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Abstract

The multi-niche crowding genetic algorithm (MNC GA) has demonstrated its abilit y to maintain
population diversity and stable subpopulations while allowing different species to evolve naturally
in different niches of the fitness landscape. These properties are a consequence, in part, to the
effect of crowding selection and worst among most similar replacement genetic operators. In this
paper we take a closer look at these genetic operators and present mathematical results that show
their effect on the population when used in the MNC GA. We also present some guidelines about
the parameter values to use in these genetic operators to achieve the desired niching pressure
during a run. We conclude with a li st of unexplored avenues that might be helpful in a future
analysis of the behavior of the MNC GA.
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1. Introdu ction
In this paper we analyse the influence of the selection and replacement operators used by the

multi -niche crowding (MNC) genetic algorithm (Cedeño, 1995; Cedeño and Vemuri, 1992,

1996; Cedeño et al, 1996). The purpose of this analysis is to gain a deeper understanding of the

niching capabiliti es of MNC GA as influenced by the parameters of these operators. Specifically,

we show how the "crowding selection" operator promotes mating among individuals from the

same niche. The analysis provides guidance on choosing the appropriate "crowding selection

size" parameter in order to achieve the desired "mating pressure" during the selection operation.

Similarly, we show how the "WAMS (worst among most similar) replacement" operator
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promotes the replacement of individuals by offspring from the same niche, thus applying "fitness

pressure" on members from a given niche. The performance of the WAMS replacement operator

is moderated by the "crowding group size" and "crowding factor" parameters. Selection of the

appropriate values for these parameters is crucial in promoting niching and therefore the survival

of the fittest.

Section 2 begins with a brief overview of the MNC GA along with an introduction to the

selection and replacement operators. Section 2 concludes with a brief summary of the historical

context surrounding the development of this algorithm. Section 3 introduces the notation and in

Section 4 we analyse the crowding selection operator and develop a mathematical expression for

the probabilit y that any two individuals in the population are selected for mating. The WAMS

replacement operator is analysed in Section 5 and the probabilit y of an individual being replaced

by an offspring is calculated. In Section 6, the crowding selection operation is treated in depth

and  mathematical expressions for the expected value and variance of the similarity rank are

derived. Section 7 develops an analogous analysis for WAMS replacement. In Section 8 an

attempt is made to compare these analytical results with some empirical results, and Section 9

summarises the conclusions.

2. Overview of the MNC GA
There are many versions of genetic algorithms. Here, we only concern ourselves with the

analysis of a steady state genetic algorithm (Whitley, 1988; Syswerda, 1989), namely the multi -

niche crowding genetic algorithm (MNC GA). In a nutshell , all steady state genetic algorithms

have three basic steps: selection, recombination (or, reproduction) and replacement. During the

selection step, a decision is made as to who, in the population, is allowed to produce offspring.

During the recombination step, offspring are produced via the operations of crossover and

mutation. During the replacement step another decision is made as to which of the members in

the current population are forced to perish (or vacate a slot) in order to make room for an

offspring to compete (or, occupy a slot) in the next iteration. These steps are applied until a

suitable condition is satisfied, say, the number of function evaluations. Various versions of

steady state GA's differ from each other in the details of how these steps are implemented.
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In the MNC GA both the selection and replacement steps are modified by some type of

crowding (De Jong, 1975). The idea is to ameliorate the selection pressure caused by fitness

proportionate reproduction (FPR) (Holland, 1975) and allow the population to maintain diversity

throughout the search. This objective is achieved in part by encouraging mating and replacement

within members of the same niche while allowing some competition for the population slots

among the niches. The result is an algorithm that:

1. maintains stable subpopulations within different niches,

2. maintains diversity throughout the search, and

3. converges to multiple local optima.

No prior knowledge of the search space is needed and no restrictions are imposed during

selection and replacement thus allowing exploration of other areas of the search space while

converging to the best individuals in different niches.

In MNC, the FPR selection is replaced by what we call crowding selection. In crowding

selection each individual in the population has the same chance for mating in every generation.

Application of this selection rule is done in two steps. First, a parent Ii is selected for mating.

This selection can be either sequential or random. Second, its mate Ij is selected, not from the

entire population, but from a small group of individuals of size s (crowding selection group size).

The individuals in the crowding selection group are picked uniformly at random (with

replacement) from the population. The mate Ij thus chosen must be the one who is the most

“similar” to Ii. The similarity metric used here is not a genotypic metric such as the Hamming

distance, but a suitably defined phenotypic distance metric.

Crowding selection promotes mating between members of the same niche while still

allowing individuals from different niches to mate. Unlike mating restriction (Deb and Goldberg,

1989) that only allows individuals from the same niche to mate, crowding selection allows some

amount of exploration to occur while at the same time exploiting the similarity between

individuals of a niche.

During the replacement step the MNC GA uses a replacement policy called worst among

most similar (WAMS). The goal of this step is to pick an individual from the population for

replacement by offspring. Implementation of this policy follows these steps. First, f “crowding
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groups” are created by randomly picking g (crowding group size) individuals per group from the

population. Second, one individual from each group that is most similar to the offspring is

identified and placed in the “crowding factor group” . This gives f individuals that are candidates

for replacement by virtue of their similarity to the offspring. The offspring will replace one of

them. From the crowding factor group of most similar candidates, we pick the one with the

lowest fitness to die and be replaced by the offspring. Figure 1 shows a pictorial view of this

replacement policy.

