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Abstract. In this paper, we introduce an interactive Internet traffic re-
play tool, TCPopera. TCPopera tries to accomplish two primary goals:
(1) replaying TCP connections in the stateful manner, and (2) supporting
traffic models for trace manipulation. To achieve these goals, TCPopera
emulates the TCP protocol stack and replays trace interactively in terms
of the TCP connection-level parameters and the IP flow-level parame-
ters. Due to the stateful TCP connection replay feature of TCPopera,
it ensures no ghost packet generation which is a critical feature for the
test environments where the accuracy of protocol semantics are of fun-
damental importance. In our validation tests, we showed that TCPopera
successfully reproduces the trace records in terms of a set of traffic pa-
rameters. Also we demonstrated how TCPopera can be deployed in the
test environments for intrusion detection and prevention systems.

1 Introduction

For the purpose of testing new applications, systems, and protocols, the net-
work research community has a persistent demand for the traffic generation
tools that can create a range of test conditions similar to those experienced in
live deployment. Having an appropriate tool for generating controllable, scal-
able, reproducible, and realistic network traffic is of great importance in various
test environments including laboratory environments [1, 2], simulation environ-
ments [3, 4], and emulation environments [5–9]. When the tools fail to consis-
tently create realistic network traffic conditions, new systems will have the risk
of unpredictable behavior or unacceptable performance when deployed in live
environments.

There are two different approaches to generate test traffic: the trace-based
traffic replaying and the analytic model-based traffic generation. The trace-based
traffic replay approach replays a recorded stream of IP packets from the real net-
work to the test network. This approach is easy to implement and mimic activity
of a known system, but the replayed traffic might not be representative unless
the congestion situation in the test network is the same. Also, because it treats
the traffic characteristics of the trace records as a black box, it is difficult to ad-
just the trace for different test conditions. In contrast, the analytic model-based
traffic generation approach starts with mathematical models for various traf-
fic/workload characteristics, and then produces the traffic adhere to the models.



This approach is challenging because it is necessary to identify important traf-
fic characteristics to model and those characteristics must be empirically mea-
sured beforehand. Furthermore, it can be difficult to produce a single output
that accurately shows all traffic characteristics. However, this approach is very
straightforward to tune the parameters for traffic models to adjust the traffic.

Although choosing an appropriate traffic generation method for the test en-
vironment depends on its primary goal, there are some test environments where
both the realism of the trace contents and the accuracy of protocol semantics
are of fundamental importance. For example, the best test traffic for IPS (In-
trusion Prevention Systems) test environment is the one capturing the attacks
or suspicious behaviors from the real network. Besides, how we can provide this
trace record for the test environments without breaking protocol semantics is
a challenging issue. For such a test environment, neither the trace-based traf-
fic replay approach nor the analytic model-based traffic generation approach is
sufficient to satisfy the test purposes.

In this paper, we introduce an interactive Internet traffic replay tool, TCP-
opera, that follows a middle road between the trace-based traffic replaying and
the analytic model-based traffic generation. The new traffic replay paradigm is
based on the idea that the trace records are the combination of packet streams
and traffic properties. That is, the traffic properties (expressed in the traffic
parameters) decides the timing information of an individual packet. Thus, if we
can properly reverse-engineer the trace records, the traffic properties can be sep-
arated from the packet streams. Then, the TCPopera replay engine reproduces
the trace records according to the new traffic parameters based on analytic traffic
models.

The TCPopera architecture is invented to support an interactive traffic re-
playing at the IP flow level that each flow is reproduced by a POSIX thread [10].
There are several design goals for the TCPopera architecture. First, TCPopera
ensures no ghost packet generation. TCPopera emulates the TCP control block
for each connection in order to replay TCP connections in the stateful man-
ner. Second, TCPopera supports various traffic models to overcome the inherent
drawback of conventional traffic replay tools by implementing the extensible
internal library for future traffic models. Third, TCPopera resolves the inter-
connection dependencies within a single IP flow by employing a simple heuristic
based on the assumption that the packet sequences between two hosts reflect the
history of activities between two hosts. Next, TCPopera supports the environ-
mental transformation to help replaying trace records in different test environ-
ments. Last, TCPopera is designed to support scalability to be deployed in the
large-scale test environment. This goal requires the scalable control mechanism
based on the (graphic) user interface.

We evaluated the TCPopera’s capabilities in two ways. First, we conducted
the small test environment using the network emulator (Dummynet [11]) to
show the traffic reproductivity of TCPopera in terms of a set of traffic parame-
ters. Second, we evaluated the performance of Snort [13], a public-domain IDS,
over various test traffic conditions recreated by TCPopera in order to demon-



strated how TCPopera can be deployed in the live test environment for security
products. Although we found out the side effects of the current TCPopera imple-
mentation, the validation test results showed that the possibility of TCPopera
to be used to evaluate new security products under actual operating conditions.
For the above tests, we used both the 1999 MIT’s Lincoln Lab (LL) IDEVAL
dataset [12], because this dataset include the synthetic attack traffic for the pur-
pose of the intrusion detection system evaluation, and the ITRI real traffic trace
from Taiwan.

We demonstrated the ability of the current TCPopera implementation through-
out the validation tests. We compared the TCPopera traffic to the input trace
records in terms of traffic volume and other distributional properties. In the
traffic reproduction test, we found that TCPopera successfully reproduced IP
flows in terms of traffic parameters without breaking protocol semantics. We
also demonstrated how TCPopera can be deployed in the live test environments
for evaluating IDS/IPS through the effectiveness test. We observed that Snort
generated different results when we changed the test conditions using TCPopera.
At least some of these interesting “differences” we discovered, as we will explain
later in this paper, are due to the implementation bugs of Snort.

