno-behavioral (technavioral ?) sciences is the element
of time scale. In many physical sciences, time periods for which mathematical functions apply
are necessarily short whereas months, years and even decades are typical time units in a majority
of problems in hydrosciences. Either the systems are heavily overdamped (such as rainiall-
runoff systems) or they have long time delays (delay between investment and benefit).Very
often these time delays are functions of time making the governing equations very complex.

A fourth factor of mathematical significance is that the input (i.e., the exciting signals)
is not generally under the control of the observer and sometimes may not even be directly
observable.

BEHAVIORAL SUBSYSTEM

One of the foremost areas of research of fundamental importance, and ironically the least
explored, is the effect of behavioral structure within which a technological system operates.
The reason for this situation may be a lack of understanding about the nature of problems in
this area that are significant and susceptible for research. This observation is particularly true
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19



in hydrology. The devious natural habits of water often ignore the jurisdictional boundaries
created by man and pose the need for collective action of both public and private organizations.
In fact, scientific and technological capability to handle water—water management needs— are
almost powerless unless translated by effective and adequate institutional arrangements into
significant social values.

Intuitively, a system is nothing but a collection of interacting components subject to various
inputs and producing various outputs. It is often convenient to conceive of a system in terms
of a block diagram—the “black-box ” representation as shown in figure 1a. Often the situation
is more realistic if the black-box has a variety of inputs and outputs as shown in figure 1b.
In the study of atmospheric systems, geological, hydrological and other environmental systems,
it is useful to think in terms of diagrams such as the one in figure 1¢ which brings clearly the
existence of internal subsystems whose behavior can neither be examined nor influenced directly.

The behavior of systems is not always exemplary: economic systems are subject to inflation
and depression; hydrological systems are subject to, say, floods; ecological systems are subject
to pests and drought. One of the main tasks of an engineer is to control the behavior of systems
and to derive benefits from his ability to control.

TACIT ASSUMPTIONS AND UNCERTAINTY

Many assumptions tacitly enter in the formulation of problems in system theory. Generally
the state of a system is assumed to be represented by a finite dimensional vector (i.e., equation (1)
now represents a set of N simultaneous differential equations), and that the state can be
observed instantaneously and accurately. Cause and effect are taken to hold and moreover to
be known. The initial state of a system is also usually assumed to be known and the effect of
the propagation of errors due to inaccurate initial conditions is neglected. Finally, and para-
doxically, one starts a problem with the assumption that the objective or goal in studying the
process is known and well defined. In problems of real world, none of these assumptions are
verified and validated. In a majority of cases, the cost of controlling a process and the reward
for good performance are in different units. What do we do when we have to compare the
economical and recreational benefits of a project with the dangers of cultural and social
dislocations ?

USEFUL DEFINITIONS

The following definitions serve to introduce some concepts that one commonly uses in
system theory and are useful in the sequel.

System

A system S is a set of ordered pairs of signals.

S ={xi®, yi(0}; i=1,2, - etc. ?)

where the braced parenthesis indicate the set of ordered pairs. (x;, y;), for i = 1, 2, ... etc. with
an underlying functional relation characterizing the mapping of x;(¢) into y;(?).

Essentially, a system .S consists of three parts: the input signal x(7), the output signal y(7)
and the plant P.
Input

The members of the domain of S, i.e., the set {x;(f)} are said to be the inputs to the plant P.
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Output

The members of the range of S, i.e., the set {y;(¢)} constitute the output of the plant P.

Plant

The plant P of a system S contains a mathematical characterization of the process that
relates the inputs and outputs.

This distinction between a system S and its plant P is very important and many people
erroneously regard the terms “system” and “plant” as synonymous. A plant together with
its inputs and outputs constitute a system. To make this distinction more meaningful, any
physical entity whose behavior is required to be controlled may be regarded as a plant. A
combination of plant(s) or components that act together and perform a certain function may
then be regarded as a system. However free use of these two terms interchangeably is quite
common in the literature with no ambiguity to the discerning eye.

Charaterization

A plant P of a system S is said to be characterized by a differential operator (or an integral
operator, an integro-differential operator or a functional operator—just to mention a few),
an auxiliary condition (such as an initial condition) if and only if each signal pair (x(z), (1)) €S
provides a solution to the associated equation and the auxiliary condition and each such
signal pair is a member of S.

That is, a system (or plant’s) characterization completely describes its input/output relation.
Function

A function f(.) is a single valued set of ordered pairs {(x;, y))}, i = 1,2, ... etc,, i.e,
f() = {(xh yl)s (x2’ y2)9 e (xN: yN)} (3)

A signal as defined above may be regarded either as a function of time or as a set of ordered
pairs.

Functional

A functional F[.] is a single valued set of ordered pairs of scalar valued functions of one
real variable, f,(.) and scalars z;, i.e.,

F[.]1={(fw 20} (4)

Whereas a function defines a mapping from one point to another point, a functional defines
a mapping from a function to a point. A simple example of a functional is the pair

<g(é), J g(f)d€>,

where a mapping from the function g(£) to the point whose value is defined by the definite
integral [% g(£)dZ is implied.

