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Abstract

The multi-niche crowding genetic dgorithm (MNC GA) has demonstrated its abilit y to maintain
popuation dversity and stable subpopuations while dl owing diff erent spedesto evolve naturally
in dfferent niches of the fitnesslandscape. These properties are a @nsequence, in part, to the
effed of crowding selection and worst among most similar replacement genetic operators. In this
paper we take a ¢oser look at these genetic operators and present mathematica results that show
their effed onthe popuationwhen used in the MNC GA. We dso present some guideli nes abou
the parameter values to use in these genetic operators to achieve the desired niching presaure
during arun. We anclude with alist of unexplored avenues that might be helpful in a future
analysis of the behavior of the MNC GA.
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1. Introduction
In this paper we analyse the influence of the seledion and replacement operators used by the

multi-niche aowding (MNC) genetic dgorithm (Cedefio, 1995 Cedefio and Vemuri, 1992,
1996 Cedefio et a, 1996. The purpose of this analysisis to gain a degper understanding of the
niching cgpabiliti es of MNC GA as influenced by the parameters of these operators. Spedficdly,
we show how the "crowding seledion” operator promotes mating among individuals from the
same niche. The analysis provides guidance on chocosing the gpropriate "crowding seledion
Size" parameter in order to adchieve the desired "mating presaure” during the seledion operation.

Similarly, we show how the "WAMS (worst among most similar) replacenent” operator



promotes the replacament of individuals by off spring from the same niche, thus applying "fitness
presaure” on members from a given niche. The performance of the WAMS replacanent operator
is moderated by the "crowding group size" and "crowding fador" parameters. Seledion d the
appropriate values for these parametersis crucia in promoting niching and therefore the survival

of thefittest.

Sedion 2 legins with a brief overview of the MNC GA aong with an introduction to the
seledion and replacement operators. Sedion 2 concludes with a brief summary of the historicd
context surroundng the development of this algorithm. Sedion 3introduces the notation and in
Sedion 4we analyse the aowding seledion operator and develop a mathematicd expresson for
the probability that any two individuals in the popuation are seleded for mating. The WAMS
replacament operator is analysed in Sedion 5and the probability of an individual being replaced
by an dfspring is cdculated. In Sedion 6,the aowding seledion operation is treaed in depth
and mathematica expressons for the expeded value and variance of the similarity rank are
derived. Sedion 7 develops an analogous analysis for WAMS replacement. In Sedion 8 an
attempt is made to compare these analyticd results with some empiricd results, and Sedion 9

summarises the mnclusions.

2. Overview of the MNC GA
There ae many versions of genetic dgorithms. Here, we only concern ouselves with the

analysis of a steady state genetic dgorithm (Whitley, 1988 Syswerda, 1989, namely the muilti-
niche aowding genetic dgorithm (MNC GA). In a nutshell, all stealy state genetic dgorithms
have three basic steps: seledion, recombination (or, reproduction) and replacement. During the
selection step, a dedsion is made & to who, in the popuation, is alowed to produce off spring.
During the recombination step, offspring are produced via the operations of crosover and
mutation. During the replacement step ancther dedsion is made & to which of the membersin
the aurrent popuation are forced to perish (or vacde adot) in order to make room for an
off spring to compete (or, occupy a slot) in the next iteration. These steps are gplied urtil a
suitable @ndtion is satisfied, say, the number of function evaluations. Various versions of

stealy state GA's differ from ead ather in the detail s of how these steps are implemented.



In the MNC GA bath the seledion and replacement steps are modified by some type of
crowding (De Jong, 1979. The ideais to ameliorate the seledion pesaure caised by fitness
propartionate reproduction (FPR) (Holland, 1975 and all ow the popuation to maintain dversity
throughou the seach. This objediveis achieved in part by encouraging mating and replacement
within members of the same niche while dlowing some competition for the popuation slots

among the niches. The result is an algorithm that:

1. maintains dable subpopuations within diff erent niches,

2. maintains diversity throughou the search, and

3. converges to multiple locd optima.
No prior knowledge of the seach spaceis needed and no restrictions are imposed duing
seledion and replacament thus allowing exploration d other areas of the seach space while

converging to the best individualsin dfferent niches.

In MNC, the FPR seledion is replaced by what we cdl crowding selection. In crowding
seledion ead individual in the popuation hes the same dhance for mating in every generation.
Applicaion d this sledion rule is dore in two steps. First, a parent |; is sleded for mating.
This sledion can be ather sequential or randam. Sewnd, its mate |; is sleded, nd from the
entire popuation, bu from asmall group d individuals of size s (crowding seledion groupsize).
The individuas in the aowding seledion group are picked unformly at randam (with
replacement) from the popdation. The mate |; thus chosen must be the one who is the most
“gmilar” to ;. The similarity metric used here is nat a genotypic metric such as the Hamming

distance, but a suitably defined phenotypic distance metric.

Crowding seledion promotes mating between members of the same niche while till
allowing individuals from diff erent niches to mate. Unlike mating restriction (Deb and Goldberg,
1989 that only allows individuals from the same niche to mate, crowding seledion alows me
amourt of exploration to occur while & the same time eploiting the similarity between

individuals of aniche.

