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Abstract

    A genetic algorithm (GA) based on multi niche crowding (MNC) is capable of
locating all the peaks of a multi -modal function. By associating these peaks with the
utilit y accrued from different sets of decision variables, it is possible to extend the use
of GAs to multi criteria decision making. This concept is applied to the remediation of
a contaminated aquifer. The MNC GA is used to decide the optimal location of
pumping wells. Aquifer dynamics are simulated by solving the partial differential
equations describing the flow of water using SUTRA code. Output of this simulation
constitutes the input to the GA.

1. Introduction

In this paper we demonstrate the suitabilit y of a new genetic algorithm (GA) to
address decision making problems characterized by multiple objectives [Reid and
Vemuri, 1971]. The crux of the method lies in identifying the objectives with the
peaks of a function and solving for the locations and heights of these peaks with the
new GA, called the multi -niche crowding genetic algorithm (MNC GA) [Cedeño and
Vemuri, 1994]. Specifically, we determine the optimum placement of pumping (and
recharge) wells and optimum pumping schedules during the remediation of
contaminated groundwater aquifers in order to achieve a set of objectives [Rogers and
Dowla, 1994; Horn and Nafpliotis, 1993].

2. The Simulation Environment

The region studied is a hypothetical facilit y, polluted with hydrocarbons, occupying
a one square mile area. The pollutants seep into the ground and contaminate the
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aquifer, located, say, 90 to 180 feet below the ground. The goal is the containment of
the pollutant from seeping outside the boundaries of the facility. A useful strategy to
contain the groundwater plume would be to pump the water, treat it, and then recharge
the basin. In the simulation we assumed that three "pump, treat and recharge" facilities
already exist on the western edge of the site and one on the eastern edge. Three more
"pump, treat and recharge" facilities are planned. The task is to find optimum locations
for these three new facilities.

We used the flow and transport simulation code, SUTRA, of the U. S. Geological
Survey to solve the partial differential equations (PDEs) describing the flow. SUTRA
is a 2-D hybrid finite-element/ finite-difference model aimed at solving the governing
PDEs for confined areal groundwater flow and areal solute transport. Boundary
conditions suitable for the region are applied. A hydraulic conductivity of about 10
feet/day is assumed.

Figure 1: SUTRA nodes and elements in mesh.
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The mesh used has 2436 nodes and 2385 elements. It covers the entire areal extent
of the aquifer. Figure 1 shows the mesh covering not only the facilit y but also the
surrounding area. Out of this, we have chosen a subregion of size 20 x 21 nodes,
covering an area of 5200 ft x 4950 ft. Each node in this subregion is a potential pump
location. The distance between nodes is 260 feet, and there are 420 possible pumping
locations. SUTRA took about 6.5 minutes of elapsed time per fitness evaluation. The
output of SUTRA constitutes an input to the GA. The algorithm's goal is to find sets of
well l ocations that best meets the objectives, subject to the constraint that no more
than 10 wells are allowed.

3. MNC GA for Multi-modal Search

Any function of several variables exhibiting more than one peak is a multi-modal
function. When a search technique, proven to be useful for uni-modal functions, is
applied to multi -modal functions, the method tends to converge to an optimum in the
local neighborhood of the first guess. There are many applications where the location
of "k best extrema" are of interest. Then it is advisable to invoke both exploitation and
exploration of the search space. The MNC GA is one such hybrid strategy.
Experimental evidence indicates that the MNC GA has the abilit y to converge to
multiple solutions. It achieves this result by encouraging competition between
individuals within the same locally optimal group while limiting global competition.
To achieve this goal, in MNC GA both the selection and replacement steps of the
Simple GA (SGA) are modified with the introduction of some form of crowding .