Population Offspring

Individual 1
replaces

Individual with

lowest fitness

Group with
individuals most

Crowding Factor

similar to offspring

Randomly form
f  
Groups

Crowding 

with
Crowding Group

g individuals
f

Individual f

with
Crowding Group 1

g individuals

Figure 1: Worst among most similar (WAMS) replacement policy

The WAMS replacement operator can also be expressed mathematically as follows. Let M =

RandSet( p, g, f ) be the a function that returns a f by g matrix M with individuals in the

population, p, selected at random with replacement. This function corresponds to the step in

WAMS where f sets of size g are created from the population. Each row of the matrix is one of

the crowding groups. Let V = MaxSimilar( M, offspring ) be the function that returns the most

similar individual, to the offspring, from each row in the matrix M. This function corresponds to

the step in WAMS where we select the most similar out of each crowding group to form the

crowding factor group with f individuals. Let i = MinFit( V ) be the function that returns the least

fit individual in vector V. Combining the functions above, we get

i = MinFit( MaxSimilar( RandSet( p, g, f ), offspring ) )

a minmax representation of WAMS replacement operator.
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After an offspring becomes part of the population it competes for survival with other

individuals when the next offspring is inserted in the population. In WAMS replacement an

offspring is li kely to replace a low fitness individual from the same niche. It can also happen that

it replaces a high fitness individual from the same niche or an individual from another niche.

This stratagem allows a more diverse population to exist throughout the search. At the same time

it promotes competition between members of the same niche and between members belonging to

different niches. A similar technique was used by Goldberg (1989) in classifier systems but he

replaced the most similar individual out of a group of lowest fitness candidates. The pseudo code

for the MNC GA is shown in Figure 2.

Generate initial population of size n at random.
Evaluate initial population.
For evals = 1 to MAX_EVALUATIONS

Select individual at random and its mate using crowding selection.
Apply crossover and mutation.
Insert offspring in population using WAMS replacement

Figure 2: Pseudo code for steady state Multi -Niche Crowding Genetic Algorithm

2.1 Summary of Related Work
There have been many attempts to apply GAs to multimodal search problems and a thorough

review of the state of the art can be found in Cedeño (1995) along with complete citations. For

completeness, this section provides a brisk review of the context for the analysis presented here.

When classical optimization methods are used to locate the global maximum of multimodal

functions, they tend to converge to a local peak. In several applications, information about the

location and height of local peaks are as useful as the corresponding information about the global

peak. In any event, when  GA's are used on multimodal functions, they tend to exhibit the

classical behavior of converging, at times prematurely, to a local extremum. Many investigators

have proposed modifications to the'standard GA' in order to render them suitable for multimodal

search. These methods seek either to reduce the selection pressure or increase the population

diversity.

In Cavicchio's preselection (1970), only the offspring with higher fitness than its parent can

replace a parent. De Jong's crowding (1975) is a generalization of preselection, and the phrase

crowding factor has its origins in this work. Goldberg and Richardson (1987) used the sharing
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concept, first proposed by Holland (1975), as a way of reducing the selection pressure caused the

FPR rule. Mahfound's deterministic crowding (1992) attempts to address the selection pressure

issue by allowing any individual to mate with any other individual. Beasely et al's fitness

derating (1993) allows unimodal optimization methods to be applied to multimodal problems by

using the knowledge gained in a run to avoid re-searching the same area. Spears' subpopulation

scheme (1994) strives to maintain diversity by creating subpopulations in a classical GA using

tags. Harik's retsricted tournment selection (RTS) (1995) modifies the selection and replacement

steps of the Steady State GA to ameliorate the effects of selection pressure. This method uses the

greedy stratagem of allowing replacement only when the offspring fitness exceeds the fitness of

the individual it i s replacing.

Another line of attack is to devise methods that seek to increase population diversity. which

is expected to permit the GA to discover new peaks while preserving the good solutions found

thus far. In one of the approaches part of the population is re-initialized (Eshelman, 1991;

Grefenstette, 1992) after it has converged. Maresky et. al. (1995) introduced an operator called

selectively destructive re-start that improved the previous approach by reinitializing the

chromosome in a solution with certain probabilit y. Cobb and Grefenstette (1993) compared a

partial re-start of the population with two approaches that manipulated the mutation rate of the

GA. Some other approaches used schemes to encode, in the chromosomes, previous history of

the individual (Goldberg and Smith, 1987; Ng and Wong, 1995). In a separate study Dasgupta

and McGregor (1992) used a tree structure representation of the population.

In MNC GA, analyzed in this paper, niches are formed by promoting mating and

replacement among members of similar phenotype. The result is an algorithm that maintains

solutions in multiple peaks while at the same time allowing a subset of the individuals in the

population to explore other regions of the search space. This balance between inter-niche and

intra-niche selective pressure is a result of crowding selection and WAMS replacement. In the

sections that follow we examine these genetic operators in detail and provide information about

their effect on the population. Refer to Cedeño (1995) for empirical results about the effect of

different parameters on the MNC GA and a comparison to other techniques.
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3. Notation
In this section we define some notation and terms that will be used throughout this paper.