During the replacanent step the MNC GA uses a replacanent pdlicy cdled worst among
most similar (WAMYS). The goa of this gep is to pick an individual from the popuation for
replacament by off spring. Implementation d this pdicy foll ows these steps. First, f “crowding



groups’ are aeaed by randamly picking g (crowding groupsize) individuals per group from the
popdation. Seaond, ore individual from ead group that is most similar to the offspring is
identified and daced in the “crowding fador group’. This givesf individuals that are candidates
for replacanent by virtue of their similarity to the off spring. The offspring will replace one of
them. From the aowding fador group d most similar candidates, we pick the one with the
lowest fithessto de and be replacal by the offspring. Figure 1 shows a pictoria view of this
replacament palicy.
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Individual 1
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Figure 1: Worst among most similar (WAMS) replacement policy

The WAMS replacement operator can also be expressed mathematically as follows. Let M =
RandSet( p, g, f ) be the a function that returns a f by g matrix M with individuas in the
population, p, selected at random with replacement. This function corresponds to the step in
WAMS where f sets of size g are created from the population. Each row of the matrix is one of
the crowding groups. Let V = MaxSmilar( M, offspring ) be the function that returns the most
similar individual, to the offspring, from each row in the matrix M. This function corresponds to
the step in WAMS where we select the most similar out of each crowding group to form the
crowding factor group with f individuals. Let i = MinFit( V') be the function that returns the least

fit individual in vector V. Combining the functions above, we get
i = MinFit( MaxSmilar( RandSet( p, g, f ), offspring ) )

aminmax representation of WAMS replacement operator.



After an offspring bemmes part of the popuation it competes for survival with aher
individuals when the next offspring is inserted in the popuation. In WAMS replacement an
offspring islikely to replace adow fitnessindividual from the same niche. It can aso happen that
it replaces a high fitnessindividual from the same niche or an individual from ancther niche.
This dratagem al ows a more diverse popuation to exist throughou the search. At the same time
it promotes competition between members of the same niche and between members belonging to
different niches. A similar technique was used by Goldberg (1989 in classfier systems but he
replaced the most similar individual out of agroup d lowest fitnesscandidates. The pseudo code
for the MNC GA is shown in Figure 2.

CGenerate initial population of size n at random

Eval uate initial popul ation.

For evals = 1 to MAX EVALUATI ONS
Sel ect individual at randomand its mate using crowdi ng sel ecti on.
Apply crossover and rmutati on.
Insert offspring in popul ati on usi ng WAMS repl acenent

Figure 2: Pseudocode for stealy state Multi-Niche Crowding Genetic Algorithm

2.1 Summary of Related Work
There have been many attempts to apply GAs to multimodal seach problems and a thorough

review of the state of the at can be foundin Cedefio (1995 aong with complete atations. For

completeness this dion provides abrisk review of the context for the analysis presented here.

When clasgcd optimization methods are used to locae the global maximum of multimodal
functions, they tend to converge to a locd pe&k. In severa applicaions, information abou the
locaionand height of loca pedks are & useful as the @rrespondng information abou the global
pe&k. In any event, when GA's are used on multimodal functions, they tend to exhibit the
classcd behavior of converging, at times prematurely, to alocd extremum. Many investigators
have proposed modificaions to the'standard GA' in order to render them suitable for multimodal
seach. These methods &k ether to reduce the seledion presaure or increase the popuation

diversity.

In Cavicchio's preselection (1970, only the off spring with higher fitnessthan its parent can
replace aparent. De Jong's crowding (1975 is a generalization d preseledion, and the phrase
crowding factor has its origins in this work. Goldberg and Richardson (1987 used the sharing



concept, first propased by Holland (1979, as a way of reducing the seledion presaure caised the
FPR rule. Mahfounds deterministic crowding (1992 attempts to address the seledion presaure
issue by allowing any individual to mate with any other individual. Beasely et a's fitness
derating (1993 allows unimodal optimization methods to be gplied to multimodal problems by
using the knowledge gained in arunto avoid re-seaching the same aea Speas subpopulation
scheme (1999 strives to maintain dversity by creaing subpopuations in a dasscd GA using
tags. Harik's retsricted tournment selection (RTS) (1995 modifies the seledion and replacement
steps of the Steady State GA to ameliorate the dfeds of seledion resaure. This method wses the
greeady stratagem of all owing replacement only when the off spring fitness exceals the fitness of

theindividua it isreplaang.

Ancther line of attad isto devise methods that seek to increase popuation dversity. which
is expeded to permit the GA to dscover new pedks while preserving the good solutions found
thus far. In ore of the gproaches part of the popuation is re-initialized (Eshelman, 1991
Grefenstette, 1992 after it has converged. Maresky et. al. (1995 introduced an operator cdled
selectively destructive re-start that improved the previous approach by reinitializing the
chromosome in a solution with certain probability. Cobb and Grefenstette (1993 compared a
partial re-start of the popuation with two approades that manipulated the mutation rate of the
GA. Some other approadhes used schemes to encode, in the diromosomes, previous history of
the individual (Goldberg and Smith, 1987 Ng and Wong, 1999. In a separate study Dasgupta
and McGregor (1992 used atreestructure representation d the popuation.