Currently, TCPopera has been used by one commercial security vender al-
most on a daily basis in developing/debugging their IPS boxes. A typical scenario
is that a tester (usually in another city) found a false negative (i.e., not detecting
something that should have been detected) of the tested IPS box. The tester is
asked to capture the whole traffic trace, and sends the trace to the development
team. The development team will then use TCPopera to interactively replay the
trace and revise/debug the signatures until the attacks are correctly detected
and handled. Similarly, this company is also using TCPopera to revise the sig-
natures to correctly handle false positives found against real traffic. We were told
that the TCPopera framework to easily repeat the test until the false negatives
or positives are fixed.

This paper is organized as follows. After presenting related work in section
2, we describe the issues related to the TCPopera design and implementation to
support the interactive traffic replaying in section 3. In section 4, we present the
results of out validation tests and analyze them. Then, we conclude our work
and present the future direction of the TCPopera development in the section 5.

2 Related work

For the test environments for security products, high-volume traffic/workload
generation tools are insufficient to satisfy the test conditions. They can be de-
ployed to provide the background traffic to test the performance under load, but
they are not capable of creating the attack traffic. For this reason, the security
product testing groups still prefer the trace-based traffic replay approach in or-
der to evaluate the security functions of the products. In this section we present
the overview of the open-source traffic replay tools.



TCPreplay [14], originally developed to provide more precise testing method-
ology for the research area of network intrusion detection, is a tool designed to
replay the trace files at arbitrary speeds. The recent versions of TCPreplay have
added the multiple interface support for testing in-line devices. TCPreplay pro-
vides a variety of features for replaying traffic for both passive sniffer devices as
well as in-line devices such as routers, firewalls, and IPS. IP addresses can be
rewritten or randomized, MAC addresses can be rewritten, transmission speeds
can be adjusted, the truncated packets can be repaired, and the packets are se-
lectively sent or dropped. Because the main purpose of TCPreplay is to send the
capture traffic back to the test network, the exact opposite of TCPdump [15], it
cannot connect to services running on a device. To overcome this problem, the
developers of TCPreplay developed the Flowreplay program. Flowreplay [14] can
connect via TCP or UDP to server and sends/receives data based on a pcap cap-
ture file [16]. It provides more testing methodologies for testing environments,
however, the major limitation of Flowreplay is that it is only capable or replaying
the client side of a pcap against a real service on the target host.

TCPivo [17] is a high-performance replay engine that accurately reproduces
traffic from a variety of existing trace collection tools. The design goal of TCPivo
is to have a cost-effective tool that easily runs on pre-existing systems such as
x86-based systems. To achieve this goal, TCPivo considered the following issues.
First, TCPivo uses the on-the-fly prefetching of a packet from a trace file to
minimize the latency of I/O operations. Using mmap() and madvise() functions,
TCPivo implemented a double buffered approach that one buffer for prefetching
and the other for being actively accessed. Second, TCPivo uses usleep() with
real-time priority set to improve the accuracy. Next, TCPivo used the null-
padded payload by getting rid of reading the payload from the file system in
order to speed-up the packet transmission loop. Last, TCPivo used a real-time
scheduling priorities for Linux. Alternatively, making the kernel preemptible or
reducing the longest non-preemptible path can be other choices for real-time
processing scheduling.

Monkey is a tool to replay an emulated workload identical to the site’s nor-
mal operating conditions [18]. Monkey infers delays caused by the client, the
protocol, the server, and the network in each captured flow and replays each
flow according to them. Monkey has two major components: Monkey See, a tool
for TCP tracing, Monkey Do, a tool for TCP replaying. Monkey See captures
TCP packet traces at a packet sniffer adjacent to the Web server being traced
and performs offline trace analysis to extract observable link delay, packet losses,
bottleneck bandwidth, packet MTUs, and HTTP event timing. Monkey Do con-
sists of three emulators. The client emulator replays client HTTP requests in
sequence by creating user-level sockets for each connection. The server emulator
presents the HTTP behavior of a Google server interacting with a client. Last,
The network emulator recreates the network conditions identical to the one at
the time the trace was captured.

Tomahawk is a tool for testing the performance and in-line blocking capabili-
ties of IPS devices [19]. It is run on a machine with three network interface cards



(NIC): one for management and two for testing. Two test NICs are typically con-
nected through a switch, crossover, or NIPS. Tomahawk divides a packet trace
into two parts: The client packets, generated by the client, and the server pack-
ets, generated by the server 1. When Tomahawk replays the packet, the server
packets are transmitted on eth1 and the client packets are transmitted on eth0
as default. If a packet is lost, the sender retries after a timeout period. If progress
is not made after a specified number of retransmissions, the session is aborted.
When the replay is finished, Tomahawk reports whether the replay completed
or timed out. For the IPS testing, if the connection containing the attacks are
timed out, it implies that IPS blocked the attack successfully. Besides, Toma-
hawk can test the performance of IPS such as the replaying multiple copies of
the same trace in parallel, replaying multiple packet traces simultaneously, and
Repeatability testing ensuing the IPS is deterministic. However, Tomahawk has
some inherent limitations. First, it is impossible to have the generated traffic
pass through routers because it can only operate across a layer 2 network. Sec-
ond, it cannot handle traces containing badly fragmented traffic, and multiple
sessions in the same pcap can sometimes confuse it, Third, there is mishandling
of TCP RST packet sent by an IPS.