By letting

b
z =j g@d¢ ()
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a functional can be written in an alternate form
S
z=F[g(O)]=; (6)
Heuristic

A heuristic (method) is a rule of thumb, strategy, trick, simplification, or any other kind
of device which drastically limits the effort in search for solutions of problems. All that can
be said about a useful heuristic is that it offers solutions which are good enough most of the time.

Algorithm

An algorithm (or algorithmic methods) is a decision procedure which guarantees the
solution sought given enough time.

A variety of physical problems can be studied effectively by adopting the systems point
of view. A basic advantage of such an approach is in the possibility for standardization of
analytical and computational techniques. Once a handful of techniques are mastered, it becomes
only necessary to extend the arguments to be applicable to any physical system. Furthermore,
the systems representation helps to identify analogous situations which may otherwise escape
attention. The extent to which systems approach can be profitably employed becomes clear
by considering as an example the task of developing a generalized planning system to predict
and study the future water requirements of a community. Various facets of such an effort
are diagrammatically shown in figure 2. From this figure it is clear that the social structure
within which science and technology are applied is as vital as the technology itself. Modernization
of water law, political institutions related to water resources development and management
and assessment of existing water resource policies are but a few areas where meaningful
contributions can be made by using the systems approach.

NATURE OF ENGINEERING PROBLEMS

Problems of interest to a systems engineer can be broadly classified as direct and inverse
problems. Direct problems are characterized by a complete specification of the contents of
the box in figure 1a and one is required to study or predict the response of the box to any
specified input. This problem is also called the analysis problem. From a mathematical point
of view an analysis problem, in general, constitutes the solution of a differential equation,
integral, integro-differential or some such functional equation.

In engineering analysis, the system and the excitation are specified and the response is to
be found. The precise nature of the excitation and response depends, of course, on the physical
area to which the system belongs. In the case of a distributed system, a field, the specification
must include both the distributed characterics of all points within the field and the geometric
location of the field boundaries.

The inverse problem is much more complex. Here the response to a particular input or
inputs is known, but either the equations describing the process are unknown, or the inputs
themselves are unknown. Depending upon the specific circumstance, an inverse problem may
present itself as (a) design or synthesis problem, (b) identification or modeling problem, and
(¢) instrumentation or control problem. While the direct problem generally has a unique solution,
if it has any solution at all, the same is not true for an inverse problem. An inverse problem
often leads to a multitude of mathematically acceptable solutions out of which one physically
acceptable solution, if any such solution exists, has to be selected. Criteria for this selection
depend upon the nature of the inverse problem.

In a design or synthesis problem, the nature of the expected excitation and the nature of the
required response are specified and a system having this excitation-response relationship has
to be physically realized or designed as it is often called. For example, it is possible to have
many possible alternatives in the design of a penstock or surge tank that satisfies some stipulated
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performance requirements. To choose one out of many possibilities it is necessary to establish
design criteria or design specifications. Perhaps it is necessary to minimize the cost, perhaps
it is necessary to meet the peak load demands, perhaps the drop in hydraulic head should not
fall below a certain limit. In each case a different design may represent an optimum solution.
Some times more than one design may satisfy a given criterion or no design may exist that
satisfies all the specifications. While powerful synthesis techniques exist in a few areas (for
example, electrical filter design in circuit theory), by and large the predominant approach is
still “cut and try” based on empirical formulas. Even this heuristic method may demand the
use of computers if there exist several allowable alternatives in the design of a subsystem and
if the optimal subsystem fails to be optimal when it takes its place in a larger system.

A typical example falling in this category is the development of a computer aided
methodology for the automatic design of waste collection and treatment systems. Given
information about topography, flows, costs of pipe and excavation, the problem of determining
a minimum cost trunk sewer is a typical design problem. This problem can be posed and
solved by a mathematical programming approach.

The identification or modeling problem is somewhat different from the design problem and
perhaps most difficult of all inverse problems. An identification problem generally arises while
attempting to control the behavior of a physically existing system. Therefore the criterion for
selecting one out of many possible solutions is different here. The criterion to be adopted here
is not physical realizability but physical plausibility. In general, an identification problem is
characterized by a specification of a finite set of observations on the input and output signals
of a system and the goal is to find a mathematical characterization of the system. While the
validity of a particular design can always be checked, either by studying the model or the
prototype, it is almost practically impossible to verify the validity of an identified model. The
reason for this can be attributed to many possible causes. In an identification problem the
input is not generally under the control of the observer. Furthermore, the period of observation
is always limited and therefore the validity of the model is correspondingly limited to the range
of variation of input signals which appeared within the observation interval. In other words,
a model cannot contain more information than is available in the data from which it is derived
(Brillouin, 1962).

The task of building a rainfall-runoff model to a watershed is a typical example of the
identification problem.