In MNC GA, analyzed in this paper, niches are formed by promoting mating and
replacenent among members of similar phenotype. The result is an agorithm that maintains
solutions in multiple pegks while & the same time dlowing a subset of the individuals in the
popdation to explore other regions of the seach space This balance between inter-niche and
intra-niche seledive presaure is a result of crowding seledion and WAMS replacement. In the
sedions that follow we examine these genetic operators in detail and provide information about
their effed on the popuation. Refer to Cedefio (1995 for empirica results abou the dfed of

diff erent parameters onthe MNC GA and a mmparisonto aher techniques.



3. Notation
In this section we define some notation and terms that will be used throughout this paper.

First, let Q be the set of possible solutions in the search space. The elements of Q are called
chromosomes. For example, let Q be the search space represented by the binary strings of length
|. The number of stringsin Q isgivenby r = | Q | = 2. For | = 3 the cardinality of set Q isr = 2°
= 8 chromosomes. Figure 3 shows the search space for binary strings of length | = 3. For easy
identification, each element of Q is associated with a tag in the interval [0, r-1], which in this
case is the decimal value of the binary string. The GA manipulates elements of Q to find highly
fit chromosomes. The members of the population, composed of elements of Q, are caled

individuals.
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Figure 3: GA search space, Q, for binary strings of length | = 3 and their corresponding tag
values.

One way to denote the population of size nis by the column vector | = [lg Iy ... In.4] T, where
T stands for vector transpose. A component of this vector, namely |;, represents the j™ individual
in the population with avalue in Q. Using elements of Q in Figure 3, thevector | = [41754
3] " is a vaid population with six individuals whose tag values are 4, 1, 7, 5, 4, and 3. Clearly,
there are different vectors | representing the same population, like for example! = [543417]"
which is a permutation of the previous vector. The size of vector | is n, the number of individuals

in the population.

A population can aso be represented by a vector of size r, the cardinality of Q, containing
the number of copies of each tag value in the population. This representation allows similar

populations, those that differ only by a permutation of their individuals, to be represented



uniquely. In this representation a population is denoted by the column vector p = [po ps ... Pr-1] -
The components of this vector, namely p;, are the number of copies of a chromosome with tag
value j in the population. Using the example cited above we have p=[01012101]", see
Figure 4, which represents one copy of chromosome 1, one copy of chromosome 3, two copies of
chromosome 4, one copy of chromosome 5, and one copy of chromosome 7 in the population.
The order of the individuals in the population is lost when using the representation given by

vector p. Evidently
r-1
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Figure 4: Different representation of a population. The vector | denotes the individualsin the
population by their tag value. The vector p represents the same population by the number of
copies of each chromosome in the population |.

4. Analysis of Crowding Selection
In this section we define the selection probability for any pair of individuals under crowding

selection. As indicated previously crowding selection selects the pair of individuals that will
undergo crossover. For notational convenience we will identify the first individual selected into
the pair as the parent and the other the mate. The selection step of MNC GA, described in
Section 2, can be summarised as follows. For each mating pair the parent is chosen uniformly at
random from the population and its mate is chosen using crowding. That is, the mate is chosen as

the one that is most similar to the parent from a group of s candidates taken at random from the



population, one at a time, with replacement. It is not hard to see that fitness plays no role in this
selection step.

Let u = [Uo Uz ... Urg] T be the vector defining the parent selection probability for each
chromosome in Q. That is u;, the j™ element, is the probability that chromosome j is selected as
the parent for mating. We emphasise that the quantity u; refers only to the probability of selecting
aparent, not its mate. Notice also that in MNC GA, it is always true that

Sl

u=+p,

Equation 1

where u and p are vectors and nisascaar. From thisformulation it is clear that

r-1

Zuj =1.

=0

To facilitate the analysis of crowding selection, we introduce the function P,(j,k,s,n, p),
which defines the probability that chromosome k is selected as the mate, given parent j, from a
group of sindividuals from the population, represented by p, of size n. Recall that in crowding
selection the mate is the most similar individual to parent j from a group of s candidates taken at
random (with replacement) from the population. To calculate P,(j,k,s,n, p) we first need to
rank the members of the population according to their similarity to parent j. Towards this end we

define the function S(j,k, p) which returns the similarity ranking of mate k with respect to

parent j in the population.

The ranking of chromosome k with respect to chromosome j can be obtained by sorting the
members of the population in ascending order of their phenotypic distance to chromosome |
(assume for now that there are no ties). Then, arank value ranging from 0O to n-1 is assigned to
the sorted list. The value of O is given to the population member closest to j (always itself) and n-
1 to the one farthest from j. The smaller the distance, the more similar a chromosome is and the

lower its rank value. The value S (j,k,p) is problem dependent and is assumed (for the
moment) to be a unique value between 0 and n-1. The rank value returned by S (j,k, p)

indicates the number of individuals in the population with lower rank than chromosome k; i.e.,

thereare S (], k, p) population members closer to | (lower distance) than chromosome k.



