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Abstract: This paper introduces a new similarity measure,
termed Binary Weighted Cosine (BWC) metric, for anomaly-based
intrusion detection schemes that rely on using sequences of system
calls. The new similarity measure considers both the number of
shared system calls between two processes as well as frequencies
of those calls. The k nearest neighbor (kNN) classifier is used to
categorize a process as either normal or abnormal. The proposed
BWC metric enhances the capabilities of simple kNN classifier sig-
nificantly -especially in the context of intrusion detection. The
experimental results obtained from 1998 DARPA Data, are very
promising and show that the proposed scheme results in a high
detection rate and low false positive rate.

Keywords: Intrusion Detection, Anomaly Detection, System
Calls, kNN Classifier, Binary-Weighted Cosine Metric.

1 Introduction

With the widespread use of networked computers for critical sys-
tems, computer security is attracting increasing attention and in-
trusions have become a significant threat in recent years. Intrusions
are attempts at compromising the confidentiality and integrity by
bypassing the security mechanisms of a computer or network. In-
trusion detection is the process of monitoring the events in a com-
puter or a network and analyzing them for signs of intrusions.
With the rapid growth of attacks on computers, intrusion detec-
tion systems (IDS), which are software or hardware products that
automate this monitoring and analysis process [2], have become a
critical component of security architecture.

According to one study [1], an IDS can be thought of as consist-
ing of an Audit Collection/Storage Unit, Processing Unit and an
Alarm/Response unit. The Audit Collection/Storage Unit collects
data that is to be analyzed for signs of intrusion. The Process-
ing Unit analyzes the data received from Audit Collection/Storage
Unit to find the intrusions. The Alarm/Response Unit triggers
an alarm on detecting an intrusion and it may execute defensive
action too. Based on the various ways of managing these units,
different types of IDS are proposed in the literature. On the ba-
sis of audit data, there are two types of IDS. The network-based

systems collect data directly from the network that is being moni-
tored, in the form of packets [17] and the host-based systems collect
data from the host being protected [2]. IDS can also be classified,
based on processing unit, into two types – misuse-based systems
and anomaly-based systems. While the first keeps the signatures
of known attacks in the database and compares new instances with
the stored signatures to find attacks, the second learns the normal
behavior of the monitored system and then looks out for any devi-
ation in it for signs of intrusions. In the present work, we propose a
novel intrusion detection method for host-based systems. A team
of researchers at University of California, Davis has conducted a
series of experiments on anomaly-based IDS using various meth-
ods, viz. kNN with cosine metric [15] and Robust Support Vector
Machine [12], among others. While the former method adopts a
simple approach and is easy to understand, the second method
shows better results in terms of false positive rate and detection
rate but with the added complexity of using SVMs. The proposed
work draws inspiration from the work of Liao and Vemuri [15] on
an anomaly-based intrusion detection system. The motivation be-
hind the proposed work is to develop a method that is as simple
to understand as the kNN method and yields results that are com-
parable to those obtained by using RSVM. By means of a series of
experiments, we show that the proposed method (with the modi-
fied cosine metric) yields significantly better results than the kNN
method with the original cosine metric.

The starting point of the method is the observation that any
normal execution of a process follows a pattern and hence the nor-
mal behavior of a process can be profiled by a set of sequences of
system calls. Any deviation in this pattern of system calls is termed
an intrusion in the framework of anomaly-based IDS. The problem
of intrusion detection thus boils down to detecting anomalous se-
quences of system calls, which are measurably different from the
normal behavior. We propose a new scheme in which we measure
the similarity between two processes using a metric that consid-
ers two factors - occurrence of system calls, which are common in
the two said processes and the frequency of all system calls in the
processes. We say that two processes have a common system call
if during execution, both of the processes call that system call at
some point of time i.e. that system call is present in the system
call trace of both the processes. More precisely, let P1 = {s1i } and
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P2 = {s2i } be the sets of unique system calls, invoked by the two

processes P1 and P2 respectively, sj
i ∈ S, where S is the set of all

system calls. A system call sk ∈ P1 ∩P2 is said to be common to
P1 and P2.