First, let Ω be the set of possible solutions in the search space. The elements of Ω are called

chromosomes. For example, let Ω be the search space represented by the binary strings of length

l. The number of strings in Ω is given by r = | Ω | = 2l. For l = 3 the cardinality of set Ω is r = 23

= 8 chromosomes. Figure 3 shows the search space for binary strings of length l = 3. For easy

identification, each element of Ω is associated with a tag in the interval [0, r-1], which in this

case is the decimal value of the binary string. The GA manipulates elements of Ω to find highly

fit chromosomes. The members of the population, composed of elements of Ω, are called

individuals.

Ω =


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



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

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













=
































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               Tags

0

1

2

3

4
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6

7

Figure 3: GA search space, Ω, for binary strings of length l = 3 and their corresponding tag
values.

One way to denote the population of size n is by the column vector I  = [I0 I1 ... In-1]
T, where

T stands for vector transpose. A component of this vector, namely Ij, represents the jth individual

in the population with a value in Ω. Using elements of Ω in Figure 3, the vector I  = [4 1 7 5 4

3]T is a valid population with six individuals whose tag values are 4, 1, 7, 5, 4, and 3. Clearly,

there are different vectors I  representing the same population, like for example I ’ = [5 4 3 4 1 7]T

which is a permutation of the previous vector. The size of vector I  is n, the number of individuals

in the population.

A population can also be represented by a vector of size r, the cardinality of Ω, containing

the number of copies of each tag value in the population. This representation allows similar

populations, those that differ only by a permutation of their individuals, to be represented
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uniquely. In this representation a population is denoted by the column vector p = [p0 p1 ... pr-1]
T.

The components of this vector, namely pj, are the number of copies of a chromosome with tag

value j in the population. Using the example cited above we have p = [0 1 0 1 2 1 0 1]T, see

Figure 4, which represents one copy of chromosome 1, one copy of chromosome 3, two copies of

chromosome 4, one copy of chromosome 5, and one copy of chromosome 7 in the population.

The order of the individuals in the population is lost when using the representation given by

vector p. Evidently

p nj
j

r

=

−

∑ =
0

1

,

the size of the population.

I p=

























⇒ =

































4

1

7

5

4

3

0

1

0

1

2

1

0

1

Figure 4: Different representation of a population. The vector I denotes the individuals in the
population by their tag value. The vector p represents the same population by the number of
copies of each chromosome in the population I.

4. Analysis of Crowding Selection
In this section we define the selection probability for any pair of individuals under crowding

selection. As indicated previously crowding selection selects the pair of individuals that will

undergo crossover. For notational convenience we will identify the first individual selected into

the pair as the parent and the other the mate. The selection step of MNC GA, described in

Section 2, can be summarised as follows. For each mating pair the parent is chosen uniformly at

random from the population and its mate is chosen using crowding. That is, the mate is chosen as

the one that is most similar to the parent from a group of s candidates taken at random from the
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population, one at a time, with replacement. It is not hard to see that fitness plays no role in this

selection step.

Let u = [u0 u1 ... ur-1]
T be the vector defining the parent selection probability for each

chromosome in Ω. That is uj, the jth element, is the probability that chromosome j is selected as

the parent for mating. We emphasise that the quantity uj refers only to the probability of selecting

a parent, not its mate. Notice also that in MNC GA, it is always true that

u p= 1
n ,

Equation 1

where u and p are vectors and n is a scalar. From this formulation it is clear that

u j
j

r

=

−

∑ =
0

1

1.

To facilitate the analysis of crowding selection, we introduce the function P j k s n ps ( , , , , ) ,

which defines the probability that chromosome k is selected as the mate, given parent j, from a

group of s individuals from the population, represented by p, of size n. Recall that in crowding

selection the mate is the most similar individual to parent j from a group of s candidates taken at

random (with replacement) from the population. To calculate P j k s n ps ( , , , , )  we first need to

rank the members of the population according to their similarity to parent j. Towards this end we

define the function Sr j k p( , , )  which returns the similarity ranking of mate k with respect to

parent j in the population.

The ranking of chromosome k with respect to chromosome j can be obtained by sorting the

members of the population in ascending order of their phenotypic distance to chromosome j

(assume for now that there are no ties). Then, a rank value ranging from 0 to n-1 is assigned to

the sorted list. The value of 0 is given to the population member closest to j (always itself) and n-

1 to the one farthest from j. The smaller the distance, the more similar a chromosome is and the

lower its rank value. The value Sr j k p( , , )  is problem dependent and is assumed (for the

moment) to be a unique value between 0 and n-1. The rank value returned by Sr j k p( , , )

indicates the number of individuals in the population with lower rank than chromosome k, i.e.,

there are Sr j k p( , , )  population members closer to j (lower distance) than chromosome k.
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To calculate P j k s n ps ( , , , , )  it is only necessary to know how many of the possible crowding

selection groups, where the order of the chromosomes matters, will have chromosome k as the

lowest ranked member of the group. This value can be obtained by counting all possible groups

where chromosome k appears among higher ranked members of the population. In such cases

chromosome k appears at least once and up to s times in that group. All other positions in the

group are filled with an arbitrary combination of the higher ranked chromosomes. We also know

that there are ns possible ways of selecting s chromosomes, one at a time with replacement, from

a population with n chromosomes. Given that chromosome k has rank Sr j k p( , , )  we have