To calculate P,(j,k,s,n, p) itisonly necessary to know how many of the possible crowding

selection groups, where the order of the chromosomes matters, will have chromosome k as the
lowest ranked member of the group. This value can be obtained by counting all possible groups
where chromosome k appears among higher ranked members of the population. In such cases
chromosome k appears at least once and up to s times in that group. All other positions in the
group are filled with an arbitrary combination of the higher ranked chromosomes. We aso know
that there are n° possible ways of selecting s chromosomes, one at a time with replacement, from

a population with n chromosomes. Given that chromosome k has rank S (j,k,p) we have
(n=S(j,k, p) =1 chromosomes with higher rank. The number of ways of arranging m copies
of kin agroup with s positionsis given by (©). The number of ways of selecting (s - m) higher
rank chromosomes, one at a time with replacement, is given by (n—S(j,k, p)—1)°*™. Adding

over al possible values of m, the number of times chromosome Kk is in the crowding selection

group we get the following expression;

P.(j.k,5N.p) =n—1s§_(;)(n—9r(j,k, o) -1,

which is easily evaluated using the binomial theorem, to yield

(n=S(j.kp)" ~(n=S(@.kp ="

Ps(j’k’s’n’ p): nS

Equation 2

Equation 2 does not account for chromosomes having the same distance to parent j as mate k
or duplicate copies of k. In these cases we have the chromosomes with the same rank value (ties).

If we break ties at random we can calculate P,(j,k,s,n, p) by averaging over al possible

rankings of chromosome k and multiplying the result by the number of copies of chromosome k.

Let Er(j,k, p) be the function that returns the number of chromosomes in the population with
the same distance to j as k (including all copies of chromosome k). Redefining S (j,k, p) to

represent the number of population members that are closer to j than to k, we can expand

Equation 2 to obtain the average probability under crowding selection and get

10



Er(j.k,p)-1

P(j.ksnp)=—t > (n=(S(J.k,p) +m)° = (n=(S(j.k, p) +m) = )°

Er(j.k, p)n°

- p, (n-S(j.k,p)° = (n-S(j,k p) - Er(j,k p)*
Er(j,k, p)n®

Equation 3

In summary, the probability that chromosome j (the parent) and k (its mate) are selected is

given by Equation 1 and Equation 3 respectively. From these two equations the probability that
chromosomes j and k undergo crossover is

(n=S(j,k,p)°* = (n-S (i, k, p) —Er(j,k, p))
Er(j,k, p)n®

X p] pk

where x denotes the crossover probability.

It is useful to note, in passing, that Nix and Vose (1992) have shown that the number of

possible populations of size nisgiven by

h+r =1

H r-1 H
This result was not used here because we account for al the possible ways to form the crowding
selection group. Each chromosome in the group is selected at random with replacement from the
population. Given that we have s positions in the group and n possible choices for each position,

we get atotal of n° possible crowding selection groups.

5. Analysis of Worst Among Most Similar Replacement
In this section we calculate, for all individuals in the population, P (j,k,g,f,n,p), the

probability that chromosome k is replaced by offspring j under WAMS replacement. Recall that
during replacement the MNC GA creates f crowding groups with g individuals each, chosen at
random with replacement, from the population. Then the individual most similar to the offspring
in each crowding group is chosen to form the crowding factor group of f most similar candidates.
From the crowding factor group the least fit individua is replaced by the offspring in the
popul ation.

11



It is not hard to see a relation between the replacement step and crowding selection. Each
one of the individuals in the crowding factor group is selected using crowding, but here the
similarity ranking is based on the offspring. Therefore, the creation of the crowding factor group
can be viewed as the application of crowding selection f times with s = g and the offspring being
the parent. Given this relationship we can use the results from Section 4 to get the probability
that a chromosome in the population is selected from one of the crowding groups. Therefore,
Equation 3

(n=9(j,k,p)° =(n=5(j,k, p) —Er(j,k, p))°
Er(j,k, p)n® ’

P.(j,k,9,n,p) = p,

gives us the probability of selecting chromosome k from the population to a crowding group
given the offspring j. There is only one distinction, here the offspring j can be any chromosome
of the entire set Q, while during crowding selection parent j can only be a chromosome in the

population.

