(Computational) Algorithms for Biological Problems
-
Clustering techniques
C.-P. Chen, H. Fushing, R. Atwill, and P. Koehl
biDCG: A new method for discovering global features of DNA microarray data via an iterative re-clustering procedure
PLoS One, 9:e102445, 2014.
[ bib ]
H. Fushing, C. Chen, S.H. Liu, and P. Koehl
Bootstrapping on undirected binary networks via statistical mechanics
J. Stat. Phys. 156:853-862, 2014.
[ bib ]
H. Fushing, H. Wang, K. VanderWaal, B. McCowan, and P. Koehl.
Multi-scale clustering by building a robust and self correcting
ultrametric topology on data points.
PLoS One, 8:e56259, 2013.
[ bib ]
-
Partial differential equations
P. Koehl and M. Delarue.
AQUASOL: an efficient solver for the dipolar
Poisson-Boltzmann-Langevin equation.
J. Chem. Phys., 132:064101, 2010.
[ bib ]
X. Shi and P. Koehl.
Adaptive skin meshes coarsening for biomolecular simulation.
Comput. Aided Graph. Design, 28:307-320, 2011.
[ bib ]
X. Shi and P. Koehl.
Adaptive surface meshes coarsening with guaranteed quality and
topology.
In Proc. Comput. Graphics Inter. Conf., pages 53-61, 2009.
[ bib ]
X. Shi and P. Koehl.
The geometry behind numerical solvers of the Poisson-Boltzmann
equation.
Commun. Comput. Phys., 3:1032-1050, 2008.
[ bib ]
-
Bioinformatics: protein structures
M. Carlsen, P. Koehl, and P. Røgen.
On the importance of the distance measures used to train and test knowledge-based potentials for proteins
PLoS One, (2014: in press).
[ bib ]
P. Koehl and P. Røgen.
Extracting knowledge from protein structure geometry.
Proteins: Struct. Func. Bioinfo., 81:841-851, 2013.
[ bib ]
E. Kang and P. Koehl.
Identifying alpha-helices in proteins using the contact map and
morphological operations.
J. Korean Inst. Next Gen. Comput., 8:75-86, 2012.
[ bib ]
P. Francis-Lyon, S. Gu, J. Hass, N. Amenta, and P. Koehl.
Sampling the conformation of protein surface residues for flexible
protein docking.
BMC Bioinformatics, 11:575, 2010.
[ bib ]
C. Hu and P. Koehl.
Helix-sheet packing in proteins.
Proteins: Struct. Func. Bioinfo., 78:1736-1747, 2010.
[ bib ]
Q. Le, G. Pollastri, and P. Koehl.
Structural alphabets for protein structure classification: a
comparison study.
JMB, 387:431-450, 2008.
[ bib ]
P. Koehl.
Protein structure classification.
Rev. Comput. Chem., 22:1-56, 2006.
[ bib ]
R. Kolodny, P. Koehl, and M. Levitt.
Comprehensive evaluation of protein structure alignment methods:
Scoring by geometric measures.
J. Mol. Biol., 346:1173-1188, 2005.
[ bib ]
J. M. Chandonia, N. S. Walker, L. L. Conte, P. Koehl, M. Levitt, and S. E.
Brenner.
Astral compendium enhancements.
Nucl. Acids. Res., 32:D189-D192, 2004.
[ bib ]
R. Kolodny, P. Koehl, L. Guibas, and M. Levitt.
Small libraries of protein fragments model native protein structures
accurately.
J. Mol. Biol., 323:297-307, 2002.
[ bib ]
J. M. Chandonia, N. S. Walker, L. L. Conte, P. Koehl, M. Levitt, and S. E.
Brenner.
Astral compendium enhancements.
Nucl. Acids. Res., 30:260-263, 2002.
[ bib ]
P. Koehl.
Protein structure similarities.
Curr. Opin. Struct. Biol., 11:348-353, 2001.
[ bib ]
S. E. Brenner, P. Koehl, and M. Levitt.
The Astral compendium for protein structure and sequence analysis.
Nucl. Acids. Res., 28:254-256, 2000.
[ bib ]
E. Furuichi and P. Koehl.
Influence of protein structure database on the predictive power of
statistical pair potentials.
Proteins: Struct. Func. Genet., 31:139-149, 1998.
[ bib ]
-
Bioinformatics: Protein sequences
J. Li and P. Koehl
3D representations of amino acids - applications to protein sequence comparison and classification
Comp. Struct. Biotech. J., (2014: in press).
[ bib ]
S. Gu, O. Poch, B. Hamann, and P. Koehl.
A geometric representation of protein sequences.
In IEEE International Conf. Biol. Medicine, pages 135-142,
2007.
[ bib ]
J. D. Thompson, P. Koehl, R. Ripp, and O. Poch.
BAliBASE 3.0: latest developments of the multiple sequence
alignment benchmark.
Proteins: Struct. Func. Genet., 61:127-136, 2005.
[ bib ]
J. D. Thompson, S. R. Holbrook, K. Katoh, P. Koehl, D. Moras, E. Westhof, and
O. Poch.
MAO: a multiple alignment ontology for nucleic acid and protein
sequences.
Nucl. Acids. Res., 33:4164-4171, 2005.
[ bib ]
-
NMR method development
P. Koehl.
Linear prediction spectral analysis of NMR data.
Progress in NMR spectroscopy, 34:257-299, 1999.
[ bib ]
P. Koehl, C. Ling, and J. F. Lefèvre.
Automatic phase correction of NMR spectra: statistics and limits.