The most significant difference of TCPopera from aforementioned traffic re-
play tools is that TCPopera is designed for interactive trace replaying by sup-
porting the stateful TCP connection. Both TCPreplay and TCPivo work fine
with the passive sniffer devices, but they have the problem in testing in-line
devices such as routers, firewalls, and IPS. Although TCPreplay have recently
added multiple interface support that similar to the functionality of Tomahawk,
its functionality is limited to split the traffic into different NICs. Comparing to
TCPreplay, Tomahawk uses the clever method to control the replay of TCP con-
nections, but its inherent drawbacks prevent it from deploying in the real test
environment such as DETER. Flowreplay and Monkey differ from other replay
tools in that they eventually emulates the TCP connections in the trace records.
However, they also have the limitation in that Flowreplay are only capable of
emulating the client side of the connection and Monkey only emulates the HTTP
traffic.

3 TCPopera

3.1 Design Goals

TCPopera is an advanced traffic replay tool that interactively replays the trace
records in the live test environments. With respect to the live traffic replaying,
there are several requirements TCPopera must take into account in its design.
The following list describes these requirements.

1 The first time an IP address is seen in a file, it is assigned to the client if it is seen
in the IP source address field, or assigned to the server if it is in the destination
address field.



– No ghost packet generation: The reason why the traffic replay tools
generates ghost packets is because they are not capable of replaying TCP
connections in the stateful manner. Since ghost packets break the protocol
semantics, they degrade the accuracy of the testing results. For this reason,
no ghost packet generation is one of fundamental requirements in the TCP-
opera design.

– Traffic models support: One drawback of existing traffic replay tools is
that is is difficult to adjust traffic for various test conditions. To overcome
this drawback, TCPopera should support various traffic models to adjust
trace records in terms of traffic parameters. To achieve this goal, TCPopera
should have an appropriate reverse-engineering tool to extract the traffic
properties from the input traces.

– Inter-connection dependency: Identifying dependencies among TCP con-
nections from the trace records is a complicated task because it requires not
only a wide understanding of TCP applications, but also a huge amount of
computation. To make it worse, if the connection dependencies exists across
IP flows, e.g. stepping stone connections, it is challenging to identify inter-
connection dependencies without inspecting the packet payload. TCPopera
should support inter-connection dependencies at the reasonable cost of com-
putation.

– Scalability and extensibility: No traffic replay tool has been used in the
large-scale emulation environment such as DETER because they are orig-
inally designed to be used in small-scale test environment. Scalability is a
critical requirements for TCPopera to be deployed in the large-scale em-
ulation environments. Extensibility is another important requirement from
the aspect of software engineering. New traffic models and various protocol
implementations should be added without major changes in the TCPopera
design.

– Environment transformation: One of challenges in the traffic replaying
is to map the original network configurations to those of the target network
because this task requires more than a simple address remapping currently
used in most of traffic replay tools. TCPopera must know the routing infor-
mation of test environments to correctly deliver the replayed packets to the
its destination.

3.2 TCPopera Architecture

TCPopera is property-oriented traffic replay tool that follows a middle road
between the trace-based traffic replay approach and the analytic model-based
traffic generation approach. TCPopera separates the traffic properties from IP
packet streams in trace records, and recreates new IP packet streams that sta-
tistically equivalent to the input traffic models. Each TCPopera node represents
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a set of hosts/networks and interacts with its peer TCPopera nodes. Figure 1
depicts the flow model of each TCPopera node.

TCPopera performs two phases of trace processing for an interactive trace
replaying: flow preprocessing and flow replaying. During the flow preprocessing
phase, a TCPopera node reads input trace records and extracts information
including traffic parameters and network configurations. The TCPopera users
can add or modify the traffic parameters and network configuration for a new test
environment. When the flow preprocessing phase is completed, the TCPopera
node first synchronizes the timing information with its peers, and then begins
the interactive traffic replaying in terms of traffic parameters configured at the
previous phase.

Figure 2 shows the important components of the TCPopera architecture.
TCPopera users can edit the configuration files to configure test conditions.
Then, the Flow Preprocessing module reads these configuration files and ad-
just traffic parameters and network configurations. Also, it extracts replayable
IP flows from the trace records. The IP flows prepared by the Flow Prepro-
cessing module is replayed by the IP Flow Processing module. Each IP flow is
reproduced by a POSIX thread [10] in terms of traffic parameters. The TCP-
opera control module provides the out-of-band communication channels among
TCPopera nodes to synchronize the replaying information and timing. The IP
Flow Processing module keep track of the state of TCP connections using the
TCP functions library and the TCPopera timer provides the timing information
needed to emulate the TCP control block. In addition, the Packet Capturing
module helps reading inbound packets from the link, and the Packet Injection
module helps reconstructing and injecting packet on the wire.
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3.3 Implementations

Flow Preprocessing The Flow Preprocessing module is responsible for prepar-
ing the IP flows and network configurations for the flow replaying phase. It ex-
tracts the IP flows from the trace records according to the host/network represen-
tation list that can be configured by the TCPopera user or the self-configuration
option. During the IP flow extraction, the Flow Preprocessing module also col-
lects traffic parameters for each connections including round-trip time (RTT),
transmission rate, packet loss rate, TCP receiver buffer size, path MTU, and
other parameters for the initiation of the TCP control block. This module is
also responsible for environment transformation including address remapping,
and the defaultrouter setting. The IP addresses and MAC address should be
rewritten based on them in order for the replayed packets to be accurately routed
to its destination in the test environment.