Now we need to define the probability of selecting a chromosome from the crowding factor
group. Let Fr(k,p) be the function that returns the fitness rank of the individua k in the
population. The function Fr(k, p) returns the number of individuas in the population with

lower fitness than chromosome k. The least fit individual is assigned a rank value of 0 and the
most fit individual a rank value of n - 1. Here again we break ties at random. Let F(k) be the

function used to calcul ate the fithess value of chromosomek in Q. Then we have

r-1

Frk, IO)=Z)IO,»91(LK),

where

O F(j) <F(K)
6.k = BJ otherwise

Equation 4

Next, define the function Ef (k, p) that returns the number of individuals in the population

with the same fitness value as chromosome k. Using the fitness function F() we have

12



Ef(k,p):ijez(j,k),

where

L if F(j)=F(k)

a(j,k)= i
(1K) otherwise

Equation 5

To calculate P.(j,k,q, f,n, p), the probability of replacing chromosome k with offspring j,
we need to know al possible permutations of the crowding factor group where chromosome k
has the lowest fitness (lowest rank) value. Then we add the probability of each of the crowding
factor groups to obtain P,.(j,k,qg, f,n, p). Unlike forming the crowding groups, the probability
of being selected to the crowding factor group is not random, but based in the similarity to
offspring j and given by P.(j,k,g,n, p). Given the offspring j, the probability of a particular
crowding factor group (i, iz, ..., if), Wwhere ix is a chromosome in the population, is given by the

product

. L. f P | ’ n
AN, Puinsin, i H s, kg P

Equation 6

Enumerating all possible crowding factor groups where chromosome k has the lowest fithess

rank and adding the probability of each group will give us the value of P (j,k,g,f,n,p). For

chromosomes with equal fitness rank, we need to average over al possible fitness rank values to

obtain the actual value of P (j,k,g,f,n,p). Assume, without loss of generdity, that the

chromosomes (i1, iz, ..., | ) are the individuals in the population with lower rank than

Fr(k.p)

chromosome k. Assume aso that the chromosomes (i ) are the

Fr(k,p)+pc+1’ 7 I Fr(k,p)+Ef (k,p)
individuals with equal rank as chromosome k (not including the copies of chromosome k) and

@ e (. p)oEf (kp)ol? ~ in) are the individuals with higher rank than chromosome k. Using Equation

4, Equation 5, and Equation 6 we can now calculate the probability that offspring j replaces

chromosome k in the population using WAMS replacement with the following equation:

13



. 12l Offd @ n 0 . . .. d
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L S
where

h=Fr(k, p) + Ef (k, p) +1,

a=Ef(k,p),

i,. denotes m copies of chromosome iy

Equation 7

In summary, Equation 7 specifies the replacement probability for chromosome k in the
population, given that offspring j was generated after crossover and mutation. It is not hard to see
that fitness plays an important role during WAMS replacement. A high fitness value results in a
high fitness rank ( Fr(k, p) ) value in the population. A high fitness rank value results in a lower
probability of being selected from the crowding factor group for replacement. Closer similarity to
the offspring, on the other hand, increases the probability of being selected into the crowding
factor group. The combination of similarity to the offspring and fitness determines the

replacement probability of an individual in the population.

6. A Closer Look at Crowding Selection
In this section we examine the properties of crowding selection more closely. Specificaly,

we calculate, under crowding selection, the bounds for the selection probability ( P.(j,k,s,n, p))

of the mate as well as the expected value and variance of the similarity rank. Using Equation 2

we can calculate the lower and upper bounds of P.(j,k,s,n, p), the probability of selecting

chromosome k using crowding selection given that chromosome j is the parent. The lower bound

can be obtained from the highest similarity rank value (S (j,k, p) = n—1) and the upper bound

from the lowest similarity rank value (S (j,k, p) =0). Using these values we have

n°-(n-1)°

1 )
—< <
ns_Ps(j,k,s,n, p) < e

Equation 8

14



Take for example the casen = 10 and s= 2, we have 0.01 < P,(j,k,s,n, p) < 0.19. Although

the probability of selecting the highest ranked individual is small, it is nevertheless non-zero and
given enough trialsit will be selected.

It is not hard to show that P,(j,k,s,n, p) summed over al chromosomes k in Q is equal to
unity for any chromosomes in the population, i.e.,

r-1

Z Ps(jak;S,n, p) =1 when Pi Z0.
k=0
Equation 9
We will prove Equation 9 by adding Equation 2 over all possible rank values. Using m to denote

all possible rank values for S (j,k, p) we can verify that the numerators of Equation 2 sum to

the total number permutations under crowding selection (n®). Since all possible rank values for

marein therange [0, n-1] we have that
n-1
> (n-m°-(n-m-1°=n°.
m=0

Equation 10

Of importance to us is the expected value of the similarity rank of a mate as s (crowding
selection group size) varies. Knowing the expected value of the similarity rank, for different
values of s, will allow us to select an appropriate value for a given fitness function. Using

Equation 2, the expected value of the similarity rank, E(S'), of the mate for any parent is

n-1

1 n-1 1 n-1 1
E(S) =FZOrT[(n—m)s—(n—m—1)s] :le(n—m)S :Fzms.

m=1

Equation 11
In the same manner we can calcul ate the variance Var (S ) to get
Var(S) = E(S?) - E(S)* = isnz_l(Zn—Zm—l)mS - (isnz_lms)2 :
n° & n" &=
Equation 12

From the variance we can calculate the standard deviation as STD(S ) = SQRT (Var(S)).