Due to the way it is constructed, we term this similarity met-
ric Binary Weighted Cosine (BWC) metric. Adopting the method
proposed by Liao and Vemuri, we make use of k-nearest neighbor
scheme with our new similarity measure, thus gracefully extending
their result, which did not consider the presence of common system
calls. We illustrate that the similarity metric used by Liao and Ve-
muri may result in erroneous conclusions (for intrusion detection
problems) and the BWC metric overcomes this shortcoming. The
major contributions of our work are (a) the introduction of a novel
similarity measure to capture both the commonality and frequency
of occurrence of system calls and (b) the presentation of a compar-
ative analysis to justify the use of kNN classifier for an improved
detection method. We corroborate our claims of better IDS by
experimental analysis.

Section 2 gives a brief survey on anomaly-based schemes to un-
derstand the different approaches. Section 3 presents some back-
ground and definitions that are used in the construction of our
proposed scheme. We explain the scheme proposed by Liao and
Vemuri [15] in section 4. Section 5 describes the proposed scheme
in detail. Experimental results have been shown in the section
6. Analysis of the experimental results and a comparative study
of BWC, RSVM and kNN with cosine metric are provided in the
section 7. We conclude our work in section 8.

2 Related Work
Anomaly-based IDSs work on the assumption that an attack dif-
fers from normal activity. However, anomaly-based systems have
high false positive rate [2]. Hence, a lot of research is being done
in the area of anomaly-based intrusion detection [1]. A pioneering
work [6], aimed at reducing the false positives, describes a model
for detecting computer abuse by monitoring the system’s audit
records. In this approach, profiles of subjects (users) are learnt
and statistical methods are used to calculate deviations from the
normal behavior. Lane and Brodly [13] propose another approach
that captures a user’s behavior. A database of sequences of UNIX
commands that normally a user issues, is maintained for each user.
Any new command sequence is compared with this database us-
ing a similarity measure. Though the scheme gives good results,
it is rather tedious to profile all the users, especially in big orga-
nizations. Moreover, since the behavioral pattern of users is not
very stable, such models may give a high false positive rate. In
another approach [8][9][11], normal behavior of processes is cap-
tured because programs show a stable behavior over the period of
time under normal execution. In this approach, short sequences of
system calls are used to profile a process. A similar approach is
followed by Lee et al [14], but they make use of a rule learner RIP-
PER, to form the rules for classification. Artificial neural networks
have also been used for anomaly detection [10] due to their ability
to learn behavior and generalize. In this approach, they use the
Leaky Bucket Algorithm to capture temporal locality. There has
been some work on the notion of a mimicry attack, which allows
sophisticated attackers to cloak their intrusion to avoid detection
by the IDS. In this context it has ben shown that an abnormal
activity, in particular a malicious sequence of system calls, can be
converted into a normal-looking sequence [19].

In a very recent study [3], neural networks are used with the
Soundex algorithm which is designed to change feature selection
and variable length system call data into a fixed length learning
pattern. In the approach, the variable length sequential system
call data is transformed into a fixed length behavior pattern using
the Soundex algorithm and neural network is learnt by using the
back-propagation algorithm. The proposed method and N-gram
technique are applied for anomaly intrusion detection of system
call using Sendmail Data of UNM to demonstrate its performance.

The thrust of this paper is to build upon a recently published
method proposed by Liao and Vemuri [15][16]. In this method,
based on the kNN Classifier, each system call is treated as a word
and a collection of system calls during the execution of a process
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is treated as a document. The system call trace of the process is
converted into a vector and cosine similarity measurement is used
to calculate the similarity among processes. The proposed scheme
in the present paper also follows an analogous approach by using
a kNN classifier, except that a modified similarity measure - the
BWC metric - is used instead. In another study at the Univer-
sity of California, Davis [12], the Robust Support Vector Machine
(RSVM) has been applied to anomaly-based IDS. The emphasis of
this RSVM study is on exhibiting the effectiveness of the method
in the presence of noisy data. We show comparative results of our
scheme with this RSVM method also.