IP Flow Processing The IP Flow Processing module is the key component of
the interactive traffic replay feature of TCPopera. It creates a POSIX thread for
each IP flow, and the creation time of each thread is strictly based on the empiri-
cal values observed in the input trace files 2. The key feature of this module is the
stateful replaying of TCP connections. The IP Flow Processing module emulates
the TCP control block for each TCP connection using the TCP functions library.
Because of this stateful replaying approach, TCPopera can guarantee no ghost
packet generation. Another important feature of the IP Flow Processing module
is how to preserve the inter-connection dependencies. the current implemen-
tation of TCPopera only supports the inter-connection dependencies within a
single IP flow, and this feature will be extended to support them across IP flows
in the following versions of TCPopera. To implement this feature, TCPopera

2 The shared resources are strictly synchronized among IP flow threads using the
thread synchronization mechanism



used the simple heuristic that the IP Flow Processing module strictly preserves
the packet sequence of trace records within a single IP flow. This heuristic is
based on the assumption that the trace records of a single IP flow captures the
communication history between two hosts. For the inter-flow dependencies, the
TCPopera only supports the inter-flow time that empirically measured.

TCPopera Control The TCPopera Control module is responsible for synchro-
nizing the time and information among TCPopera nodes. This module provides
an out-of-band communication channel to exchange the control message among
them. First, TCPopera nodes synchronize their host/network representation list
in order to find out their peer nodes are active 3. Based on this synchronization
result, each TCPopera node sorts out the replayable IP flows. Second, TCPopera
nodes synchronize the timing of the replaying phase by transmitting the control
packets via the out-of-band communication channel. In the current TCPopera
implementation, one of the TCPopera nodes plays a synchronization server and
controls the whole synchronization procedure.

Packet Injection/Capturing The Packet Injection/Capturing modules are
the components to make it possible the live traffic replaying. Any outgoing
packet from the TCPopera node is passed to the Packet Injection module to
be written on the wire. If there is any modification in the packet, the check-
sum value is recalculated. The Packet Injection module is implemented using
the libnet library, a high-level API to construct and inject network packets [20].
The libnet library helps construction new packets and modifying existing pack-
ets by providing simplified interfaces. Likewise, any incoming packet destined to
the virtual addresses of a TCPopera node is captured by the Packet Capturing
module and passed to the flow processor. This module is implemented using one
of most widely used packet capturing utilities, pcap [21]. Since each TCPopera
node can have multiple virtual network addresses, the pcap process should set
the filtering rules to only capture packets destined to its virtual addresses.

TCP Functions The TCP functions library provides TCP functionalities needed
to emulate the TCP control block for each TCP connection. This library includes
most of TCP features related to TCP timers, timeout & retransmission, fast re-
transmit & fast recovery, flow & congestion control, and RTT measurement.
The current implementation of the TCP functions library is heavily based on
the TCP implementation of BSD4.4-Lite release, described in [22]. The following
list shows the implementation details about the TCP functions library.

– TCP timers: TCP maintains seven TCP timers for each connections. TCP-
opera implemented two TCP timer functions: one is called every 200ms (the
fast timer) and the other is called every 500ms (the slow timer). While the
delayed ACK timer is implemented using the fast timer, other six timers

3 To replay an IP flow, two TCPopera nodes are needed to represent both endpoints.



are implemented using the slow timer. Based on the TCP implementation
in [22], we implemented the six timers excluding the delayed ACK timers
using four timer counters that decrement the number of clock ticks whenever
the slow timer expires.

– Timeout & retransmission: Fundamental to TCP’s timeout and retrans-
mission is the measurement of RTT experienced on a given connection be-
cause the retransmission timer has values that depend on the measure RTT
for the connection. The retransmission timer is updated by measuring RTT
for data segments and keeping track of smoothed RTT estimator and smoothed
mean deviation estimator [23, 24]. If there is any outstanding TCP data seg-
ment unacknowledged when the retransmission timer expires, TCPopera re-
transmits the data segment.

– Fast retransmit & fast recovery: In TCP, it is assumed that three or
more duplicate ACKs in a row is a strong indication of a packet loss. The
TCP sender then retransmits the missing segment without waiting for a
retransmission timer expires. Next, the congesting avoidance, but not slow
start is performed. This is called fast retransmit and fast recovery. TCPopera
implements these two TCP features according to the modified TCP conges-
tion avoidance algorithms proposed in 1990 [25].

– Flow & congestion control: Congestion avoidance is the flow control im-
posed by the sender, while the advertised window is the flow control imposed
by the receiver. The former is based on the sender’s assessment of perceived
network congestion, and the latter is related to the amount of available buffer
space at the receiver for the connection. TCPopera supports slow start and
congestion avoidance that are independent algorithms with different objec-
tives. Congestion avoidance and slow start require that two variables for
each connection: a congestion window (cwnd) and a slow start threshold size
(ssthresh). When the congestion is indicated by a timeout or the reception
of duplicate ACKs, both variables are adjusted.

– RTT measurement: Since RTT measurement is fundamental to TCP’s
timeout and retransmission, the accuracy of the RTT measurement is im-
portant. As the most Berkeley-driven TCP implementation, TCPopera mea-
sures only one RTT value per connection at any time. The timing is done by
incrementing a counter every time according to the slow timer (500ms tick).
TCPopera calculates the retransmission timeout (RTO) by measuring RTT
of data segments and keeping track of the smoothed RTT estimator and a
smoothed mean deviation estimator[23]. Besides the retransmission timer,
the persist timer also depends on the measured RTT values.
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4 Validation

In this section, we validate the ability of TCPopera to reproduce traffic that
statistically similar to the input trace and the effectiveness of TCPopera traffic
to evaluate the security products. For the validation tests, we used 1999 MIT’s
IDEVAL dataset (IDEVAL99). Specifically, we used the first 12 hours of traffic
collected from the inside network of the testbed at the first day of the first testing
weeks (03/29/1999) 4. In addition, the real traffic dataset contributed from ITRI
(Industrial Technology Research Institute, Taiwan).