15



Equation 11 and Equation 12 alow us to observe the mating pressure imparted during
selection by the MNC GA. Figure 5 presents such information graphically for a population size
of 100. Clearly, we can see that the expected rank value decreases as the crowding selection size
increases. Thisindicates that during crowding selection alarge crowding selection size will more
likely generate a mating pair from the same niche. Given a population size, we can calculate the
crowding selection size, s, that will give us the expected rank values that will promote mating
among localise individuals. Moreover, we can observe that the expected rank value do not
change significantly after a crowding selection size of 11. The effect of crowding selection and
its benefits are more noticeable at lower s values. This result agrees with the rule of thumb we
have been using in our experiments. The rule specified a value of s between 2 and 15% of the

population size.
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Figure 5: Expected value and variance of the similarity rank of the mate under crowding
selection as a function of the crowding selection size (s) using a population size n = 100.

Another way to look at the effect of the crowding selection size in crowding selection is by
examining the probability distribution for the different rank values. The probability distribution
can be used to answer questions about the probability for a specific rank value. For example, one
can calculate the probability that chromosome with rank k is selected for mating. Figure 6 shows

the probability distribution for a crowding selection size of 1, 6, and 11. Again, we can observe
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that a higher crowding selection size will increase the probability that a lower rank individual
(which means more similar in our case) is selected as a mate. Similarly, we can use these results
to calculate, for a given population size, the crowding selection for a specific rank value and
selection probability. These results allow us to select appropriate parameters to control how
much localised mating we want for a particular problem. For example, suppose you would like
the probability of selecting an individual with rank 10 to be 0.01. Using Equation 2 we can

calculate the value of s necessary for crowding selection.
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Figure 6: Probability distribution of rank values for the mate under crowding selection using a
population of size n = 100.

7. A Closer look at Worst Among Most Similar Replacement
In this section we further examine the properties of WAMS replacement. Specificaly, we

want to look at the effect of the parameters g and f on replacement. Recal that in WAMS
replacement f crowding groups, each with g individuals, are formed by choosing individuals at
random (with replacement) from the population. Then the most similar individua (to the
offspring) in each crowding group is selected to form the crowding factor group with f
individuals. The least fit individual in the crowding factor group is replaced by the offspring in
the population.
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Creating a crowding group is similar to crowding selection. All the results obtained in
Section 6 apply directly to the creation and selection of individuals to crowding groups. In
summary, increasing the value of the group size, in this case g, decreases the expected similarity
rank of the individual, thus increasing the probability of selecting individuas from the same
niche. During replacement this means that offspring are more likely to replace members of the

same niche when using higher values of g.
Recall that S (j,k, p) denotes the similarity rank of chromosome k in the population with

respect to chromosome j, the offspring. That is, there are S (j,k,p) chromosomes in the
population that are more similar to the offspring than chromosome k. Assume also that no two
chromosomes in the population have the same similarity rank. Using Equation 2, the probability
that chromosome k in the population is selected from a crowding group is

(n=-8(j,k,p)° = (n=S(j,k, p) - 1)°
n? '

P.(j.k,g,n,p) =

Equation 13

A chromosome will be in the crowding factor group if it is selected from at |east one of the
crowding groups. Since there are f crowding groups, the probability that chromosome k is

selected into the crowding factor group is

P.(j.k,0,f,n,p)=1-(1-R(j.k,9,n,p))",
Equation 14

where

(1-P(i.k,g.np)’
is the probability that chromosome k is not selected from any of the crowding groups.

Once the individuals are selected from the crowding groups to form the crowding factor
group, fitnessis used to select the individual being replaced by the offspring. Here the individual
selected is the one with the lowest fitness in a group of f individuals. Once selected into the
crowding factor group, the chromosome replaced by the offspring must be the one with the

lowest fitness in the group. For simplicity, let us assume that each of the chromosomes in the
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population can be assigned a unique fitness rank, from O to n-1. Let us also assume that the
fitness rank values are assigned in ascending order of fitness, that is, a value of O is assigned to
the individual with the lowest fitness, 1 to the second lowest fitness, and so on until the most fit

individual gets the fitness rank of n-1.

Let Fr(k,p) denote the chromosomes in the population with lower fitness rank (lower
fitness value) than chromosome k. Let Ef (k, p) denote the chromosomes in the population with
equal fitness rank as chromosome k. We can use Equation 3 again to calculate the probability,

P, (k, f,n,p), that chromosome k with fitness rank Fr(k, p) is selected from a group of f
chromosomes selected at random with replacement. Similar to crowding selection, but using
fitness rank instead of similarity rank. Replacing similarity rank by fitness rank and ignoring
chromosome j we have,

(n—Fr(k,p)" —(n-Fr(k,p) - Ef (k, p))’
Ef (k, p)n’ '

P (k. f,n,p) =p,

Equation 15

A simpler form of Equation 15 exists when the fitness ranks of the chromosomes in the

population have different fitness values. In this case Ef (k, p) =1 and p, =1, and we get