3 Feature Vector and Similarity
Measure

Let S (say, Card(S) = m) be a set of system calls made by all the
processes under normal execution. From all the normal processes
a matrix A = [aij ] is formed, where aij denotes the frequency
of ith system call in the jth process. We also form a matrix
B = [bij ] where, bij = 1, if ith system calls is present in the jth

process, otherwise bij = 0. Thus the binary representation of
process P , namely Pbj , is defined by the m− dimensional vector
Pbj = [0, 1]m as a column in B. For example,
Let S = {access audit chdir close creat exit fork ioctl}.
Let the system call traces of two normal processes be
P1 = access close ioctl access exit, and P2 = ioctl audit

chdir chdir access. Then we have:

The rows of A (and B) correspond to the elements of S in the
same order and columns of A (and B) correspond to processes
P1 and P2. Thus the first entry in A is calculated by counting
the frequency of system call access in the process P1 that is 2.
Similarly the first entry of the second column of A is calculated by
counting the frequency of the system call access in the process P2,
which is 1, and so on. Similarly the first entry of the first column
of B is 1 because the system call access is present in P1 whereas
the second entry is 0, which shows that the system call audit is
absent in P1.

We now define similarity measures, which we use in our scheme
to calculate the similarity between processes.

3.1 Binary Similarity Measure
We define a similarity score µ(Pbi, P bj) between any two processes
Pbi and Pbj (ith and jth columns of B) as follows:

µ(Pbi, P bj) =

m∑
l=1

(Pbi ∧ Pbj)l

m∑
nl=1

(Pbi ∨ Pbj)l

(1)

where the summation runs over l, which is a subscript on the el-
ements of the processes Pbi and Pbj and m is the length of each
process vector.

It may be noticed that 0 ≤ µ ≤ 1 . The value of µ increases when
there are more common system calls between the two processes
(due to the numerator) and value of µ decreases when the number



of uncommon system calls, is more than the common ones (due to
the denominator) in Pbi and Pbj .

3.2 Frequency Similarity Measure

Another similarity score, known as cosine similarity measure
λ(Pi, Pj) between the processes Pi and Pj (ith and jth columns of
A) is defined as follows [4]:

λ(Pi, Pj) =
Pi · Pj

‖ Pi ‖ · ‖ Pj ‖
(2)

where ‖ X ‖= √
X ·X.

It may be noted that eqn. 2 represents the same similarity measure
as used by Liao and Vemuri [15].

3.3 Binary Weighted Cosine Metric

We define our new similarity measure, termed as Binary Weighted
Cosine (BWC) metric, Sim(Pi, Pj) as follows:

Sim(Pi, Pj) = µ(Pbi, P bj) · λ(Pi, Pj) (3)

The motive behind multiplying µ and λ is that λ(Pi, Pj) measures
the similarity based on the frequency and µ(Pbi, P bj) is the weight
associated with Pi and Pj . In other words, µ(Pbi, P bj) tunes the
similarity score λ(Pi, Pj) according to the number of similar and
dissimilar system calls between the two processes. Therefore, the
similarity measure Sim(Pi, Pj) takes frequency and the number of
common system calls into consideration while calculating similarity
between two processes.

The following section summarizes the scheme based on kNN-
classifier [15]. We also identify some cases in which the kNN clas-
sifier leads to erroneous conclusions.

4 k-NN Classifier with Cosine
Metric

An approach based on kNN classifier is proposed by Liao and
Vemuri [15] where the frequencies of system calls used by a program
(process), rather than their temporal ordering, are used to define
program’s behavior. Their approach draws an analogy between
text categorization and intrusion detection, such that each system
call is treated as a word and a set of system calls generated by
a process as a document. The processes under normal execution
are collected from the DARPA data and thereafter converted into
vectors (as described earlier), consisting of the frequencies of the
system calls made by them during the normal execution. From
all the normal processes, a matrix A = [aij ] is formed, where aij

denotes the frequency of ith system call in the jth process. In order
to categorize a new process P into either normal or abnormal class,
the process P is first converted into a vector. The kNN classifier
then compares it with all the processes Aj in A to determine the
k nearest neighbors, by calculating the similarity CosSim(P, Aj),
using the cosine formula given by