4.1 Test Environment

In our validation test environment, two TCPopera nodes are used as shown in
Figure 3. The internal TCPopera node represents the home network appeared
in the input trace and the external TCPopera node represents all external hosts
in the input trace. Both TCPopera nodes runs on the machine with 2.0 GHz
Intel Pentium 4 processor with 768MB RAM installed. The Internal TCPopera
nodes runs on Redhat 8.0 (with 2.4.18 kernel) and the external one runs on
Redhat 9.0 (with 2.4.20 kernel). Two TCPopera nodes are directly connected
to each interface of the dual-homed FreeBSD 5.0 Firewall (ipfw), running on
455MHz Pentium II Celeron processor with 256MB RAM installed, with the
Dummynet support to emulate network conditions. During the test, we used
Snort 2.3, a public-domain IDS as the target security system to evaluate. The
Snort 2.3 ruleset was used and the stream4 analysis is enabled to test its stateful
operations.

4.2 Results

Reproductivity test First, we validate the traffic reproductivity of TCPopera.
We reused the TCP connection-level parameters to emulate the TCP control
block for each connection. Second, we applied 1% packet loss for the inbound
traffic at the network emulator to test how TCPopera reacts against one of

4 The reason we used IDEVAL99 in our test is because why this dataset contains
attack traffic synthetically generated to test IDS.



common network feedback. Table 4.2 shows the simple comparison of traffic
volume and TCP connections between the input trace and the replayed traffic
by TCPopera. Hereafter, we refer them to Input trace, TCPopera (no-loss), and
TCPopera (1%-loss).

Table 1. Comparison of traffic volume and TCP connections between the input trace
and the replayed traffic.

Category Input TCPopera
trace no loss 1 % loss

IP Packets 1,502,584 1,552,882 1,531,388

IP Bytes 234,434,486 234,991,187 232,145,926

TCP Packets 1,225,905 1,276,195 1,254,762

TCP Bytes 194,927,209 195,483,762 192,647,088

UDP Packets 276,286 276,294 276,234

UDP Bytes 39,474,602 39,475,286 39,466,797

ICMP Packets 393 393 392

ICMP Bytes 32,675 32,139 32,041

TCP connections replayed 18,138 18,138 18,043

TCP connections completed 14,974 14,971 14,796

According to the TCP packets categories, both TCPopera traffic send more
TCP packets than the Input trace. The increase of TCP packets in both TCP-
opera traffic is caused by the TCP control packets such as the delayed ACKs
during the TCP control block emulation. When we compare the increase of the
TCP packets to that of TCP bytes, we can figure out more TCP packets are
the control packets (e.g. pure ACKs). This behavior of TCPopera is observed
more clearly in the long-lived interactive TCP connections such as telnet, ssh
applications. For the TCPopera (1%-loss) traffic, the TCP bytes are less than
that in the Input trace while the number of TCP packets replayed is greater
than that of the Input trace. This difference is caused by the dropping of many
short-lived connections. That is, the connection drop from the packet loss dur-
ing 3-way handshaking caused the connection drop, and the data packets in the
dropped connection has never been replayed.

For the further analysis, we plotted the traffic volume over the 1 minute
interval. First, we compared the TCP/IP traffic volume of TCPopera (no-loss) to
the Input trace in Figure 4. According to the traffic volume graphs in both TCP
and IP bytes, we observed that TCPopera successfully reproduced the traffic
similar to the Input trace. Also, we plotted the comparison between the Input
trace and the TCPopera (1%-loss) traffic in Figure 5. Unlike the comparison
result in Figure 4, Figure 5 showed the significant difference at the second hour of
the replaying. We believe this is effect of the packet drop at the network emulator.
To verify this claim, we carefully investigated the input trace and learned the
large amount of short-lived HTTP connections has been replayed during the
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Fig. 4. Comparison of traffic volume between the Input trace and TCPopera (no-loss)

second hour of the Input trace 5. Packet losses at the network emulator changed
the short-lived connections to live longer to complete the connection, and further
the connection drop caused by the SYN packet loss delayed the replaying time
of following connections in the same IP flow. This is because why the TCPopera
node waits for the connection-establishment timer (75 seconds) expires before
dropping connection 6. This TCPopera behavior changes the traffic pattern after
the packet loss event and the amount of changes grows when the the packet loss
happens where the density of short-lived connections is high.

The effect of the packet loss event to TCPopera is more clear when we com-
pare the two distributional properties, inter-connection time and the session
duration, as shown in Figure 6. Both the inter-connection time and the session
duration showed the similar distributional characteristics in that the number of

5 About 30% of connections in the Input trace has been replayed during the second
hour.

6 Because of the heuristic for inter-connection dependencies support within a single
IP flow, the following connections after the packet loss is until TCPopera figures out
how to handle the current connection.
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Fig. 5. Comparison of traffic volume between the Input trace and TCPopera (1%-loss)

samples less than 0.1 second increases in both distributional graphs. When there
is a packet loss or a TCP connection drop by a SYN packet loss, the following
connections within the same IP flow are replayed faster than the Input trace in
order to keep up with the original transmission speed.