( ( , , ) )n Sr j k p− − 1  chromosomes with higher rank. The number of ways of arranging m copies

of k in a group with s positions is given by ( )m
s . The number of ways of selecting (s - m) higher

rank chromosomes, one at a time with replacement, is given by ( ( , , ) )n Sr j k p s m− − −1 . Adding

over all possible values of m, the number of times chromosome k is in the crowding selection

group we get the following expression;

P j k s n p
n

n Sr j k ps s m
s s m

m

s

( , , , , ) = − − −

=
∑1

1
1

( )( ( , , ) ) ,

which is easily evaluated using the binomial theorem, to yield

P j k s n p
n Sr j k p n Sr j k p

ns

s s

s( , , , , ) =
− − − −( ( , , )) ( ( , , ) )1

.

Equation 2

Equation 2 does not account for chromosomes having the same distance to parent j as mate k

or duplicate copies of k. In these cases we have the chromosomes with the same rank value (ties).

If we break ties at random we can calculate P j k s n ps ( , , , , )  by averaging over all possible

rankings of chromosome k and multiplying the result by the number of copies of chromosome k.

Let Er j k p( , , )  be the function that returns the number of chromosomes in the population with

the same distance to j as k (including all copies of chromosome k). Redefining Sr j k p( , , )  to

represent the number of population members that are closer to j than to k, we can expand

Equation 2 to obtain the average probability under crowding selection and get
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P j k s n p
p

Er j k p n
n Sr j k p m n Sr j k p m

p
n Sr j k p n Sr j k p Er j k p

Er j k p n

s
k

s
s s

m

Er j k p

k

s s

s

( , , , , )
( , , )

( ( ( , , ) )) ( ( ( , , ) ) )

( ( , , )) ( ( , , ) ( , , ))

( , , )
.

( , , )

= − + − − + −

= − − − −

=

−

∑ 1
0

1

        

Equation 3

In summary, the probability that chromosome j (the parent) and k (its mate) are selected is

given by Equation 1 and Equation 3 respectively. From these two equations the probability that

chromosomes j and k undergo crossover is

χ 1

n
p p

n Sr j k p n Sr j k p Er j k p

Er j k p nj k

s s

s

( ( , , )) ( ( , , ) ( , , ))

( , , )
− − − −

,

where χ denotes the crossover probability.

It is useful to note, in passing, that Nix and Vose (1992) have shown that the number of

possible populations of size n is given by

n r

r

+ −
−









1

1
.

This result was not used here because we account for all the possible ways to form the crowding

selection group. Each chromosome in the group is selected at random with replacement from the

population. Given that we have s positions in the group and n possible choices for each position,

we get a total of ns possible crowding selection groups.

5. Analysis of Worst Among Most Similar Replacement
In this section we calculate, for all individuals in the population, P j k g f n pr ( , , , , , ) , the

probability that chromosome k is replaced by offspring j under WAMS replacement. Recall that

during replacement the MNC GA creates f crowding groups with g individuals each, chosen at

random with replacement, from the population. Then the individual most similar to the offspring

in each crowding group is chosen to form the crowding factor group of f most similar candidates.

From the crowding factor group the least fit individual is replaced by the offspring in the

population.
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It is not hard to see a relation between the replacement step and crowding selection. Each

one of the individuals in the crowding factor group is selected using crowding, but here the

similarity ranking is based on the offspring. Therefore, the creation of the crowding factor group

can be viewed as the application of crowding selection f times with s = g and the offspring being

the parent. Given this relationship we can use the results from Section 4 to get the probability

that a chromosome in the population is selected from one of the crowding groups. Therefore,

Equation 3

P j k g n p p
n Sr j k p n Sr j k p Er j k p

Er j k p ns k

g g

g( , , , , )
( ( , , )) ( ( , , ) ( , , ))

( , , )
,=

− − − −

gives us the probability of selecting chromosome k from the population to a crowding group

given the offspring j. There is only one distinction, here the offspring j can be any chromosome

of the entire set Ω, while during crowding selection parent j can only be a chromosome in the

population.

Now we need to define the probability of selecting a chromosome from the crowding factor

group. Let Fr k p( , )  be the function that returns the fitness rank of the individual k in the

population. The function Fr k p( , )  returns the number of individuals in the population with

lower fitness than chromosome k. The least fit individual is assigned a rank value of 0 and the

most fit individual a rank value of n - 1. Here again we break ties at random. Let F(k) be the

function used to calculate the fitness value of chromosome k in Ω. Then we have

Fr k p p j kj
j

r

( , ) ( , )=
=

−

∑ θ1
0

1

,

where

θ1

1

0
( , )

( ) ( )
j k

F j F k
=

<



if  

otherwise

Equation 4

Next, define the function Ef k p( , )  that returns the number of individuals in the population

with the same fitness value as chromosome k. Using the fitness function F() we have
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Ef k p p j kj
j

( , ) ( , )=
=

r-1

θ2
0

∑ ,

where

θ2

1

0
( , )