CosSim(P, Aj) =
P ·Aj

‖ P ‖ · ‖ Aj ‖
(4)

The average similarity value of the k nearest neighbors is calcu-
lated and a threshold is set. When the average similarity value
is above the threshold, process P is considered as normal, and if
not, abnormal. Since the similarity measure, given by equation
4, considers only the frequencies of the system calls appearing in
the processes, sometimes it may produce erroneous results while
calculating similarity as illustrated below.
Consider the sequence of system calls associated with the following
two processes P1 and P2

P1 = open close close close close access access access

access

P2= open ioctl mmap pipe access login su su audit audit

Let us consider a third process P given by the sequence of calls as
P= open close ioctl mmap pipe pipe access access login

chmod

The similarity score of the new process P with P1 is:

CosSim(P, P1) = 0.6048

and the similarity score of the new process P with P2 is:

CosSim(P, P2) = 0.5714

We observe that there are only three common system calls out of
eight between P and P1 and six common system calls out of eight
between P and P2. Intuitively, P2 is more similar to P than P1,
but the similarity measures, calculated above indicate the contrary.
This is due to the frequent occurrence of close and access in P1,
and absence of close in P2. The above example makes it clear
that while calculating the similarity score, there is no weight ac-
corded to processes having more number of common system calls.
We believe that while calculating the similarity score, if we include
a factor that depends on the number of common calls, such anom-
alous results can be avoided. Therefore, in our scheme, we define a
similarity measure that depends not only on frequencies of system
calls but also on the number of common system calls between the
processes.

With this background and definitions, we describe, in the next
section, the proposed method for anomaly intrusion detection.

5 Proposed Scheme
As discussed in section 3, the matrices A = [aij ] and B = [bij ] are
constructed using normal processes and the set S. For every new
process P , if P contains a system call that is not in S, the process P
is classified as abnormal; if not, it is first converted into a vector for
further processing. The binary equivalent Pb of this vector is cal-
culated. Next, the similarity score λ(P, Pj) is calculated for every
normal vector Pj by using equation 2. If λ(P, Pj) = 1, P is classi-
fied as normal. Otherwise, using equations 1 and 3, the values of
µ(P, Pj) and Sim(P, Pj) are calculated. Values of Sim(P, Pj) are
sorted in descending order and the k nearest neighbors (first k high-
est values) are chosen. We calculate the average value (Avg Sim)
of the k nearest neighbors. The kNN classifier categorizes the new
process P as either normal or abnormal according to the rule given
below.

If Avg Sim > Sim Threshold, classify P as normal,

otherwise P is abnormal.

where Sim Threshold is a predefined threshold value for similarity
score. The pseudo code for the proposed scheme is shown in Figure
1.

Using the above-defined scheme, if we re-calculate the similarity
of process P with the processes P1 and P2, given in section 4, using
the equations 1, 2 and 3, we get

Sim(P, P1) = 0.2268 and Sim(P, P2) = 0.3429

The results obtained above validate our hypothesis empirically.

6 Experimental Setup and Re-
sults

We use BSM audit logs from the 1998 DARPA data [5] for training
and testing of our algorithm. As we wish to compare our proposed
method with that of Liao and Vemuri, we use the same data set
that is used in their scheme. For completeness, we summarize the
whole process of extracting the system call data below.

After analyzing the training data, we extract the 50 unique sys-
tem calls that appear in the training data. All the 50 system calls
are shown in table 1. For each day of data, a separate BSM file is
provided with the ’BSM List File’. Each line of this file contains
the information about one session such as time, service, source IP
and destination IP. A ’0’ at the end of the line shows that the
session is normal and the presence of a ’1’ at the end of the line
declares the session intrusive. All the intrusive sessions are labeled
with the name of the attacks launched during the sessions. We



Given a set of processes and system calls S, form the matrices

A = [aij ] and B = [bij ]

for each process P in the test data do

if P has some system calls which does not belong to S then

P is abnormal; exit.

else then

for each process Aj in the training data A do

calculate Sim(P, Aj);

ifSim(P, Aj) equals 1.0 then

P is normal; exit.