The third type of inverse problem, called the instrumentation problem, involves the determi-
nation of an excitation signal, given the system specification and response. Such an instrumen-
tation problem may arise in the literal sense of the word as in the determination of the true
voltage existing at the input terminals of a voltmeter from a knowledge of the voltage registered
on the dial. An instrumentation problem may also arise in the general context of an identification
problem. For instance, certain physical situations permit the application of an (additional)
input signal, called the probe signal, specifically for the purpose of parameter estimation. In
these cases, there are often constraints on the length of the observation time and the magnitude
of the disturbance to the system produced by the input signal. Design of a proper input signal
for these applications can significantly improve and influence the accuracy of the estimated
parameters particularly when observations are corrupted by noise.

For example, one proposed method of identifying the parameters of a ground water basin
envisages the use of explosives (detonations) at certain places and to study the disturbances
caused by these detonations on the transient elevation of the water table elsewhere in the
basin. The idea is to study the system’s sensitivity (Vemuri et al., 1969) to an external disturbance
and to estimate the unknown parameters using sensitivity analysis. The immediate instrumen-
tation problem here is to find the optimum nature of the externally introduced disturbance.

Looking from another angle, an instrumentation problem is often posed as a control problem.
In a control problem one is interested in the determination of the characteristics of an external
signal that drives a system from a given initial state to a desired terminal state. This control
problem formulation has received a great deal of attention and all other aspects of an inverse
problem have been studied in the general context of a control problem.
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Essential elements of a control problem can be listed as follows:

(@) A mathematical model of the system to be controlled;
(b) A description of the desired output of the system;
(c) A set of admissible inputs or controls;

(d) A performance or cost functional which measures the effectiveness of a given control
criterion.

A typical example of a control problem in hydrology is the task of determining a pumping/
recharge policy towards the optimum management of a ground water basin.

MORE ABOUT THE IDENTIFICATION PROBLEM

Characterization of a system and identification of a system are two fundamental problems
of system theory. Broadly speaking, characterization is concerned with the setting up of various
classes of mathematical models of physical systems. There are two principal lines of attack
which are in vogue to characterize a system: the dynamical (or differential) equation approach
and the kernel (or the weighting) function approach.

In the dynamical equation approach the unknown plant is assumed to be characterized
by a known set of dynamic (very often, differential) equations of a given order but with unknown
(and very often, constant) coefficients. This assumption regarding knowledge of the form of
the differential equations is, of course, restrictive. Nevertheless, in practice, this information
can often be gained from physical considerations. State variable and transfer function methods
belong to this class.

The kernel function approach starts without making any assumptions of linearity or of
dynamical equations of known form. The problem is thus nonparametric. A characterization
is sought entirely in the time domain. In this approach, the unknown system (or plant) is
characterized by an analytic function over a function space and represented by the associated
power series (also known as Volterra) expansion (Balakrishnan, 1963). Identification of impulse
response (unit hydrograph) essentially belongs to this class.

Whatever may be the method adopted to characterize a system, the computational process
involved in solving the identification problem can be represented pictorially as shown in
figure 3. It is evident from this figure that the problem itself divides into three parts.

(a) Determination of the form of the model (i.e., selection of the model dynamic equations)
and isolation of the unknown parameters.

(b) Selection of a criterion function by means of which the * goodness of fit” of the model
responses to the actual system responses can be evaluated.

(¢) Selection of an algorithm for adjustment of the parameters in such a way that the difference
between model and system responses, as measured by the criterion of (b) above, are
minimized.

SELECTION OF THE MODEL

The particular model (or class of models) that is chosen in a given situation depends upon
a variety of considerations. Some of them are briefly summarized below.

a) Input

The input signal may be deterministic or random. Some times, the input signal may consist
of a naturally occurring process added with a probe signal—the latter being intentionally
introduced by the designer. Proper design of this probe signal belongs to the area of instrumen-
tation referred to in the previous section. Some models can be theoretically identified only
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when the input is white gaussian noise. If the actual input process does not meet this requirement,
such a model cannot be used for identification purposes. However, on some occasions, a white
gaussian noise which is uncorrelated with the actual input may be used as a probe signal.

b) In servicelout of service

The kinds of inputs the system will be subjected to and the models that can be used, depend
to a great extent on whether the system is in service or not. If the plant can be put out of service,
at least temporarily, almost any input can be used and hence any theoretically acceptable
model would be adequate. In some naturally occurring processes, it is almost impossible to
put the plant out of service and the identification has to be carried out with the actual input with-
out interrupting the process. Identification and control of such a process has to be done “on-
line”.

¢) Black box versus gray box

A truly black box situation is one in which nothing is known about the plant or the nature
of the noise corrupting the output signal. In general, the engineer has some a priori knowledge
of the system and so the black box is really a gray box. It is evident that both black-box and
gray-box modeling problems can be divided into three parts as listed earlier.

d) Stable and unstable plants

Certain processes are inherently unstable and many identification algorithms assume a
stable plant. It is not true that unstable systems are useless systems. The practical problems
involved in the identification of an unstable system are more complex. Uncontrollable floods
can be regarded as a kind of instability in a river system.

In addition to the above considerations, the models chosen to characterize a system must
be simple, adequate, easily modifiable and theoretically identifiable.