( ) ( )
j k

F j F k
=

=



if  

otherwise

Equation 5

To calculate P j k g f n pr ( , , , , , ) , the probability of replacing chromosome k with offspring j,

we need to know all possible permutations of the crowding factor group where chromosome k

has the lowest fitness (lowest rank) value. Then we add the probability of each of the crowding

factor groups to obtain P j k g f n pr ( , , , , , ) . Unlike forming the crowding groups, the probability

of being selected to the crowding factor group is not random, but based in the similarity to

offspring j and given by P j k g n ps ( , , , , ) . Given the offspring j, the probability of a particular

crowding factor group (i1, i2, ..., if), where ik is a chromosome in the population, is given by the

product

Λ( , , , , , , ... , )
( , , , , )

j g n p i i i
P j i g n p

pf
s k

ik

f

k

1 2
1

=
=

∏ .

Equation 6

Enumerating all possible crowding factor groups where chromosome k has the lowest fitness

rank and adding the probability of each group will give us the value of P j k g f n pr ( , , , , , ) . For

chromosomes with equal fitness rank, we need to average over all possible fitness rank values to

obtain the actual value of P j k g f n pr ( , , , , , ) . Assume, without loss of generality, that the

chromosomes (i1, i2, ..., i
Fr k p( , )

) are the individuals in the population with lower rank than

chromosome k. Assume also that the chromosomes (i
Fr k p pk( , )+ +1

, ..., i
Fr k p Ef k p( , ) ( , )+

) are the

individuals with equal rank as chromosome k (not including the copies of chromosome k) and

(i
Fr k p Ef k p( , ) ( , )+ +1

, ..., in) are the individuals with higher rank than chromosome k. Using Equation

4, Equation 5, and Equation 6 we can now calculate the probability that offspring j replaces

chromosome k in the population using WAMS replacement with the following equation:
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P j k g f n p
a

f

m
j g n p i i i ir k

m

h l

n

h l

n

h l

n

m

f

l

a p

f m

f m

k

( , , , , , ) ... ( , , , , , ,..., , )=















−

− = −= −= −==

−

∑∑∑∑∑1
1 2

2110

  Λ � � �

���

,

where

h Fr k p Ef k p= + +( , ) ( , ) 1,

a Ef k p= ( , ) ,

ik
m  denotes m copies of chromosome ik.

Equation 7

In summary, Equation 7 specifies the replacement probability for chromosome k in the

population, given that offspring j was generated after crossover and mutation. It is not hard to see

that fitness plays an important role during WAMS replacement. A high fitness value results in a

high fitness rank ( Fr k p( , ) ) value in the population. A high fitness rank value results in a lower

probability of being selected from the crowding factor group for replacement. Closer similarity to

the offspring, on the other hand, increases the probability of being selected into the crowding

factor group. The combination of similarity to the offspring and fitness determines the

replacement probability of an individual in the population.

6. A Closer Look at Crowding Selection
In this section we examine the properties of crowding selection more closely. Specifically,

we calculate, under crowding selection, the bounds for the selection probability ( P j k s n ps ( , , , , ) )

of the mate as well as the expected value and variance of the similarity rank. Using Equation 2

we can calculate the lower and upper bounds of P j k s n ps ( , , , , ) , the probability of selecting

chromosome k using crowding selection given that chromosome j is the parent. The lower bound

can be obtained from the highest similarity rank value ( Sr j k p n( , , ) = − 1) and the upper bound

from the lowest similarity rank value ( Sr j k p( , , )   = 0). Using these values we have

1 1

n
P j k s n p

n n

ns s

s s

s≤ ≤
− −

( , , , , )
( )

.

Equation 8
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Take for example the case n = 10 and s = 2, we have 0.01 ≤ P j k s n ps ( , , , , )  ≤ 0.19. Although

the probability of selecting the highest ranked individual is small, it is nevertheless non-zero and

given enough trials it will be selected.

It is not hard to show that P j k s n ps ( , , , , )  summed over all chromosomes k in Ω is equal to

unity for any chromosomes in the population, i.e.,

P j k s n ps
k

r

( , , , , )
=

−

∑ =
0

1

1 when pj ≠ 0.

Equation 9

We will prove Equation 9 by adding Equation 2 over all possible rank values. Using m to denote

all possible rank values for Sr j k p( , , )  we can verify that the numerators of Equation 2 sum to

the total number permutations under crowding selection ( n s ). Since all possible rank values for

m are in the range [0, n-1] we have that

( ) ( )n m n m ns s

m

n
s− − − − =

=

−

∑ 1
0

1

.

Equation 10

Of importance to us is the expected value of the similarity rank of a mate as s (crowding

selection group size) varies. Knowing the expected value of the similarity rank, for different

values of s, will allow us to select an appropriate value for a given fitness function. Using

Equation 2, the expected value of the similarity rank, E(Sr), of the mate for any parent is

E Sr
n

m n m n m
n

n m
n

ms
s s

m

n

s
s

m

n

s
s

m

n

( ) [( ) ( ) ] ( )= − − − − = − =
=

−

=

−

=

−

∑ ∑ ∑1
1

1 1

0

1

1

1

1

1

.