Figure 7 shows the example of how the Input trace has been changed by the
packet loss handling of TCPopera. For instance, let us assume that TCPopera is
about to replay 5 connections within a single IP flow. Each connection lived for
0.4 second seconds with 0.1 second inter-connection time, so the total replaying
time planned is 2.4 seconds. Now, let us suppose that the first TCP connection
(C1) experienced the packet loss event and its session duration is extended to
1.4 seconds to retransmit the packet. Then, there are 4 more connections to be
replayed within 1 seconds, and the inter-connection time and session duration
of the following 4 connections should be adjusted to fit in the 1 second period.
This TCPopera behavior has changed the traffic pattern in the second hour of
the Input trace where large amount of short-lived connections are located. This
change in the traffic pattern is more serious if the packet loss event causes the
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Fig. 6. Comparison of two distributional properties: Inter-connection time & Session
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Fig. 7. Example of the changes in the session duration and inter-connection time after
TCPopera handles the packet loss event.

connection drop by the SYN packet loss because TCPopera should wait until the
connection-establishment timer expires which is a typically set to 75 seconds.

Effectiveness test To test the effectiveness of TCPopera traffic in evaluating
security products, we test Snort 2.3, with the latest detection ruleset (2.3) in-
cluding the stream4 analysis. We first ran Snort over the Input trace, and then
we employed Snort into our test environments as shown Figure 3 while TCP-
opera replays the traces. For the test, we used two dataset, one is the IDEVAL99
dataset and the other is ITRI dataset. Due to the space limitation, we only pro-
vide the analysis results of the ITRI dataset in Table 4.2. The ITRI dataset
contains 20-minute real traffic capturing TCP connections between the internal
host (140.96.114.97) and about 2000 external hosts. We added the test results
of the IDEVAL99 dataset in the appendix.



Table 2. The test results on the ITRI dataset over various test conditions. All Snort
rules and stream 4 analysis are enabled during the test.

Signature Classification
Number of alerts

Input TCPopera
trace no loss 1% loss 3% loss

ICMP Destination/Port Unreachable misc-activity 5 5 5 5

P2P eDonkey Transfer policy-violation 3 3 3 3

ICMP Destination Unreachable
misc-activity 1 1 1 1

Fragmentation needed but DF bit is set

ICMP Destination/Host Unreachable misc-activity 2 2 2 2

(stream4) Possible
unclassified 38 212 200 181

retransmission detection

(stream4) WINDOW violation detection unclassified 488 3 1 4

Total 537 226 212 196

Interestingly, Snort only showed difference in both stream4 signatures 7. So,
we performed the deep-inspection on both stream4 signatures to identify the
reasons that caused the difference in the test results. First, (stream4) possible
retransmission detection signature generates an alert when it observes the re-
transmission of packet that has been already acknowledged. This signature is
originally designed to capture potential packet replaying attack. As shown in
Table 4.2, while Snort issued 38 alerts for the input trace, it produced about
5-6 times more alerts for other TCPopera traffic. Based on the careful inspec-
tion of alerts, we found out that the difference between the input trace and the
TCPopera traffic was from the TCPopera’s delayed ACK functionality. TCP-
opera invokes the delayed ACK function every 200ms and transmits the delayed
ACK if there are data segments has not been acknowledged. However, this fea-
ture will cause a confusion to Snort if either the receiver of data segments holds
the acknowledgment, or data segments/acknowledgments have been lost during
transmission. Figure 8 shows the example of how TCPopera converts the original
trace into the new one with delayed ACK feature.

Another interesting observation for the (stream4) Possible retransmission de-
tection signature is the number of alerts is decreasing while we increase the packet
loss rate at the network emulator. This is the expected result because we be-
lieve that the connection drop rate by the failure of connection establishment is
higher with the higher packet loss rate. According to our observation, TCPopera
replayed 3849 TCP connections and completed 1762 connections for TCPopera
(no-loss) traffic. For both TCPopera (1%-loss) and TCPopera (3%-loss) traffic,
TCPopera replayed 3836 and 3812 connections, and completed 1726 and 1668,
respectively 8. The reason of the decrease in the number of replayed TCP con-

7 For all non-stream4 signatures, Snort triggered alerts from the same packets.
8 The number of completed connections includes the gracefully closed connections (us-

ing FIN) and the ungracefully closed connections (using RST) after the completion



01:20:49.403876 IP 24.7.116.14.4662 > 140.96.114.97.1134: P 376:431(55) ack 324 win 65212
01:20:49.405044 IP 140.96.114.97.1134 > 24.7.116.14.4662: P 324:326(2) ack 431 win 65105
01:20:50.723002 IP 140.96.114.97.1134 > 24.7.116.14.4662: P 324:364(40) ack 431 win 65105
01:20:50.933149 IP 24.7.116.14.4662 > 140.96.114.97.1134: P 431:449(18) ack 364 win 65172

(a) Input trace: the acknowledgment of two data segments from
140.96.114.97 has been piggy-backed to the last packet.

17:24:28.866305 IP 24.7.116.14.4662 > 140.96.114.97.1134: P 376:431(55) ack 324 win 65212
17:24:29.389348 IP 140.96.114.97.1134 > 24.7.116.14.4662: P 324:326(2) ack 431 win 65105
17:24:29.789172 IP 24.7.116.14.4662 > 140.96.114.97.1134: . ack 326 win 65212
17:24:30.711409 IP 140.96.114.97.1134 > 24.7.116.14.4662: P 324:364(40) ack 431 win 65105
17:24:30.733341 IP 24.7.116.14.4662 > 140.96.114.97.1134: . ack 364 win 65212

(b) TCPopera (no-loss): TCPopera sends the delayed ACKs for both
data segments from 140.96.114.97.

Fig. 8. TCPdump output to compare the difference between the input trace and the
TCPopera-replayed traffic with respect to the TCPopera’s delayed ACK function.

nections is because the replayed trace is captured from the inner interface of our
firewall in the testbed.