SELECTION OF PERFORMANCE CRITERION

Formulation of a problem and selection of a particular method to characterize a system
constitute only a first phase in the total problem solving effort. The task of approximation and
computation is an equally important phase. Whatever the category of the particular problem
may be, the first step in the general formulation of a computational strategy is the selection
of an objective. That is, we set some goal to be achieved by our process or system through the
application of a properly selected influence policy. Usually an objective is specified as the
acquisition of some desired state for the process. A constraint is a limit or a required charac-
teristic deliberately imposed on the system for any reason. One question that naturally arises
in this connection is whether or not means for influencing the process under the imposed
constraints are sufficiently strong to allow the achievement of the specified objective
(controllability). If such means exist, then we have a properly formulated problem.

In general, there exist a number of ways in which the objective may be achieved. Within
the set of possibilities, taking into account all the imposed constraints, one may wish to choose
systematically the best approach with respect to some performance criterion, cost function or
penalty function, as it is variously called. The nature of the criterion chosen, that is the method
of measuring the “goodness” of a policy, obviously depends upon the particular system under
study. Some of the general considerations useful in measuring the goodness of a policy are

1. Transfers of state must take place within a reasonable period of time.
2. The energy necessary to effect the changes in state must be constrained.

3. The expenditure of power required to effect changes must be constrained.
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: Consider, for example, the problem of selecting two parameters K and 7 in order to optimize
the performance of a string of pumping wells in a ground water basin. The parameter K could
characterize the pumping “thrust” and 7 some other parameter. In this context, it is conceivable
to define optimum performance as that one which will minimize the total energy consumption
and the time 7 required to achieve a desired state. This performance criterion can be written as

J=k,T+k, fT [e(t, 7, K)]*dt (7)
0

where e(7, 7, K) represents the deviation of the computed water level h(K, 7, t) from a desired
level hp(¢) and k1 and kg are some constants. For each set of parameter values K and 7,
J assumes a new value. The goal of the optimization procedures is to seek computational
methods for automatically adjusting K and 7 in order to minimize J. In certain cases it is
desirable to find a time function, such as a pumping modulation program K(¢), rather than a
fixed value of K. In ground water studies, this latter situation usually arises when one is
interested in determining the “best” pumping program. In such cases, the problem becomes
one of functional optimization.

There is a wide choice of criterion functions available. A particular function will be chosen,
over the others, on the basis of mathematical and engineering considerations. Quadratic
functions, such as the integral square error criterion

T
Jise(hp, h) =J Lhp(t)—h(K, 7, )]* dt, (8)
0

are usually chosen because of certain mathematical advantages. When using a particular
criterion function, it is important to understand its properties. For example, Jis. in equation (8)
is a functional in the output space since it depends on the desired water table elevation A p(1)
and the computed value A (K, 7, r). However, it is an ordinary function of the parameters.
Therefore, insofar as the parameter optimization (or parameter identification, as it is often
called) is concerned, use of the above criterion allows solution to proceed as in the minimization
(or maximization) problem of ordinary calculus which is concerned with functions, rather
than as in the problem of the calculus of variations which is concerned with functionals. This
is an extremely important point to remember.

It is not always necessary, nor is it desirable, to choose the integral square error criterion.
This criterion gives a measure of the deviation of the actual water table elevation from the
desired elevation integrated over the entire duration of observation. At the end of a particular
experiment, this criterion gives a number which will be large if errors persist over an interval
of time. Indeed, any function which satisfies the requirements of a distance in the appropriate
space can be used as a performance criterion. For example,

T
J,e = lim [i f (hp()—h(K, t, ‘c))2dl:| 9)
T | 2T J-T
T
']ia(' = Jv ‘hD(t)_'h(Ka L5 T)Idt (10)
0
Jsup= sup lhD(t) _h(Ks L, T)! (11)
K,t

are all equally valid performance criteria.
The mean square error criterion, Jps, is relatively easy to handle mathematically. It applies
and is particularly useful when input(s) are statistical in nature. On the debit side, Jos is useful
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only when the system is stable with bounded inputs. System identification based on the Jys
criterion often leads to lightly damped higher order systems. The Ji;;s criterion penalizes large
errors much more severely than small ones and is relatively insensitive to parameter changes.
Owing to this fact, the Jys criterion is not highly recommended for use in parameter identifi-
cation procedures. However, while solving a design problem, relative to a particular performance
criterion, the system should be designed so as to minimize degradation of performance
(criterion) due to parameter variations and under these conditions Js is highly useful.

The integral square error criterion, Jise, has a close resemblance to Jys and essentially
has the same advantages and disadvantages as Jys.

A performance criterion which provides increased sensitivity is the integral of the absolute
value of the error Jige. This criterion weighs large errors less heavily and small errors more
heavily than Jis.. However, this is computationally more difficult to implement.

There exist a variety of tailor-made criteria to suit a given situation. In the case of static
optimization problems, it is possible to define an instantaneous criterion function, such as

J(hp, h(1)) = [hp()—h(K, t, D)]* (12)

rather than one which depends on the integration over a fixed interval. This kind of optimization
can be carried out continuously since the effect of a change in the parameter is reflected
immediately in a change in the criterion function. Static optimization problems of this kind
are excellently suited for analog computer solution.