Equation 11

In the same manner we can calculate the variance Var(Sr ) to get

Var Sr E Sr E Sr
n

n m m
n

ms
s

m

n

s
s

m

n

( ) ( ) ( ) ( ) ( )= − = − − −
=

−

=

−

∑ ∑2 2

1

1

1

1
21

2 2 1
1

.

Equation 12

From the variance we can calculate the standard deviation as STD(Sr ) = SQRT(Var(Sr)).
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Equation 11 and Equation 12 allow us to observe the mating pressure imparted during

selection by the MNC GA. Figure 5 presents such information graphically for a population size

of 100. Clearly, we can see that the expected rank value decreases as the crowding selection size

increases. This indicates that during crowding selection a large crowding selection size will more

likely generate a mating pair from the same niche. Given a population size, we can calculate the

crowding selection size, s, that will give us the expected rank values that will promote mating

among localise individuals. Moreover, we can observe that the expected rank value do not

change significantly after a crowding selection size of 11. The effect of crowding selection and

its benefits are more noticeable at lower s values. This result agrees with the rule of thumb we

have been using in our experiments. The rule specified a value of s between 2 and 15% of the

population size.
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Figure 5: Expected value and variance of the similarity rank of the mate under crowding
selection as a function of the crowding selection size (s) using a population size n = 100.

Another way to look at the effect of the crowding selection size in crowding selection is by

examining the probability distribution for the different rank values. The probability distribution

can be used to answer questions about the probability for a specific rank value. For example, one

can calculate the probability that chromosome with rank k is selected for mating. Figure 6 shows

the probability distribution for a crowding selection size of 1, 6, and 11. Again, we can observe
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that a higher crowding selection size will increase the probability that a lower rank individual

(which means more similar in our case) is selected as a mate. Similarly, we can use these results

to calculate, for a given population size, the crowding selection for a specific rank value and

selection probability. These results allow us to select appropriate parameters to control how

much localised mating we want for a particular problem. For example, suppose you would like

the probability of selecting an individual with rank 10 to be 0.01. Using Equation 2 we can

calculate the value of s necessary for crowding selection.
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Figure 6: Probability distribution of rank values for the mate under crowding selection using a
population of size n = 100.

7. A Closer look at Worst Among Most Similar Replacement
In this section we further examine the properties of WAMS replacement. Specifically, we

want to look at the effect of the parameters g and f on replacement. Recall that in WAMS

replacement f crowding groups, each with g individuals, are formed by choosing individuals at

random (with replacement) from the population. Then the most similar individual (to the

offspring) in each crowding group is selected to form the crowding factor group with f

individuals. The least fit individual in the crowding factor group is replaced by the offspring in

the population.
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Creating a crowding group is similar to crowding selection. All the results obtained in

Section 6 apply directly to the creation and selection of individuals to crowding groups. In

summary, increasing the value of the group size, in this case g, decreases the expected similarity

rank of the individual, thus increasing the probability of selecting individuals from the same

niche. During replacement this means that offspring are more likely to replace members of the

same niche when using higher values of g.

Recall that Sr j k p( , , )  denotes the similarity rank of chromosome k in the population with

respect to chromosome j, the offspring. That is, there are Sr j k p( , , )  chromosomes in the

population that are more similar to the offspring than chromosome k. Assume also that no two

chromosomes in the population have the same similarity rank. Using Equation 2, the probability

that chromosome k in the population is selected from a crowding group is

P j k g n p
n Sr j k p n Sr j k p

ns

g g

g( , , , , )
( ( , , )) ( ( , , ) )

.=
− − − − 1

Equation 13

A chromosome will be in the crowding factor group if it is selected from at least one of the

crowding groups. Since there are f crowding groups, the probability that chromosome k is

selected into the crowding factor group is

P j k g f n p P j k g n pc s
f( , , , , , ) ( ( , , , , ))= − −1 1 ,

Equation 14

     where

( ( , , , , ))1 − P j k g n ps
f

is the probability that chromosome k is not selected from any of the crowding groups.

Once the individuals are selected from the crowding groups to form the crowding factor

group, fitness is used to select the individual being replaced by the offspring. Here the individual

selected is the one with the lowest fitness in a group of f individuals. Once selected into the

crowding factor group, the chromosome replaced by the offspring must be the one with the

lowest fitness in the group. For simplicity, let us assume that each of the chromosomes in the
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population can be assigned a unique fitness rank, from 0 to n-1. Let us also assume that the

fitness rank values are assigned in ascending order of fitness, that is, a value of 0 is assigned to

the individual with the lowest fitness, 1 to the second lowest fitness, and so on until the most fit

individual gets the fitness rank of n-1.

Let Fr k p( , )  denote the chromosomes in the population with lower fitness rank (lower

fitness value) than chromosome k. Let Ef k p( , )  denote the chromosomes in the population with

equal fitness rank as chromosome k. We can use Equation 3 again to calculate the probability,

P k f n pf ( , , , ) ,  that chromosome k with fitness rank Fr k p( , )  is selected from a group of f

chromosomes selected at random with replacement. Similar to crowding selection, but using

fitness rank instead of similarity rank. Replacing similarity rank by fitness rank and ignoring

chromosome j we have,

P k f n p p
n Fr k p n Fr k p Ef k p

Ef k p nf k

f f

f
( , , , )

( ( , )) ( ( , ) ( , ))

( , )
= − − − −

.