In MNC GA the Fitness Proportionate Reproduction (FPR) step of SGA is replaced
by crowding selection where each individual in the population has the same chance for
mating in every generation. This takes place in two steps. First, an individual A is
selected for mating. Second, its mate M is selected, not from the entire population, but
from a group of individuals of size Cs, picked at random from the population. The
mate M thus chosen must be the one who is the most "similar" to A. The similarity
metric used here is not genotypic but a suitably defined phenotypic distance metric.
That is, similarity was not measured using the encoded individuals but the solution
represented by them. Crowding Selection promotes mating between individuals from
the same niche while allowing some mating between individuals from different niches.
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During the replacement step, MNC GA uses a policy called worst among the most
similar. In a sense, this is a minmax strategy. Implementation of this policy follows
these steps. First, Cf groups are created by randomly picking s individuals per group
from the population. These groups are called crowding factor groups. Second, one
individual from each group that is most similar to the offspring is identified. This
gives Cf individuals that are candidates for replacement by virtue of their similarity to
the offspring that will replace them. From this group of most similar individuals, we
pick the one with the lowest (minimum) fitness to die and that slot is filled with the
offspring (see Figure 2). The following pseudo-code summarizes the method. A
generation is every N mating operations, where N is the population size:

 1. Generate initial population of N individuals.
 2. For gen = 1 to MAX_GEN
 3.   For i = 1 to N
 4.     Use crowding selection to find mate for individual i.
 5.     Mate and mutate.
 6.     Insert offspring in the population using worst among
        most similar replacement.

If we use FPR in Step 4 and replace the lowest fitness individual in the population
(Step 6) with the newly generated offspring, this model corresponds to a steady-state
GA.

4. Interfacing with the Genetic Algorithm

A solution to the problem is represented by a variable length chromosome. Each
chromosome is comprised of information on up to 10 wells, where the well locations
appear in ascending order. The well locations are identified by node numbers of the
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Figure 2: Schematic showing crowding factor groups created during replacement.
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grid. The chromosome ( 41 107 224 635 972) denotes a five-well pumping scenario
with the wells located at the nodes 41, 107, 224, 635, and 972. Only 420 of the total
2436 nodes in the mesh are valid well locations. This representation is equivalent to a
binary string with a bit for each possible well location in the grid.

During the recombination, crossover (or, mating) and mutation are applied. The
mating operator used here is equivalent to uniform crossover. A child is formed by
first passing to it the genes that are common to both the parents and then selecting with
a 0.5 probability the non common genes in both parents. Let individual I = (41 107 224
635 972) and its mate M = (22 107 635 700). The child resulting from mating I and M
will have wells at nodes 107 and 635. The other well locations in the child will come
from some subset of the remaining five non-common nodes, {22, 41, 224, 700, 972}.
These well locations are selected with probability 0.5. A resulting offspring can be (22
107 635 972). Three mutation operators, namely, add well, delete well, and move well
are applied independently with the same mutation probability. During an "add well"
mutation a well from one of the 420 nodes is selected and added to the offspring while
taking care to see that no duplicate nodes are allowed. The "delete well" and "add
well" are similarly defined.

The replacement step in the MNC GA selects the individual in the crowding factor
group with the lowest fitness. In a multiobjective problem a single fitness value can
only be obtained if the objectives are grouped into a single utility function. This is not
appropriate since a specific set of weight values drives the GA towards specific
solutions. Here we determine the worst individual in the group by ranking the
individuals for each objective and selecting the individual with the worst total ranking.
This is a type of minmax strategy (see Figure 3, below). The individuals in the
crowding factor group, indicated by A, B, C, and D, are ranked for each objective.
Here a lower rank number indicates a better value for the objective being considered.
Same rank numbers are assigned to individuals with equal or similar objective values.
The total ranking for each individual is then determined by the sum of all the ranking
numbers. The individual with the highest total rank, here B, is replaced by the
offspring in the population. Using ranking as a way to determine the worst individual
in a group allows good individuals for specific objectives to evolve as well as
individuals that are average in two or more objectives.

Individual  Objective 1  Objective 2  Objective 3 Total Ranking
    A           2            1            3             6
    B           2            4            2             8
    C           1            2            3             6
    D           3            3            1             7

Figure 3: Use of ranking in Worst Among Most Similar Replacement.

Similarity between individuals is used during the selection and replacement. This
allows the formation of species within the population and maintains diversity
throughout the run. To calculate the distance between individual A = ( a1 a2 a3 a4)
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and individual B = ( b1 b2 b3 b4 b5 b6) with 4 and 6 wells respectively, the following
three steps are: (1) the squared difference in the number of wells between the
individuals is calculated, namely, (4 - 6 )**2 = 4. (2) the individual with the lower
number of wells is selected, namely A. (3) For each well in A, the closest well in B is
determined, say (a1, b4), (a2, b1), (a3, b6), and (a4, b3). Similarity between
individuals A and B is now given by the sum of squared difference and the distance
between all pairs of wells. That is,

     similarity  = sqrDiff + dist(a1, b4) + dist(a2, b1) + dist(a3, b6) + dist(a4, b3).