In dynamic optimization problems, evaluation of the performance criterion, in itself,
constitutes a major computational process. If the minimization of J is based on the method
of gradients, then evaluation of J not only requires a knowledge of the solution of the dynamic
equation of the system but also that of an additional one called the derived equation. For
example, in the sensitivity analysis method (Vemuri et al., 1969), this additional equation is
called the sensitivity equation which is always linear and posed as an initial-value problem.
If dynamic programming method is used, this derived equation is the adjoint equation which
is posed as a final-value problem (Vemuri and Karplus, 1969).

SELECTION OF AN ALGORITHM

Techniques useful in the minimization of J (i.e., fitting of model to a given set of data) fall
in several classes.

1. Analytical Methods

In some cases, analytical expressions for the unknown parameters can be derived. This is
true, for example, for least squares estimates with certain assumptions on the nature of
disturbance or noise entering figure 1.

2. Search Techniques (Wilde, 1964)

Are useful when the number of unknown parameters is small. In such cases, successive
values of parameters are selected, either at random or in accordance with some preselected
grid pattern in the parameter space and the corresponding values of J become J1), J@) .
A simple comparison test is used to determine which value of J is a minimum.

Search techniques can be further subdivided into the following categories.

a) “Brute Force” Methods

The most obvious method of finding the optimal set of parameters is to discretize all the
parameters and compute J for all combinations of these parameters. This method is also known
as “exhaustive enumeration”. The minimum value of J (and the corresponding parameter
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values) are then selected from the output listing. It is evident that such methods are usefu i
only when the number of possible parameter combinations is low.

b) Elimination Methods

Elimination methods attempt to eliminate exhaustive search by confining attention only
to a preselected part of the criterion surface. If the minimization procedure is visualized as a
mountain climbing operation, where the mountain is assumed to have a single peak, then
one can eliminate sections of the surface from further consideration by learning from the results
of previous search. A particularly interesting elimination technique based on the principle of
dynamic programming, is known as Fibonacci search (Wilde and Beightler, 1967).

¢) Random Search

Another alternative to exhaustive enumeration is the use of random search in parameter
space (Brooks, 1958). In this case, successive trial parameter values are selected at random.
This method works even if the criterion surface has multiple minima. However, the number of
explorations needed to insure a sufficiently high probability of obtaining a value near the true
minimum may be extremely large. This method was used successfully (Hufschmidt, 1962) in
the design of a water resource system.

Since search techniques require repeated solution of the model equations, they are well
suited for hybrid computers (Bekey and Karplus, 1968), where rapid solution of differential
equations is performed on the analog portion while programmed control and supervision of
the computations remain in the digital part. Random search techniques are particularly useful
as a method of optimizing nonlinear system parameters.

3. Hill-Climbing Methods

Rather than searching over the whole range of parameters, the various climbing or descending
methods are based on finding the local properties of the criterion surface (Wilde, 1964;
Dawdy and O’Donnell, 1965).

a) Relaxation Methods

This method is based on searching for the minimum along one parameter, finding the
local minimum, setting the parameter at this value, continuing the search along the second
parameter and so forth.

b) Gradient Methods

This is a direct approach to satisfy the system differential equations and constraints while
iterating on the control signals until each new iterate drives the value of the cost function to
a new minimum. If there are several local minima, gradient methods may have to be used
repeatedly with different initial parameter values until a global minimum is found (Bryson
and Denham, 1962; Vemuri and Karplus, 1968).

The main advantage of the method of gradients is the relative independence of convergence
on the initial estimates of the unknown quantities. As the minimum is approached, the
magnitude of the gradients decrease and correspondingly, the convergence becomes slower.
Such techniques as quasilinearization (Bellman and Kalaba, 1965) and stochastic approximation
(Kiefer and Wolfowitz, 1952) may be viewed as extensions of the gradient methods.

SPECIAL METHODS FOR LINEAR SYSTEMS
In those special cases when the system can be assumed to be linear, a number of specialized

techniques are available for solving the identification problem. Consider, for example, a single
input, single output constant coefficient linear system whose state at any time ¢ is represented
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by the solution of the vector differential equation

%= Ax+tBu: . x(t = 0)= x(t;) = X (13)
Solution of equation (13) can be written as
t
x(t) = D(t—ty) x(ty) + J‘ ®d(t—1) B(t) u(t)dr (14)
o
where @(t— to) is the system transition matrix, defined by
D(t—1,) = ¢ s)

The identification problem of linear systems consists of estimating the elements of the
matrix A or equivalently the transition matrix @ from noisy measurements on the system

response Y given by
Y =Cx+Du (16)

We shall examine some of these techniques.

a) Weighting function identification

For simplicity, consider a scalar case of equation (13) in which the response can be described
by the convolution integral
bl — J h(t—1) u(r)dr 17)
0
where A(7) is the system weighting function. If the input is a unit impulse, i.e., u(#) = 0(¢), then

R

x(f) =J h(t—1)-8(t)dt = h() (18)
0

Hence, the weighting function can be obtained, at least in principle, by measuring the impulse
response of a system. In practice it is not possible to create an ideal impulse, so, a unit step

response
x(t) — j h(t)dz (19)
0

is first obtained and differentiation on both sides yields %(7), the impulse response.