Equation 15

A simpler form of Equation 15 exists when the fitness ranks of the chromosomes in the

population have different fitness values. In this case Ef k p( , ) = 1 and pk = 1, and we get

P k f n p
n Fr k p n Fr k p

nf

f f

f( , , , )
( ( , )) ( ( , ) )

=
− − − − 1

.

Equation 16

Not accounted for in the above equation is how the fitness rank, of the individuals selected

to the crowding factor group, is affected by the similarity rank to the offspring. Intuitively one

would expect the fitness rank of the offspring to be relatively close to that of similar individuals.

Since the crowding factor group is a group of most similar individuals to the offspring, the

fitness rank of the individual selected for replacement is therefore dependent on its similarity

rank. Nevertheless, to analyse the effect of WAMS in the population, we will assume that the

fitness rank of a chromosome in the population is independent of its similarity rank to the

offspring. Then, we can calculate the replacement probability under WAMS replacement by

multiplying Equation 14 and Equation 16. The probability, P j k g f n pr ( , , , , , ) , that a
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chromosome k with fitness rank Fr k p( , )  and similarity rank Sr j k p( , , )  is replaced by a

chromosome j, the offspring, under WAMS replacement is given by

P j k g f n p P j k g f n p P k f n p P j k g n p P k f n pr c f s
f

f( , , , , , ) ( , , , , , ) ( , , , ) ( ( ( , , , , )) ) ( , , , )= = − −1 1 .

Equation 17

From Equation 17 we can calculate E( Sr, Fr), the expected similarity rank and fitness rank

values of the chromosome replaced by the offspring under WAMS replacement. Given a

population size n, crowding group size g, and crowding factor f we have

E Sr Fr SrFr
n Sr n Sr

n

n Fr n Fr

nFr

n g g

g

f f f

f
Sr

n

( , )
( ) ( ) ( ) ( )

= − −
− − − −


















− − − −







=

−

=

−

∑∑
0

1

0

1

1 1
1 1

.

Equation 18

The expected fitness rank value, E(Fr), can also be calculated in the same manner using as the

expected similarity rank under crowding selection, Equation 11, with the exception of the group

size which is given by the crowding factor, f, in this case. In contrast, the expected similarity rank

value, E(Sr), is affected by the number of crowding groups, f,  formed.
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Figure 7: Expected fitness rank values under WAMS replacement as a function of the crowding
group size, g, and crowding factor, f for a population of size 100.

There are various things that can be pointed out from these results. Increasing the crowding

factor group size, f, increases the probability that lower fitness individuals are replaced in the

population. The size of the crowding group determines the likelihood that the offspring replaces

similar individuals. The effect of the crowding factor and crowding group size values can be seen

in Figure 7. As the value f increase, it is more likely that an individual with low fitness rank is

selected. Also shown in Figure 7, as the value of g increases it is more likely that an individual

with low similarity rank (more similar to the offspring) is selected. Increasing the values of g in

the WAMS replacement operator increases inter-niche competition, i.e., the probability of

selecting a more similar chromosome for replacement. On the other hand, increasing the value of

f increases intra-niche competition, i.e., the probability that a low fitness individual is selected for

replacement.



22

Figure 8: Probabilit y distribution, under WAMS replacement, for the individuals in a population
of size 100. Plot A shows the distribution for a crowding group size of 5 and a crowding factor of
3. Plot B shows the distribution for a crowding group size of 5 and a crowding factor of 5.

Figure 8 shows the effect of increasing the value of f on the probabilit y distribution of the

individuals in the population of size 100. As the value of f increases so does the probabilit y of

selection for individuals with low fitness rank, i.e., low fitness values. It is the WAMS

replacement operator that applies the “survival of the fittest” metaphor to the members of the

population. Individuals with higher fitness are more likely to survive from generation to

generation. The WAMS replacement operator also increases the likelihood of high fit individuals

to reproduce because they are most likely to survive for many more generations.

8. Empirical Results
In this section we apply the MNC GA to a hypothetical function F(x, y) and collect empirical

data about the ranks of the individuals selected for mating and replacement. We will t hen

compare the empirical results with the results predicted by work presented in the previous

sections. Specifically, we will calculate the average similarity rank of the mate during crowding

selection and the average fitness rank of the individual selected for replacement using WAMS.

The function F(x, y) is given by the equation

F x y H W x X y Yi i i i
i

( , ) [( ) ( ) ]= + − −+

=
∑ 1 2 2

1

2

,
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where

X = [45000 , 15000], Y = [2000, 62000], H = [100, 100], W = [0.0004, 0.0004].

This function has two peaks of equal height, 100, located at coordinates (45000, 2000) and

(15000, 62000). A population size of n = 100 was used and the GA was run for 50 generations. A

total of 5000 selections were used in each run to calculate the average similarity rank of the mate

in crowding selection. Similarly, a total of 5000 replacements were used to calculate the average

fitness rank of the individual replaced by the offspring.