P (k. f.n,py = M= FrCP) —n(fn— Frik, -

Equation 16

Not accounted for in the above equation is how the fitness rank, of the individuals selected
to the crowding factor group, is affected by the similarity rank to the offspring. Intuitively one
would expect the fitness rank of the offspring to be relatively close to that of similar individuals.
Since the crowding factor group is a group of most similar individuals to the offspring, the
fitness rank of the individual selected for replacement is therefore dependent on its similarity
rank. Nevertheless, to analyse the effect of WAMS in the population, we will assume that the
fitness rank of a chromosome in the population is independent of its similarity rank to the
offspring. Then, we can calculate the replacement probability under WAMS replacement by
multiplying Equation 14 and Equation 16. The probability, P.(j,k,g,f,n,p), that a
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chromosome k with fitness rank Fr(k, p) and similarity rank S (j,k,p) is replaced by a

chromosome j, the offspring, under WAMS replacement is given by
P.(i.k,g,f.n,p) = P(j,k,g f,npP (k f,np)=Q2-Q2-P(j.kagnp)" )Pk f,np).
Equation 17

From Equation 17 we can calculate E( &, Fr), the expected similarity rank and fitness rank
values of the chromosome replaced by the offspring under WAMS replacement. Given a

population size n, crowding group size g, and crowding factor f we have

=SS q_(n=9)°- (n -0 An-Fr)' ~(n-Fr-0'C
E(S,Fr)_;z QLBL H%K | :

n

Equation 18

The expected fitness rank value, E(Fr), can aso be calculated in the same manner using as the
expected similarity rank under crowding selection, Equation 11, with the exception of the group
size which is given by the crowding factor, f, in this case. In contrast, the expected similarity rank

value, E(S), is affected by the number of crowding groups, f, formed.
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Figure 7: Expected fitness rank values under WAMS replacement as a function of the crowding
group size, g, and crowding factor, f for a population of size 100.

There are various things that can be pointed out from these results. Increasing the crowding
factor group size, f, increases the probability that lower fitness individuals are replaced in the
population. The size of the crowding group determines the likelihood that the offspring replaces
similar individuals. The effect of the crowding factor and crowding group size values can be seen
in Figure 7. As the value f increase, it is more likely that an individual with low fitness rank is
selected. Also shown in Figure 7, as the value of g increases it is more likely that an individual
with low similarity rank (more similar to the offspring) is selected. Increasing the values of g in
the WAMS replacement operator increases inter-niche competition, i.e., the probability of
selecting a more similar chromosome for replacement. On the other hand, increasing the value of
f increases intra-niche competition, i.e., the probability that alow fitness individual is selected for

replacement.
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Plot A: Probability Distribution under WAMS Replacement (g =5, f=3) Plot B: Probability Distribution under WAMS Replacement [g=5f=5]
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Figure 8: Probability distribution, ungr WAMS replacanent, for the individualsin apopuation
of size 100.Plot A shows the distribution for a aowding groupsize of 5 and a aowding fador of
3. Plot B shows the distribution for a aowding group size of 5 and a aowding fador of 5.

Figure 8 shows the dfed of increasing the value of f on the probability distribution d the
individuals in the popuation d size 100. As the value of f increases 2 daes the probability of
seledion for individuals with low fitness rank, i.e., low fitness vaues. It is the WAMS
replacement operator that applies the “survival of the fittest” metapha to the members of the
popuation. Individuals with higher fitness are more likely to survive from generation to
generation. The WAMS replacament operator also increases the likelihood d high fit individuals

to reproduce because they are most likely to survive for many more generations.

8. Empirical Results
In this dionwe gply the MNC GA to a hypatheticd function F(x, y) and colled empiricd

data @ou the ranks of the individuals sleded for mating and replacanent. We will then
compare the ampiricd results with the results predicted by work presented in the previous
sedions. Spedficdly, we will cdculate the arerage simil arity rank of the mate during crowding
seledion and the average fitnessrank o the individual seleded for replacement using WAMS.
The function F(X, y) is given by the equation

Foxy) =) H, /1+WI(x = X)? + (y = ¥)?1,
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where
X = [45000, 15000], Y =[2000, 62000], H =[100, 100], W =[0.0004, 0.0004].

This function has two peaks of equal height, 100, located at coordinates (45000, 2000) and
(15000, 62000). A population size of n = 100 was used and the GA was run for 50 generations. A
total of 5000 selections were used in each run to calculate the average similarity rank of the mate
in crowding selection. Similarly, atotal of 5000 replacements were used to calculate the average
fitness rank of the individual replaced by the offspring.

Table 1 shows the results for different values of crowding selection size (s), crowding group
size (g), and crowding factor (f). The expected values for the similarity rank agreed with the
empirical values calculated for the different parameters. The expected values for the fitness rank
however did not agree in many places with the empirical values. Only the empirical values for
rows 1, 5, and 9 are close to the expected values. Some of the discrepancy can be accounted for
by the function used for the experiment. The assumption we made about the independence of
similarity and fitness to simplify the results does not apply for F(X, y). The fitness of individuals
in a neighbourhood is very dependent to their proximity. The larger the value of g during WAMS
replacement, the more likely that the individual selected for replacement will belong to the same
neighbourhood as the offspring and therefore have similar fitness value. This effect can be
observed inrows5to 8in Table 1. The larger the value of g, the large is the discrepancy between
the observed fitness rank and expected fitness rank of the selected individual.