The unit hydrograph (Sherman, 1932; Nash, 1957, 1959, 1960; and Dooge, 1959) is
essentially a weighting function of a watershed. Even though this method proved to be an
excellent tool, assumptions regarding linearity of the watershed and the impulse nature of the
exciting function on which the theory is based are almost always violated in practice.

An alternate approach to the “continuous™ unit hydrograph method is the discrete unit
hydrograph method. Because it is more practicable to record rainfall-runoff data at discrete
intervals, equation (18) can be rewritten in discrete form as

x(nT) = z h(nT —kT) u(kT) (20)
k=0

which yields
x(0) = h(0)u(0)
x(T) = h(T)u(0)+h(0) u(T)
xQ2T)=hQT)u0)+h(T)u(T)+h©0) u(2T) (21)
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from which the following recursive relations can be derived

1 .
h(T) = 70 [x(T)—u(T) h(0)]
R = o [x2T)—u(T) h(T)—u2T) h(0)] (22)
u(0)
etc.

This procedure is called “numerical deconvolution ™ and yields satisfactory results in many cases.

b) Correlation Methods

If enough data is available permitting statistical evaluation, the weighting function (or unit
hydrograph) may also be obtained from correlation measurements by using the Weiner-Lee
relation

o0

Rux(T) = J‘ h(t) Ruu(r_t)dt
-

where Ry (7) represents the autocorrelation function of the input and Ry, (7) represents the

input-output cross correlation. In cases where large amounts of data are usually available, this
statistical method is perhaps better than the unit hydrograph method.

¢) Orthogonal Decomposition

In addition to the differential equation and weighting function representations an arbitrary
linear system can also be modeled as a collection of filters whose impulse responses are
orthogonal. (Mishkin and Braun, 1961 ; Dooge, 1968). That is

ho =3 Ciorlo)

where @; form an orthonormal set. The advantage of such a choice is that the adjustment of
each parameter C; is now independent of all others. If 4(f) is model response and z(f), the
observed response of the system, then the error is

N
e(t) = '=Z1 Cipi()—z(1)

If the mean square error is minimized, it is possible to compute the optimum values of C; in
a single computer run.

d) Transfer Function Methods

A third method is based on generating the impulse response of a linear system by way of
functional transformations such as Fourier and Laplace transforms. Methods based on the
use of moments (Nash, 1959), harmonic coefficients (O Donnell, 1960) and Laguerre coefficients
(Dooge, 1964) belong to this class.
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METHODS FOR NONLINEAR SYSTEMS

Experience indicates that most of the component processes in hydrology are nonlinear
in nature.

In general, any method available for the representation of a nonlinear functional can be
chosen as a mathematical model for the identification of a nonlinear system. Some of the well
known models available to characterize a nonlinear system are:

a) State vector representation;
b) Wiener model using orthogonal expansions;
¢) The functional power series.

When a nonlinear system is represented by a state vector model, such as

x=f(x,a1)

where both the order of the system as well as the form of f(x) are unknown, the state variable
representation has no advantage over the others. However, in a more tractable problem in
which the form of the dynamic equations are known (as in equation 8) the value(s) of the
unknown parameters can be estimated by using techniques based on quasilinearization, sensitivity
analysis (Tomovic, 1962), numerical inversion of Laplace transforms (Bellman and
Kalaba, 1966), in conjunction with such computational algorithms as the gradient descent
method or mathematical programming.

Using an orthogonal development of nonlinear functionals in series of Fourier-Hermite
functionals (Cameron and Martin, 1947), Wiener developed a model for the identification of
nonlinear dynamical systems. In order for the approach to work, however, the input must be
a white gaussian noise. In hydrology, most of the input processes are naturally occurring
processes and therefore utility of this method appears to be limited.

In 1887 Volterra introduced the functional power series

r(t) = ho + j‘w hy(zy) p(t—1y) d1,
0

& J‘ j hy(ty,7) p(t—71,) p(t—1,)dr,d1, (23)

0 0

+ .-

for the expansion of the functional r(.) in terms of various homogeneous functionals. It has
been shown (Amorocho, 1963) that the linearity assumption is tantamount to truncating the
above series after the second term. When Volterra series is used, as a mathematical model,
the identification of a given nonlinear system reduces to the problem of determining the
Volterra Kernels (i.e., the generalized impulse responses) ho, A1, ..., etc. Since A; is a function
of i variables, the determination of these functions for / > 3 becomes a formidable task. Some
initial efforts to apply this technique were made by some hydrologists (Amorocho and
Orlob, 1961). ;

A variation of the above method is to decompose the nonlinear time-lag system into two
subsystems: one a linear time-lag subsystem and the other a nonlinear no-time-lag subsystem
(Jacoby, 1966).