Table 1 shows the results for different values of crowding selection size (s), crowding group

size (g), and crowding factor (f). The expected values for the similarity rank agreed with the

empirical values calculated for the different parameters. The expected values for the fitness rank

however did not agree in many places with the empirical values. Only the empirical values for

rows 1, 5, and 9 are close to the expected values. Some of the discrepancy can be accounted for

by the function used for the experiment. The assumption we made about the independence of

similarity and fitness to simplify the results does not apply for F(x, y). The fitness of individuals

in a neighbourhood is very dependent to their proximity. The larger the value of g during WAMS

replacement, the more likely that the individual selected for replacement will belong to the same

neighbourhood as the offspring and therefore have similar fitness value. This effect can be

observed in rows 5 to 8 in Table 1. The larger the value of g, the large is the discrepancy between

the observed fitness rank and expected fitness rank of the selected individual.

Table 1: Comparison of empirical results and expected values for the similarity rank and fitness
rank. Column 1 shows the values for crowding selection size (s), crowding group size (g), and
crowding factor (f) used in the MNC GA.

( s, g, f ) Empirical Average

Similarity Rank in

Crowding Selection

Expected Average

Similarity Rank in

Crowding Selection

Empirical Average

Individual Fitness

Rank in WAMS

Expected Average

Individual Fitness

Rank in WAMS

(1, 5, 3) 51.0716 49.5 26.9386 24.50
(5, 5, 3) 16.2428 16.17 34.5012 24.50

(10, 5, 3) 9.5104 8.6 34.87 24.50
(15, 5, 3) 6.5272 5.76 34.722 24.50
(5, 1, 3) 16.9072 16.17 24.3106 24.50
(5, 5, 3) 16.2428 16.17 34.5012 24.50

(5, 10, 3) 16.4124 16.17 39.5894 24.50
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(5, 15, 3) 16.5404 16.17 40.1656 24.50
(5, 5, 1) 16.8732 16.17 50.7122 49.5
(5, 5, 3) 16.2428 16.17 34.5012 24.50
(5, 5, 5) 16.442 16.17 26.9186 16.17

To a lesser extent, the convergence properties of the MNC GA can also be attributed to the

discrepancy of some of the values. As the individuals in the population start to converge to the

peaks in the function, the population becomes homogeneous thus affecting the average fitness

rank values. The expected value as calculated in the previous section does not account for

duplicate individuals in the population.

Nevertheless the results we obtained show the pattern we presented in Figure 7. The average

fitness rank value of the individual selected for replacement decreases as the value of the

crowding factor is increased. This means that low fit individuals are more likely to be selected

for replacement. In the same manner, when the crowding group size is increased so does the

likelihood of selecting and individual from the same neighbourhood as the offspring. It is this

balance between inter-niche competition and intra-niche competition that allows the MNC GA

the evolve individuals to different niches in the search space.

9. Comments and Conclusions
The results presented here brings us closer to an understanding of the effect of different

parameters in the MNC GA. The effect of the crowding selection size, s, is clear. Increasing its

value increases the likelihood of selection of a mate from the same niche as the parent. Values

between 5% and 15% of the population size are appropriate for selecting mating pairs from the

same niche and at the same time allowing mating between pairs of different niches . The higher

the value of the crowding selection size, the higher is the mating pressure during selection. The

value of s controls the amount of inter-niche and intra-niche breeding in the MNC GA. Using the

results from Section 6, the appropriate value of s can be selected to achieve the desire mating

pressure during a run.

The effect of WAMS replacement can also be explained by the values of the crowding group

size, g, and crowding factor, f, parameters. Competition between members of same niche can be

increased by increasing the value of the crowding group size. On the other hand decreasing the
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value of the crowding group size increases competition among members of different niches. The

risk here is that niches with lowered average fitness may not be able to maintain any individuals

in them. By using appropriate values for the crowding group size and crowding factor we can

increase replacement of low-fitness individuals from the same niche allowing the MNC GA to

converge to the top of different niches. Values between 5% and 15% of the population size are

also acceptable for the crowding group size (Cedeño, 1995).

Increasing the value of the crowding factor, increases the fitness pressure for the individuals

in the population. The probabilit y that a low fit individual in the population is replaced increases

as a function of the crowding factor. It clearly shows that the WAMS replacement operator

applies the “survival of the fittest” metaphor to the members of the population. Moreover, the

MNC GA does not use fitness during selection. The likelihood that an individual participates in

mating is directly influenced by the WAMS replacement operator. WAMS replacement allows

high fit individuals to survive for many more generations allowing them to participate in mating

more often. Values between 2 and 10% of the population size are recommended values for the

crowding factor.

The value of g controls the amount of inter-niche and intra-niche competition in the MNC

GA. The lower the value of g, the higher the competition between members of different niches.

The value of f, on the other hand, controls the selective pressure in the MNC GA. The higher the

value of f, the higher the chances of eliminating low fit individuals using WAMS replacement.

Both values can be combined to achieve the desire selective pressure and niche competition in a

run.  The values of g and f control the classical tradeoff between exploration and exploitation in

GAs.

In order to accurately predict the replacement probabilit y under WAMS it is necessary to

determine the dependency between the similarity rank and the fitness rank. This dependency is

directly affected by the fitness function and the search space being analyzed by the GA. It seems

to be beneficial to incorporate the fitness function as part of the analysis to obtain more accurate

results when applying the MNC GA. Knowing how different parameters affect the convergence

properties of the algorithm, to different fitness functions, will make its application to other

problems easier.
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