end do

find first k highest values of Sim(P, Aj);

calculate Avg Sim for k nearest neighbors so obtained;

if Avg Sim is greater than Sim Threshold then

P is normal;

else then

P is abnormal;

end do

Figure 1: Pseudo code of the proposed scheme

Table 1: List of 50 unique system calls

access, audit, auditon, chdir, chmod, chown, close,
creat, execve, exit, fchdir, fchown, fcntl, fork, fork1,
getaudit, getmsg, ioctl, kill, link, login, logout, lstat,
memcntl, mkdir, mmap, munmap, nice, open, pathconf, pipe,
putmsg, readlink, rename, rmdir, setaudit, setegid,
seteuid, setgid, setgroups, setpgrp, setrlimit, setuid,
stat, statvfs, su, sysinfo, unlink, utime, vfork

make use of the BSM commands auditreduce and praudit and
a couple of shell scripts to extract the data that can be used in
our algorithm. On analyzing the entire set of BSM logs (list files),
we locate five days which are free of any type of attacks - Tues-
day of the third week, Thursday of the fifth week and Monday,
Tuesday and Wednesday of the seventh week. We choose the first
four days of data for creating the normal training data set and
the fifth day’s data for creating the normal test data. There are
about 2000 normal sessions reported in the four days of data. We
extract the processes occurring during these days and our training
data set consists of 606 unique processes. There are 412 normal
sessions on the fifth day and we extract 5285 normal processes
from these sessions. We use these 5285 normal processes as testing
data. In order to test the detection capability of our method, we
incorporate 55 intrusive sessions into our testing data. Table 2 lists
these attacks. A number in the beginning of the name denotes the
week and day followed by the name of the session (attack). For
example, the attack name 3.1 it ffb clear means that the attack
was launched in the 3rd week, on the 1st day viz. Monday and
the name of the attack is ffb (in clear mode). The table should
be read horizontally from left to right and top to bottom. These
attack sessions consist of almost all types of attacks launched on
the victim Solaris machine (in the simulated DARPA setup) during
seven weeks of training period and two weeks of testing period and
that can be detected using BSM logs. An intrusive session is said
to be detected if any of the processes associated with this session is
classified as abnormal. Thus detection rate is defined as the num-
ber of intrusive sessions detected, divided by the total number of
intrusive sessions. We perform the experiments with k = 5, 10 and
15. Table 3 shows the results for k = 5 and 10. The first column
in the table shows the threshold values used in the experiments.
Entries in column two are the rate of false positives, which is equal
to the number of normal processes detected as abnormal divided

Table 2: List of 55 attacks used in testing data set

1.1 it ffb clear, 1.1 it format clear, 2.2 it ipsweep,
2.5 it ftpwrite, 2.5 it ftpwrite test, 3.1 it ffb clear,
3.3 it ftpwrite, 3.3 it ftpwrite test, 3.4 it warez,
3.5 it warezmaster, 4.1 it 080520warezclient,
4.2 it 080511warezclient, 4.2 it 153736spy,
4.2 it 153736spy test, 4.2 it 153812spy,
4.4 it 080514warezclient, 4.4 it 080514warezclient test,
4.4 it 175320warezclient, 4.4 it 180326warezclient,
4.4 it 180955warezclient, 4.4 it 181945warezclient,
4.5 it 092212ffb, 4.5 it 141011loadmodule,
4.5 it 162228loadmodule, 4.5 it 174726loadmodule,
4.5 it format, 5.1 it 141020ffb, 5.1 it 174729ffb exec,
5.1 it format, 5.2 it 144308eject clear,
5.2 it 163909eject clear, 5.3 it eject steal, 5.5 it eject,
5.5 it fdformat, 5.5 it fdformat chmod, 6.4 it 090647ffb,
6.4 it 093203eject, 6.4 it 095046eject, 6.4 it 100014eject,
6.4 it 122156eject, 6.4 it 144331ffb, test.1.2 format,
test.1.2 format2, test.1.3 eject, test.1.3 httptunnel,
test.1.4 eject, test.1.5 processtable, test.2.1 111516ffb,
test.2.1 format, test.2.2 xsnoop, test.2.3 ps, test.2.3 ps b,
test.2.5 ftpwrite, test.2.4 eject a, test.2.2 format1

by the total number of normal processes. Column three details the
detection rate as defined above. We have not shown the results for
k = 15 as we do not find any significant difference from the case of
k = 10. In order to make a valid comparison, we repeat the exper-