Table 1. Comparison of empirical results and expected values for the similarity rank and fitness

rank. Column 1 shows the values for crowding selection size (s), crowding group size (g), and
crowding factor (f) used in the MNC GA.

(sg.f)

Empirical Average
Similarity Rank in
Crowding Selection

Expected Average
Similarity Rank in
Crowding Selection

Empirical Average
I ndividual Fithess
Rank in WAMS

Expected Average
I ndividual Fithess
Rank in WAMS

(1.5.3) 51.0716 49.5 26.9386 24.50
(5.5.3) 16.2428 16.17 34.5012 24.50
(10.5.3) 9.5104 8.6 34.87 24.50
(15.5.3) 6.5272 5.76 34.722 24.50
(5.1.3) 16.9072 16.17 24.3106 24.50
(5.5.3) 16.2428 16.17 34.5012 24.50
(5.10.3) 16.4124 16.17 39.589%4 24.50
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(5.15.3) 16.5404 16.17 40.1656 24 50
(5.5.1) 16.8732 16.17 50.7122 49.5
(5.5.3) 16.2428 16.17 34.5012 24.50
(5.5.5) 16.442 16.17 26.9186 16.17

To alesser extent, the convergence properties of the MNC GA can aso be attributed to the
discrepancy of some of the values. As the individuals in the population start to converge to the
peaks in the function, the population becomes homogeneous thus affecting the average fitness
rank values. The expected value as calculated in the previous section does not account for

duplicate individuas in the population.

Nevertheless the results we obtained show the pattern we presented in Figure 7. The average
fitness rank value of the individual selected for replacement decreases as the vaue of the
crowding factor is increased. This means that low fit individuals are more likely to be selected
for replacement. In the same manner, when the crowding group size is increased so does the
likelihood of selecting and individual from the same neighbourhood as the offspring. It is this
balance between inter-niche competition and intra-niche competition that allows the MNC GA

the evolve individual s to different nichesin the search space.

9. Comments and Conclusions
The results presented here brings us closer to an understanding of the effect of different

parameters in the MNC GA. The effect of the crowding selection size, s, is clear. Increasing its
value increases the likelihood of selection of a mate from the same niche as the parent. Vaues
between 5% and 15% of the population size are appropriate for selecting mating pairs from the
same niche and at the same time alowing mating between pairs of different niches . The higher
the value of the crowding selection size, the higher is the mating pressure during selection. The
value of s controls the amount of inter-niche and intra-niche breeding in the MNC GA. Using the
results from Section 6, the appropriate value of s can be selected to achieve the desire mating

pressure during arun.

The effect of WAMS replacement can also be explained by the values of the crowding group
size, g, and crowding factor, f, parameters. Competition between members of same niche can be

increased by increasing the value of the crowding group size. On the other hand decreasing the
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value of the aowding group size increases competition among members of different niches. The
risk here is that niches with lowered average fitnessmay nat be &le to maintain any individuals
in them. By using appropriate values for the aowding goup size and crowding fador we can
increase replacament of low-fitnessindividuals from the same niche dlowing the MNC GA to
converge to the top d different niches. Vaues between 5% and 15% of the popuation size ae

also acceptable for the aowding groupsize (Cedeiio, 19935.

Increasing the value of the aowding fador, increases the fitnesspresaure for the individuals
in the popuation. The probability that alow fit individual in the popdationis replacel increases
as a function d the aowding fador. It clealy shows that the WAMS replacement operator
applies the “survival of the fittest” metapha to the members of the popuation. Moreover, the
MNC GA does nat use fitnessduring seledion. The likelihoodthat an individual participates in
mating is diredly influenced by the WAMS replacaement operator. WAMS replacanent all ows
high fit individuals to survive for many more generations al owing them to participate in mating
more often. Vaues between 2 and 10% of the popuation size ae recommended values for the

crowding fador.

The value of g controls the anourt of inter-niche and intra-niche competition in the MNC
GA. The lower the value of g, the higher the competition ketween members of different niches.
The value of f, onthe other hand, controls the seledive presaure in the MNC GA. The higher the
value of f, the higher the dances of eliminating low fit individuals using WAMS replacement.
Both values can be combined to achieve the desire seledive presaure and riche competitionin a
run. The values of g and f control the dasscd tradeoff between exploration and exploitationin
GAs.

In order to acarately predict the replacement probability under WAMS it is necessary to
determine the dependency between the simil arity rank and the fitnessrank. This dependency is
diredly affeded by the fitnessfunction and the seach spacebeing analyzed by the GA. It seems
to be beneficia to incorporate the fitnessfunction as part of the analysis to oltain more acarate
results when applying the MNC GA. Knowing how different parameters affed the cnwvergence
properties of the dgorithm, to dfferent fitness functions, will make its applicaion to cther

problems easier.
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