A basic disadvantage with this power series method lies in the difficulty to interpret the
meaning of the functions /; in terms of the physical parameters of a system but the method is
general enough to be applicable both to linear and nonlinear systems. The transfer function
approach has several advantages in linear cases and attempts to generalize this method to
nonlinear systems (George, 1959) are not yet popular.
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SIMULATION OF SYSTEMS ON COMPUTERS

MODELS VERSUS REALITY

While solving scientific and engineering problems it is important to keep in mind distinction
between theories and reality. Theoretical results are derived from certain axioms by using
principles of deductive logic. In physical sciences, the theories are so formulated that they
correspond, in some useful sense, to the real world. The separation between the conceptual
world (model) and the physical world (reality) should be clearly imprinted in the analysts mind
at all times.

It is important to remember that the word “model” is meant to imply a manifestation of
the interpretation that the scientist gives to the observed facts. Facts remain unchanged, but
models change. Thus the term “model” covers a vast variety of configurations. It can be a
laboratory mechanism, such as a Hele-Shaw model or an electrolytic tank analog, it can be
merely a system of mathematical equations for which a simple and straightforward laboratory
tool cannot be easily devised (such as Maxwell’s equations of electromagnetic field theory)
and in the extreme case of abstraction, a model may exist only in the mind of a scientist (such
as Bohr’s model of an atom). Similarly, a model may be very modest in its aims just like the
experiments it is expected to sum up.

NATURE OF SOLUTIONS SOUGHT

At this point it is instructive to make a distinction between scientific and engineering
analysis. A mathematician, when confronted with a problem, worries about existence and
uniqueness of solutions, validity of certain commutative multiplication or some such delicate
question without concerning himself with the physical meaning of his operations. Mathematics
is an edifice built on a set of axioms and as long as he conducts himself without violating the
axioms, lemmas and theorems a mathematician would be satisfied. The interests of a scientist,
of course, lie in the physical world; however, his attitude is more or less philosophical. The
goal of a scientist is to construct theories to explain the observed behavior of the physical
world around him and for this purpose he has to take into account all possible alternatives
to explain certain phenomena. The goal of engineering analysis is to obtain specific answers
to specific questions with a specified accuracy at a minimum cost in time, labor, and equipment.
Moreover, while an engineer would certainly like to obtain general solutions, he is generally
willing to settle for numerical solutions.

ROLE OF SIMULATION

One of the earliest methods known to man to study the nature of physical systems is by
simulation. When confronted with the problem of studying the behavior of physical phenomena,
the engineer or scientist constructs a scale model following Newton’s Law of Similitude which
states that models must be dynamically and geometrically similar to the structures that they
represent. In its primitive sense, a model is a small scale representation of the prototype in all
features which are pertinent to the problem under investigation. Often it is impossible to satisfy
all the requirements of similitude simultaneously. In this event, skill is required to design the
model in order to reduce the error by ignoring some of these requirements to a negligible
value.

A major drawback of the method based on similitude is a lack of flexibility. Electrical
analogs (Karplus, 1958) introduced an element of flexibility and played a very prominent role
in the study of hydrologic systems. With improved sophistication in the available hardware,
the term “simulation” also emerged with new meaning and depth. The word simulation now
stands to mean trial and error experimentation in which the validity of a model is verified:
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sensitivity to environment is explored; and variation of performance to parameter changes
evaluated. With this broader meaning simulation has become a means of solving various
facets of the inverse problems described earlier. Where optimal programming methods are
not suitable because of the complexity of the model, simulation offers the possibility of using
an experimental approach to the decision problem. When the models are very complicated with
complex quantitative relationships that make explicit mathematical solution impossible or
difficult, the use of modern computers in conjunction with numerical approximation methods
offers a feasible alternative.

VALIDATION OF COMPUTER SIMULATED MODELS

Experimental verification of physical models is done by subjecting them to the characteristic
signals that the physical system is likely to encounter and examining the response signals.
Construction of scale models with precision and observing the results with precision is possible
in case of systems occurring in the physical sciences. In the case of behavioral systems it is not
easy to construct true models. If, for instance, the management of a ground water basin is
influenced by factors such as socio-economic or political considerations, it is almost impossible
to simulate the total environmental system by using scale models. Mathematical models with
a greater degree of abstraction are used invariably to study the behavior of such systems. It is
obvious therefore that the Law of Similitude in this respect would mean not the proportionality
of parts but similarity of logical process in the behavior of the system and its model.

In problems of inference from model to the real system, the question arises whether the
model under examination is a valid one, or to what extent can it be considered a valid model ?
In the field of hydrology, most of the efforts so far seem to have been directed in building
complex models on computers and the problem of validation does not seem to have received
much attention. Basically, the validation of a simulated model does not pose a problem different
in principle from the validation of any other scientific hypothesis, but the complexity that is
typically built into such models is so great that the process of validation is different.

Important features of a scientific method may be briefly summarized as follows. (1) Careful
and accurate classification of facts and observation of their sequence and correlation;
(2) Discovery of scientific laws by the aid of creative imagination; (3) Equal validity for all
normally constituted minds; (4) Self criticism.