Table 3: False Positive Rate vs Detection Rate for k= 5,
10 for BWC scheme

Threshhold
value

k = 5 k = 10

False posi-
tive rate

Detection
rate

False posi-
tive rate

Detection
rate

0.52 0.00 0.36 0.00 0.36
0.55 0.00 0.36 0.007 0.38
0.60 0.0003 0.38 0.009 0.76
0.65 0.007 0.52 0.020 0.83
0.70 0.011 0.85 0.024 0.87
0.74 0.022 0.89 0.049 0.94
0.78 0.048 0.96 0.055 0.96
0.80 0.048 0.96 0.10 1.00
0.84 0.052 0.96 0.14 1.00
0.86 0.077 0.96 - -
0.89 0.087 1.00 - -

iment with Liao and Vemuri’s scheme and table 4 summarizes the
results for k =10. Notice that the false positive rate is very high at
a detection rate of 100%. Satisfactory explanation of this behavior
is conjectural, at best, at this point. Based on some preliminary
experiments, not reported in this paper, we are tempted to believe
that the attack data sets perhaps contained some processes that
show a high degree of similarity with normal processes when the
original cosine metric was used.

7 Discussion And Analysis
We show the comparative results of BWC scheme with that for
Liao and Vemuri and Hu et al. As can be seen in the figure 2, the
ROC for k = 5 tends to be lower than that for k = 10, therefore we
draw ROC curves for BWC scheme at k = 5 for comparison with
Liao and Vemuri method, which is illustrated in figure 3. The ROC
curve is a graph between detection rate and false positive rate. For
each threshold value we get the detection rate and false positive
rate.

The BWC scheme achieves a detection rate of 100% at a false
positive rate of 8% whereas Liao and Vemuri scheme achieves
100% detection rate at 39% false positive. If we look carefully
at table 3 for k = 5, we find that from threshold value 0.78



Table 4: False Positive Rate vs Detection Rate for k=
10 for Liao and Vemuri scheme

Threshold False Pos-
itive Rate

Detection
Rate

0.50 0.00 0.34
0.55 0.0009 0.34
0.70 0.001 0.36
0.78 0.001 0.74
0.85 0.002 0.74
0.88 0.031 0.76
0.90 0.034 0.78
0.93 0.035 0.81
0.95 0.035 0.83
0.97 0.044 0.92
0.98 0.091 0.96
0.99 0.33 0.96
0.992 0.36 0.98
0.994 0.39 1.00

Figure 2: ROC curve for BWC Scheme at k =5, 10

to 0.86, the detection rate is constant. When we investigate,
we find that there are two attacks included in the testing data
viz. 4.5 it 162228loadmodule and 5.5 it fdformat chmod, which
could not be detected by BWC method whereas Liao and Ve-
muri scheme detected them at a lower threshold. On consult-
ing the document on DARPA attack description, which provides
various details about the attacks, we find that though the attack
4.5 it 162228loadmodule was launched, it failed to compromise the
system. In other words, the processes associated with the attack
behaved normally. Therefore it is not a surprise that BWC method
could not detect the attack because there indeed was no attack. In
case of the second attack 5.5 it fdformat chmod, we find that this
attack is launched in various stages and the included instance was
in stage 2. Therefore, we may think that attack has not manifested
and thus may not be detected. In fact, these events validate that
the proposed BWC method checks more closely and rigorously the
similarity between the processes. This is attributed to the binary
similarity metric as its value increases with the number of system
calls, common to the processes being compared. We repeat the
whole experiment after removing these two attacks from our test-
ing data set and the results are shown in the Table 5. It can be
seen in Table 5 that detection rate reaches 100% with false posi-
tive rate as low as 4% only. With this reduced test data set also,
Liao and Vemuri scheme gives almost the same results as with the
previous data. This could be due to the reason that their scheme
detected these attacks at early stage at low threshold with original
test data set. Therefore even after removing these attacks, it does
not improve in performance.