The next stream4 signature is WINDOW violation detection, which is origi-
nally created to detect the suspicious behavior to write the data the outside of
the window. In fact, this behavior was often witnesses in the TCP implementa-
tion of the Microsoft Windows Operating Systems. The stream4 reassembler of
Snort issues an alert for this signature if the following condition is true.

(sequence no.− last acked no.) + data length > receiver’s window size

As observed in Table 4.2, there is a big difference between the input trace
and the TCPopera traffic. After the deep-inspection on the alerts, we found
out that there are only 18 legitimate alerts in the Input trace and others are
false positives. These false positives are caused by the incorrect initialization
for the incomplete TCP connection. We will explain more details related to this
matter with the following example 9. Figure 9(a) shows an example of TCPdump
outputs that caused many false positives in the input trace.

The problem of Snort in processing the TCP connection in Figure 9(a) is that
a variable used for the condition checking is not properly initialized. When Snort
reads the last packet in Figure 9(a), it executes the following program segment
in spp stream4.c, which mistakenly changes the listener(220.141.33.182)’s state
to the ESTABLISHED and make Snort think the 3-way handshaking is finally

of the connection establishment. TCPopera also outputs the details about the closing
results of each TCP connections.

9 All false positives for the WINDOW violation detection signature was from the same
reason as the example in Figure 9(a).



01:12:13.811379 IP 140.96.114.97.3269 > 220.141.33.182.4662: S 4166059610:4166059610(0) win 65535 <mss 1460,nop,nop,sackOK>
01:12:13.879016 IP 140.96.114.97.3269 > 220.141.33.182.4662: P 1:102(101) ack 3686742391 win 65535
01:12:14.018670 IP 140.96.114.97.3269 > 220.141.33.182.4662: P 102:142(40) ack 3686742471 win 65455
01:12:14.093459 IP 220.141.33.182.4662 > 140.96.114.97.3269: P 3686742471:3686742513(42) ack 142 win 64659
01:12:14.104423 IP 140.96.114.97.3269 > 220.141.33.182.4662: P 142:164(22) ack 3686742513 win 65413

(a) Input trace: The client (140.96.114.97) keep sending packets without receiving any
packet from the server (220.141.33.182). The last packet invokes the alert

17:15:53.534364 IP 140.96.114.97.3269 > 220.141.33.182.4662: S 4166059610:4166059610(0) win 65535 <mss 1460,nop,nop,sackOK>
17:16:00.250345 IP 140.96.114.97.3269 > 220.141.33.182.4662: S 4166059610:4166059610(0) win 65535 <mss 1460,nop,nop,sackOK>
17:16:27.310699 IP 140.96.114.97.3269 > 220.141.33.182.4662: S 4166059610:4166059610(0) win 65535 <mss 1460,nop,nop,sackOK>
17:17:08.257095 IP 140.96.114.97.3269 > 220.141.33.182.4662: R 4166059611:4166059611(0) win 65535

(b) TCPopera (no-loss): The internal TCPopera node retransmits the first SYN packets
several times because there was no answer from the server. Then, the connection is reset
by the external TCPopera node.

Fig. 9. TCPdump output to compare the difference between the input trace and the
TCPopera-replayed traffic with respect to the handling of incomplete TCP connection.

done at this point. Then, it checks the window violation condition on this packet.
But, the variable last ack has never been initialized and remains 0 all the time.
So, when Snort checks the condition ((4166059752 − 0) + 22 > 64659), the last
packet violates the condition because the last ack is still 0. In the input trace,
there were many instances of this example and they caused 470 false positives for
the input trace. In contrast, Snort did not generates this type of false positives
for the TCPopera traffic because the TCPopera could not complete the 3-way
handshaking as shown in Figure 9(b). The internal TCPopera node retransmitted
the first SYN packet until the connection-establishment timer expires and then
sent the RST packet 10.

switch(listener->state) {
. . . . . .
case SYN_RCVD:

if(p->tcph->th_flags & TH_ACK) {
listener->state = ESTABLISHED;
DEBUG_WRAP(DebugMessage(DEBUG_STREAM_STATE,

" %s Transition: ESTABLISHED\n", l););
retcode |= ACTION_COMPLETE_TWH;

}
break;

. . . . . .
}

10 The RST packet helps TCPopera nodes to remove the incomplete connection from
the connection list.



17:18:18.947066 IP 140.96.114.97.3756 > 200.82.109.224.http: S 4226095698:4226095698(0) win 65535 <mss 1460,nop,nop,sackOK>
17:18:19.142875 IP 200.82.109.224.http > 140.96.114.97.3756: S 597332127:597332127(0) ack 4226095699 win 8000 <mss 1460>
17:18:19.143128 IP 200.82.109.224.http > 140.96.114.97.3756: R 597332128:597332128(0) win 1
17:18:19.143891 IP 140.96.114.97.3756 > 200.82.109.224.http: . ack 1 win 65535
17:18:19.144149 IP 140.96.114.97.3756 > 200.82.109.224.http: P 1:102(101) ack 1 win 65535

Fig. 10. TCPdump output from one of examples of false positives in TCPopera traffic.