The smaller this number, the more similar the individuals are.

There is no explicit fitness function in this problem. Fitness of individuals is
implicitly given by their objective values and their rank against others. Survival of an
individual from generation to generation is determined by competition among small
groups during replacement. Specifically, an individual will survive for many
generations if its total ranking given by the objective values is lower than those in the
crowding factor group.

The objectives used are: (1) minimization of remediation cost, (2) maximization of
the contaminant removed, and (3) minimization of the concentration of contaminant
leaving the site. Cost of pumping, estimated at $70 per running foot, is calculated
using the distance of each well to a hypothetical pump and treat facility. The goal is to
find a set of wells whose cost stays close to an established budget of $2.5M. The
amount of contaminant removed is taken from the estimates obtained from SUTRA
runs. This value is output in kilograms and is dependent on the well locations and the
amount of water being pumped. In this implementation we used a fixed pumping rate
of 0.0223 cubic feet per second. To monitor the attainment of the third objective, a set
of wells are located on the west side of the site. The amount of contaminant in parts
per billion (ppb) is estimated using SUTRA. We assumed that the total amount of
contaminant reaching the monitor wells should be no more than 20 ppb. The values
calculated for each objective are used by MNC GA only during the replacement step.
Each objective value is used to determine the ranking of the individual for that
particular objective. The sum of the rank values is then used to select the individual to
be replaced by the offspring. An objective which ranks the individual based on the
similarity to the individual can also be used to increase the diversity in the population.

5. Results

Results were obtained on a Sparc 2 workstation running Sun OS 4.1.3. Parameter
values used for the MNC GA are: N = 25; Crossover probability = 1.0; Mutation
probability = 0.1; Cs = 3; Cf = 3; s = 3; Number of generations = 20 or 25. In addition
to restricting the potential pumping sites to a subregion of the total grid, small
population sizes and a small number of generations were selected primarily to reduce
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the computational burden. The crowding parameters were selected by trial and error.
Crossover is always applied to mates. Initial population was generated at random. For
each individual the number of wells in the chromosome was chosen at random. Well
locations were selected at random from the 420 nodes in the 20 x 21 grid. The initial
population never contained a solution meeting the 20.0 ppb regulatory limit.

At first, the MNC GA was implemented to solve a two objective optimization
problem. The first objective is to restrict the amount of contaminant leaving the site to
a presumed regulatory limit of 20 ppb. The second objective is to maximize the
contaminant removed from the pumped water at the treatment facilities. Although it
may appear at first sight that achieving the second objective automatically results in
the attainment of the first objective, it is not always necessarily so. Contaminant
transport in ground water basins is very slow. If the pumping wells are located at some
distance from the site boundary, it is conceivable that the effects of pumping will
reach a far off location (say, the boundary of the site) only after several years. This in
turn would mean that the SUTRA simulation should be conducted  for long durations
of time. This is one aspect of the computational bottleneck that prompted several
simplifying assumptions in the numerical simulations.

Table 1: Sample solutions with two objectives

Gen.
No. of
Wells

Contaminant
leaving site
(in ppb)

Contaminant
Removed
 (in kg)

4     7     19.23      4.52
5     9      1.90     25.87

7     8      3.80     35.25

12     7      1.29     35.38

13     8     13.36     75.62

15    10      0.92     51.94

20     9      0.31     46.82

Table 1 shows a set of solutions for a scenario that considered only Objectives 2 and
3. Table 2 shows the results for a scenario that included the cost objective also. The
cost objective is to minimize the difference between the cost of installation and an
established budget. No major changes in the quality of solutions were observed from
Scenario 1 to 2 except that the cost objective added some pressure towards smaller
number of wells. At the same time the best solutions removed a greater amount of
contaminant and had lower amounts of contaminant leaving the site. The last column,
in Table 2, ranks the solutions according to their cost. Lower rank values indicate
lower cost solution. As expected, improvements in one objective had a negative
impact in other objectives during the initial generations.
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Table 2: Sample solutions with three objectives