Another set of experiments is carried out to show the effective-
ness of the BWC scheme for noisy data. This part of the section
aims to attest the idea that an approach as simple as kNN classifier
can be used to produce results that are comparable to the results
obtained by more complex method such as the RSVM.

The Robust Support Vector Machine (RSVM) has been applied

Figure 3: ROC curve for BWC Scheme and Liao and
Vemuri scheme

Table 5: False Positive Rate vs Detection Rate for k= 5,
10 for BWC scheme after removing two attacks

Threshold value k = 5 k = 10
False posi-
tive rate

Detection
rate

False posi-
tive rate

Detection
rate

0.52 0.00 0.37 0.00 0.37
0.55 0.00 0.37 0.007 0.39
0.60 0.0003 0.39 0.009 0.79
0.65 0.007 0.54 0.020 0.86
0.70 0.011 0.88 0.024 0.90
0.74 0.022 0.92 0.049 0.98
0.78 0.048 1.00 0.055 1.00

to anomaly-based IDS. The emphasis is to exhibit the effectiveness
of the method in the presence of noise in data. The experiments
have been performed on the same BSM DARPA’98 data set that
we discussed earlier. A detailed description can be found in [12].
Briefly, we mention below the data sets used for the above experi-
ments and the results thus obtained.

There are two training sets - clean data set and noisy data set.
The clean data set contains 300 normal processes and 12 abnormal
processes with correct labels. The noisy data set consists of 300
normal processes and 28 abnormal processes. Of these 28 abnormal
processes, 16 have been mislabeled as normal (and thus noisy) and
the remaining 12 are correctly labeled as abnormal. The testing
data set contains 5285 normal processes and 22 intrusive sessions
from the two-week testing data of DARPA. We reproduce the SVM
and RSVM results [12] in table 6 for ready reference. It has been

Table 6: False Positive Rate vs Detection Rate of RSVM
and SVM under clean and noisy data

Method Clean Data Noisy Data
False posi-
tive rate

Detection
rate

False posi-
tive rate

Detection
rate

RSVM 3.0% 100% 8.0% 100%
SVM 14.2% 100% 100% 100%

noticed by Eskin et al [7] that in practical situations the normal
data outnumbers the intrusion data by a factor of 100:1. If we look
at DARPA data we find that the frequency of intrusive sessions is
very low compared to that of normal sessions. In other words, if
we collect normal data in a real working environment and if the
data is contaminated by the presence of some intrusive data, the
proportion of intrusive data will be very small. Whereas the above
noisy data set used by Hu et al is not in this proportion. We also
find it difficult to decide the appropriate ratio of normal and ab-
normal processes in the data. We, therefore, choose a middle path
and performed the experiments on a data set in which we try to
maintain the ratio of normal and abnormal processes as 100:2 so



that proportion of normal and abnormal processes is near to the
realistic scenario (namely, 100:1) and we retained the 100:5 propor-
tion for the RSVM experiments. Our training data set consists of
622 normal processes (606 normal + 16 abnormal processes, misla-
beled as normal). Out of these 622 processes, 606 are the same as
those used in earlier experiments. The testing data set consists of
22 intrusive sessions launched over the two-weeks of testing period
in DARPA setup and 5285 normal processes. Table 7 shows the
experimental results with the aforementioned data sets. It can be