Yet another issue in the (stream4) WINDOW violation detection signature is
related to the RST handling. Basically, the stream4 reassembler of Snort updates
the window size for each TCP segment even if it is RST segment by executing the
following program segment in spp stream4.c. After processing the RST segment
in Figure 10, the window size of the client (ssn->client.win_size) is set to 1
because the RST segment is from the server (200.82.109.224) 11. Later, the last
TCP segment is verified against the window violation condition, Snort issues the
alert because the condition is true ((4226095699− 4226095699) + 101 > 1).

if((direction = GetDirection(ssn, p)) == SERVER_PACKET){
p->packet_flags |= PKT_FROM_SERVER;
ssn->client.win_size = ntohs(p->tcph->th_win);
DEBUG_WRAP(DebugMessage(DEBUG_STREAM, "server packet: %s\n", flagbuf););

}
else{
p->packet_flags |= PKT_FROM_CLIENT;
ssn->server.win_size = ntohs(p->tcph->th_win);
DEBUG_WRAP(DebugMessage(DEBUG_STREAM, "client packet: %s\n", flagbuf););

}

Based on our analysis of alerts issued by the WINDOW violation detection
signature, we found two implementation errors in the Snort’s stream4 reassem-
bling feature. First, the stream4 reassembler failed to keep track of the connection
state when it faces the incomplete connection as shown in Figure 9(a). Second, it
has the problem with the RST segment handling when it processes the connec-
tion shown in Figure 10. Fixing the type of errors is not simple because they are
tightly related to the variables used for various stream4 inspections. We believe
that the effectiveness test results successfully demonstrated how TCPopera can
be deployed in the testing environments for intrusion detection and prevention
systems. Currently, we are planning more in-line devices testing, especially IPS
testing, using TCPopera in order to evaluate their blocking capabilities.

5 Conclusion & Future work

TCPopera is a new traffic replay tool for reproducing IP traffic based on various
flow-level and connection-level traffic parameters extracted from the input trace
11 Another strange behavior from Snort is that it does not reset the connection at this

point because Snort think this RST packet is invalid.



records. These parameters can be either reused to reproduce traffic or changed
to create new traffic. TCPopera sustains the merits of the trace-based traffic re-
playing that is fast, reproducible, and highly accurate in terms of address mixes,
packet loads, and other traffic characteristics. Also, it overcomes the drawback
of conventional traffic replay tools, it is hard to adjust traffic for other test con-
ditions from the input traces, by providing various traffic models can be used to
tune the trace records during replaying. Unlike conventional traffic replay tools,
TCPopera is originally designed to replay traffic on the live test environments.
Because TCPopera can replay the trace records without violating protocol se-
mantics, the live test environments where the accuracy of protocol semantic is
of fundamental importance for the accuracy of test results are the potential
customers of TCPopera.

We demonstrated the ability of the current TCPopera implementation through-
out the validation tests. We compared the TCPopera traffic to the input trace
records in terms of traffic volume and other distributional properties. In the
traffic reproduction test, we found that TCPopera successfully reproduced IP
flows in terms of traffic parameters without breaking protocol semantics. We
also demonstrated how TCPopera can be deployed in the live test environments
for evaluating security products through the effectiveness test. We observed that
Snort generated different results when we changed the test conditions using TCP-
opera and the network emulator and some of them are from the implementation
errors.

The TCPopera project consists of multiple development phases and we have
completed its first phase whose goal was to implement the core modules for
interactive traffic replaying. There are several areas for the next phase of the
TCPopera development. The first area is to extend out traffic models including
UDP traffic models to improve the accuracy of IP flow reproduction. Support-
ing inter-connection dependencies across IP flows also has the high priority in
the next TCPopera development phase. Furthermore, we will add an “evasive
transformation” module into TCPopera such that we can apply different evasive
techniques to any Internet traffic traces. We also intend to implement the TCP-
opera GUI to help the TCPopera configuration (control) and extend TCPopera
evaluation tools by integrating them into the TCPopera GUI. As we mentioned
earlier, we have one commercial vender using TCPopera almost daily under their
development cycle. On the other hand, recently ITRI is using TCPopera to test
Netscreen IPS boxes. We are also planning to perform more in-line devices test-
ing including ITRI’s Network Processor Units (NPU)-based IPS prototype.
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Appendix: The effectiveness test result of IDEVAL99
dataset

Table 3. The detection results from Snort over various test conditions. All Snort rules
and stream 4 analysis are enabled during the test.

Signature Classification
Number of alerts

Input TCPopera
trace no loss 1% loss

ICMP Destination Port Unreachable misc-activity 89 89 89

ICMP PING BSDtype misc-activity 17 17 17

ICMP PING *NIX misc-activity 17 17 17

ICMP PING misc-activity 152 152 152

INFO web bug 0x0 gif attempt misc-activity 185 185 182

ICMP Echo Reply misc-activity 152 152 151

INFO TELNET access not-suspicious 290 289 286

INFO TELNET login incorrect bad-unknown 47 47 46

POLICY FTP anonymous login attempt misc-activity 118 118 117

CHAT IRC nink change policy-violation 7 7 7

CHAT IRC message policy-violation 281 280 280

ATTACK-RESPONSES Invalid URL attempted-recon 2 2 2

ATTACK-RESPONSES 403 Forbidden attempted-recon 5 5 5

SHELLCODE x86 NOOP shellcode-detect 1 1 1

SCAN FIN attempted-recon 15 0 0

(stream4) STEALTH-ACTIVITY attempted-recon 15 0 0
(FIN scan) detection

X11 open unknown 1 1 1

(stream4) Possible unclassified 2 0 4
retransmission detection

(stream4) WINDOW violation detection unclassified 0 4 6

INFO FTP Bad login bad-unknown 12 12 11

FTP .rhosts
suspicious- 1 1 1

filename-detect

WEB-MISC http directory traversal attempted-recon 1 1 1

BACKDOOR MISC Solaris 2.5 attempt attempted-user 1 1 1

ATTACK-RESPONSES id bad-unknown 1 1 1
check returned userid

ATTACK-RESPONSES directory listing bad-unknown 30 30 30

Total 1442 1412 1408