Gen.
No. of
Wells

Contaminant
leaving site
(in ppb)

Contaminant
Removed
 (in kg)

Cost
Rank

 10 7      6.30     36.71 6
 10 6      7.79     39.62 5
 18 7     11.15     43.37 4
 19 7     13.27     59.02 3
 20 7      2.44     64.68 1
 21 7      1.21     81.98 2
 23 9      6.59     98.89 7

Figure 4 shows the solution represented by the fourth and fifth generations in Table
1. These solutions have four wells in common although they have different objectives
values. In general small changes in well locations may cause large changes in the
objective values. The MNC GA alleviates this behavior by promoting recombination
between similar solutions. In both solutions the wells are mostly in the southern part of
the site where the pollutant concentration is greater.

 

Figure 4: Well configurations for the fourth (left) and fifth (right) solutions in Table
1.

Figure 5 shows the placement of the wells for solutions shown on the fifth and sixth
rows of Table 2. Both solutions have seven wells with five of them common between
them. Both solutions have very low values for the amount of contaminant leaving the
site. They also have high rankings in cost and contaminant removed. Prior to what we
had seen using only two objectives, improvements in more than one objective was
more common in later generations.
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Figure 5: Well configurations for the fifth (left) and sixth (right) solutions in Table 2.

Legend for Figures 4 and 5.

6. Discussion and Conclusions

Several issues were addressed in this paper. First, the scope of this paper is limited
to the issue of demonstrating the abilit y of the new GA, namely the multi -niche GA, in
finding an acceptable solution to the multi -objective optimization problem arising in a
practical context. Performance of MNC GA relative to alternate approaches is being
investigated. Some preliminary results obtained when MNC GA is applied to
artificiall y created, multi -modal test functions have already been reported [Cedeño and
Vemuri, 1994].

This paper clearly demonstrated the suitabilit y of MNC GA in meeting this
restricted scope. It is shown that the MNC GA indeed has the abilit y to maintain
different solutions satisfying multiple (and perhaps, confli cting objectives). The
stratagem of replacing a single utilit y function to measure fitness by a rank score
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assigned to various objectives appears to have allowed non-inferior solutions (i. e.,
solutions with favorable rankings in all objectives) to evolve. Given the limits imposed
by us on the population size and the maximum number of generations in the
evolutionary process, the quality of solutions obtained appear to be satisfactory. The
policy of maintaining diversity throughout the search (enforced by MNC GA), clearly
paid off in the form of better solutions in later generations.

Second, there are several issues that remain to be addressed. For example, could an
equally acceptable or even a better result be obtained by some simple search strategy?
Not likely, for two reasons. First, the problem is computationally complex. On a 20x21
grid there are 420 potential well positions. According to the formulation used in the
paper, each pumping/recharge well configuration can contain anywhere from one to
ten wells. This gives us

420
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combinations of well positions to explore. This is a huge number. Secondly, most of
the classical optimization methods locate the peaks of a multi-modal function one at a
time, in a sequential manner. The merit of the MNC GA is in finding all the peaks
simultaneously in one sweep. Perhaps this one sweep takes more effort than n
successive sweeps made by a classical method, where n is the number of peaks. This
question can be addressed by making an estimate of the computational effort of both
approaches using the "big O" notation.

What about the influence of the SUTRA simulation code on the performance of
MNC GA? The SUTRA code only solves the partial differential equation simulating
the flow of water and the resulting solution is used only in evaluating the fitness
function used in the MNC GA. It has a major influence on the time taken to get a
solution, but it should have no influence on the performance of the GA itself.

Finally, more research  is also needed on the GA front. What are  the benefits of
bigger population size and more generations? The issue here practical.  To adequately
address this issue, we need another way of obtaining the values for the SUTRA
dependent objectives to minimize the running time.  We will be looking into other
ways to calculate contaminant removed and regulatory limits that although may not be
as precise will give us the ranking of the solutions for each objective.  Additionally we
can include heuristics in the mutation operators to add, move, or delete wells that will
improve the overall ranking of the individual.  Finally the chromosome can be
extended to include other well parameters like pumping rate to evolve solutions with
the complete pumping schedule.  Adding well location constraints can easily be handle
in the genetic operators also.
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