Table 7: False Positive Rate vs Detection Rate of BWC
scheme under noisy data

Threshold
value

k = 5 k = 10

False posi-
tive rate

Detection
rate

False posi-
tive rate

Detection
rate

0.52 0.00 0.00 0.00 0.00
0.60 0.0003 0.00 0.007 0.45
0.65 0.006 0.36 0.020 0.50
0.70 0.017 0.59 0.03 0.72
0.74 0.029 0.68 0.05 0.90
0.78 0.054 0.68 0.06 1.00
0.80 0.055 0.72 0.08 1.00
0.84 0.059 0.90 0.14 1.00
0.86 0.083 0.90 - -
0.89 0.09 1.00 - -
0.92 0.32 1.00 - -

seen from table 7 that the detection rate with k = 10, reaches 100%
with a false positive rate of only 6%, whereas in case of RSVM the
detection rate is 100% with a false positive rate of 8.0%. It should
be noted that in case of RSVM number of training instances are
316 whereas they are 622 in our experiment. We also performed
an experiment with 316 training instances (300 normal + 16 ab-
normal processes as described above) at k = 10 and we could get
a detection rate of 100% with a false positive rate of 12%. These
figures reveal that BWC scheme needs larger number of normal
processes for training as compared to RSVM method.

We also obtained results for the clean training data set (con-
sisting of 606 normal processes and 12 abnormal processes) with
k = 5. Each new process is first compared with each of the 12
processes by calculating similarity scores. If the score equals one,
the new process is classified as abnormal otherwise regular method
described in section 5 is followed. Table 8 summarizes the re-
sults. With clean data RSVM achieves 100% detection rate with

Table 8: False Positive Rate vs Detection Rate of BWC
scheme under clean data

Threshold False Pos-
itive Rate

Detection
Rate

0.60 0.0003 0.18
0.65 0.007 0.72
0.70 0.01 0.90
0.74 0.02 0.95
0.78 0.05 1.00

3% false positives, whereas the BWC scheme reaches a detection
rate of 100% at 5% false positive rate. Therefore, from performance
standpoint, the BWC scheme is slightly inferior to RSVM. Another
criterion for performance measurement, mentioned in [12] is that
an intrusion detection system should not produce false positive
rate greater than 1% with as high detection rate as possible. Table
9 shows the detection rates of BWC, RSVM and SVM methods
over the clean data set at false positive rate under 1%. In this sce-
nario, the BWC method performs better than RSVM. From these
observations, it can be inferred that our proposed scheme is able
to perform well in the presence of noisy data, but the amount of
training data required is more than in the case of RSVM method.

Table 9: Detection rate of BWC, RSVM and SVM at a
fixed false positive rate of 1%

Method False Pos-
itive Rate

Detection
Rate

BWC 90.0% 1%
RSVM 81.8% 1%
SVM 81.8% 1%

If we look at the complexity, our method is simpler than the RSVM
method.

In view of the above experiments and the analysis, it can be
asserted that the proposed similarity metric performs better than
the simple cosine similarity metric. It can also be noticed that min-
imum threshold value at which the proposed metric could identify
all the abnormal processes (0.78) is lower than that in case of Liao
and Vemuri scheme (0.994). It shows that separation boundary cre-
ated by proposed similarity metric is much wider, thus facilitating
to minimize the overlap between normal and abnormal processes.

8 Conclusions
All anomaly-based intrusion detection systems work on the as-
sumption that normal activities differ from the abnormal activities
(intrusions) substantially. In the case of IDS models that learn a
program’s behavior, these differences may manifest in the form of
(a) the frequency of system calls, (b) the number of common sys-
tem calls invoked by the processes and (c) the ordering of system
calls used by the processes under normal and abnormal execution.
Our BWC scheme considers the first two of these factors while
classifying a new process as normal or abnormal. The new BWC
metric has two factors. One factor calculates the similarity be-
tween the two processes based on the frequency of system calls by
making use of the cosine metric. The second factor operates on
the binary form of the process vectors and calculates the similarity
between the two processes based on the number of the common
system calls in those processes.

With the BWC metric, we obtain a detection rate of 100% at a
false positive rate of 4%, which is a significant improvement over
the performance of the scheme proposed by Liao and Vemuri,
which makes use of kNN classifier with cosine metric. At a
fixed false positive rate of 1%, WBC scheme outperforms with a
detection rate of 90% as compared to the detection rate of 81.8%
with other schemes. The experiments show that the proposed
BWC scheme performs consistently even in the presence of noise
in the training data and the results, thus obtained, are comparable
to one of the recently published study with RSVM. We believe
that the proposed method takes a very simple approach by using
kNN classifier and is easier to understand and implement than the
RSVM.
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