In order to test the validity of a theory or a model we may use these criteria by putting
the following questions and trying to elicit positive answers. (1) Does the theory permit careful
and accurate classification of facts and observance of their sequence and correlation? (2) Does
the theory provide scope for discovery of scientific laws by creative imagination? (3) Is the
theory equally valid for all normally constituted minds? (i.e., Are we sure that we will not
encounter a “Maxwell’s demon” as we extend the theory and try to generalize it?) (4) Is the
theory or the model capable of withstanding criticism? If we get positive answers to these
questions, it means that our theory has stood the four-fold test and is scientifically valid.
Insofar as computer simualtion is concerned, we may say that it satisfies this four-fold test for:
(1) Preparing the model for simulation means writing a suitable program which in turn involves
processing the data classification and correlating the data. (2) Interpreting the computer
results and predicting the behavior of the real system involves logical inference and creative
imagination. (3) The logical mechanism of the computer ensures uniform results whosoever
feeds the same data thus obviating the differences between normal and abnormal minds.
(4) The final and the most important touchstone of validity of a scientific hypothesis is it’s
ability to sustain criticism. A scientific hypothesis must be capable of being disproved. Theories
or models should be subjected to tests capable of showing them to be false. As Karl Popper (1931)
said, “So long as a theory withstands detailed and severe tests and is not superseded by another
theory... we may say that it has proved it’s mettle or that it is corroborated.”

Having come to the conclusion that a scientific hypothesis or model should be subjected
to the most severe tests aimed at disproving it, we should discover the relevant tests that are
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. most appropriate to the problem at hand. A physical model is sought to be validated by ensuring

similitude in construction and verifying whether the changes in state produced in it are truly
representative of the theoretically expected values of the real system. Validation of behavioral
models is however not that easy because of the unpredictable behavior of the variables involved.
The need to construct behavioral models in hydrology occurs because of the inherent interaction
of scientific and technical variables with such factors as social, political, legal, and ethical
considerations. When such factors enter into the equations of optimization, then the validity
of the overall models can be judged from two points of view, namely, determining the truth
value of the results obtained and from a utilitarian point of view.

Determination of the truth value involves verification at three stages to be sure; namely
verification of the validity of the concept, validity of inference and verification of empirical
concordance. Several philosophical theories have been in existence which discuss this problem
of conceptual validity. Important among them are rationalism, empiricism, and positivism.
Rationalism holds that a model or theory is simply a system of logical deductions from a series
of synthetic premises of unquestionable truth values; not themselves open to verification. The
phrase “synthetic a priori” has been coined by Kant (Russell, 1946) to describe the premises
of this type. Thus, for the rationalists, the problem of verification of a theory reduces to the
problem of searching for a set of basic assumptions underlying the behavior of the system
under study. At the other end of the spectrum is empiricism. Empiricism refuses to admit any
postulates or assumptions that cannot be independently verified. Empiricists ask that we begin
with facts and not with assumptions.

Validity of Inference

Inference is scientifically valid if the inferred could be drawn by every logically trained
mind and if the inference is drawn from known things to unknown things. Establishing the
validity of inference in simulation problems is of paramount importance.

Experimental Verification

The final stage of verification is the experimental verification. In social sciences, one cannot
always conduct experiments under controlled conditions and at a particular instant of time.

Experimental verification at this stage means testing how far the results predicted by
simulation agree with actually observed values. Here one can use the non-parametric methods
of statistical inference to test the correspondence between fact and theory and establish
confidence intervals on the performance of computer simulated models. For instance, one
can use the simple “chi square test” and decide whether there is any correspondence between
observations and predictions at a particular probability level.

Perhaps the best method of verification may be subjecting the model to multistage verifi-
cation: first, searching for Kant’s synthetic a priori, secondly, attempting to verify the postulates
subject to the limitations of statistical tests and finally, testing the truth value and ability of
the model to forecast the behavior of the system under study.

CONCLUSIONS

1. Hydrologic systems, in a broad sense, consist of two (not necessarily distinct) subsystems
interacting with each other. One of these subsystems deals with processes which are
essentially hydrologic in nature and the other deals with behavioral aspects which enter
the scene as a result of human intervention.
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2. Hydrologic systems are, in general, large-scale, time-varying, nonlinear, time-lag systems.

Variation with time may be due to human intervention (as in the effect of urbanization of
a watershed) or may be due to such natural factors as seasonal variations.

3. The fact that inputs are not generally under the control of the observer and also the fact
that precise measurements are not easy to come by introduces an element of uncertainty
in the study and modeling of hydrologic systems. By cleverly establishing measures of
uncertinty, it is possible to construct meaningful models and establish confidence intervals
on the validity of the models obtained.

4. Where some physical insight into the operating process of a system is easy to obtain, the

dynamic equation approach to model building is more useful; it gives an opportunity to
relate macro- and micro-properties of the system. Where almost nothing is known about
the physical process and nothing about the structure and order of the dynamic equations,
non-parametrization is more meaningful.

5. Finally, if computers are used as model building tools, the algorithms and programs should
be conceived and written with the following points in mind. (a) The programs should
permit heuristic modification of an algorithm. (b) During simulation of a model, the
program should permit for “on-line” ADD and DELETE instructions that permits the
operator to substantially change the sequence of operations during the solution process.
(c) The program should contain built-in check routines to check the validation of the

computer output.
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