J. Chim. Phys., 92:1929-1938, 1995.
[ bib ]
P. Koehl and J. F. Lefèvre.
Relaxation matrix refinement: Nucleic acids.
In D. M. Grant and R. K. Harris, editors, Encyclopedia of
Nuclear Magnetic Resonance. Wiley, Chichester, England, 1995.
[ bib ]
P. Koehl, C. Ling, and J. F. Lefèvre.
Oversampling improves linear prediction quantification of magnetic
resonance spectral parameters.
J. Chim. Phys., 91:595-606, 1994.
[ bib ]
P. Koehl, C. Ling, and J. F. Lefèvre.
Linear prediction quantification of magnetic resonance spectral
parameters: statistics and limits.
J. Magn. Reson., A109:32-40, 1994.
[ bib ]
P. Koehl, B. Kieffer, and J. F. Lefèvre.
Computer-assisted assignment of biological macromolecule NMR
spectra.
J. Chim. Phys., 89:135-146, 1992.
[ bib ]
P. Koehl, J. F. Lefèvre, and O. Jardetzky.
Computing the geometry of a molecule in dihedral angle space using
NMR-derived constraints: a new algorithm based on optimal filtering.
J. Mol. Biol., 223:299-315, 1992.
[ bib ]
P. Koehl and J. F. Lefèvre.
The relaxation matrix reconstructed from an incomplete set of
2D-NOE data: Statistics and limits.
Bull. Magn. Reson., 12:23-29, 1990.
[ bib ]
P. Koehl and J. F. Lefèvre.
The reconstruction of the relaxation matrix from an incomplete set of
nuclear Overhauser effects.
J. Magn. Reson., 87:565-583, 1990.
[ bib ]
(Computational) Geometry of Biological Systems
-
The geometry of shapes
P. Koehl and J. Hass.
Automatic alignment of genus-zero surfaces.
IEEE Trans. Pattern Anal. Mach. Intell., 36:466-478,
2014.
[ bib ]
P. Koehl.
Mathematics's role in the grand challenge of deciphering the
molecular basis of life.
Frontiers in biomolecular sciences, (in press, 2014).
[ bib ]
A. Tsui, D. Fenton, P. Vuong, J. Hass, P. Koehl, N. Amenta, D. Coeurjolly,
C. DeCarli, and O. T. Carmichael.
Globally optimal cortical surface matching with exact landmark
correspondence.
In Proc. Information Processing in Medical Imaging, IPMI 2013,
pages 487-498, 2013.
[ bib ]
P. Koehl.
Fast recursive computation of 3D geometric moments from surface
meshes.
IEEE Trans. Pattern Anal. Mach. Intell., 34:2158-2163,
2012.
[ bib ]
S. Gu, P. Koehl, J. Hass, and N. Amenta.
Surface-histogram: A new shape descriptor for protein-protein
docking.
Proteins: Struct. Func. Bioinfo., 80:221-238, 2012.
[ bib ]
-
Geometry and topology of biomolecules
J. Li, P. Mach, and P. Koehl.
Measuring the shapes of macromolecules and why it matters.
Comp. Struct. Biotech. J., (in press, 2013).
[ bib ]
P. Mach and P. Koehl.
An analytical method for computing atomic contact areas in
biomolecules.
J. Comp. Chem., 34:105-120, 2012.
[ bib ]
P. Mach and P. Koehl.
Geometric measures of large biomolecules: Surface, volume, and
pockets.
J. Comp. Chem., 32:3023-3038, 2011.
[ bib ]
X. Shi and P. Koehl.
Geometry and topology for modeling biomolecular surfaces.
Far East J. Applied Math., 50:1-34, 2011.
[ bib ]
V. Natarajan, P. Koehl, Y. Wang, and B. Hamann.
Visual analysis of biomolecular surfaces.
In Visualization in Medicine and Life Sciences, pages 237-255,
2008.
[ bib ]
A. Zomorodian, L. Guibas, and P. Koehl.
Geometric filtering of pairwise atomic interactions applied to the
design of efficient statistical potentials.
Comput. Aided Graph. Design, 23:531-544, 2006.
[ bib ]
H. Edelsbrunner and P. Koehl.
The geometry of biomolecular solvation.
MSRI Publications, 52:243-275, 2005.
[ bib ]
R. Bryant, H. Edelsbrunner, P. Koehl, and M. Levitt.
The weighted area derivative of a space filling diagram.
Discrete Comput. Geom., 32:293-308, 2004.
[ bib ]
H. Edelsbrunner and P. Koehl.
The weighted volume derivative of a space filling diagram.
Proc. Natl. Acad. Sci. (USA), 100:2203-2208, 2003.
[ bib ]
(Computational) Physics of Biological Systems
-
Solvation (Electrostatics)
P. Koehl, F. Poitevin, H. Orland, and M. Delarue.
Modified Poisson Boltzmann equations for characterizing
biomolecular solvation.
J. Theo. Comp. Chem., page 1440001, 2014.
[ bib ]
L. Sauguet, F. Poitevin, S. Murail, G. Moraga, C. van Renterghem, A. W.
Thompson, P. Koehl, P. J. Corringer, M. Baaden, and M. Delarue.
Structural basis for ion permeation mechanism in pentameric
ligand-gated ion channels.
EMBO J., 32:728-741, 2013.
[ bib ]
M. R. Smaoui, F. Poitevin, M. Delarue, P. Koehl, H. Orland, and
J. Waldispühl.
Computational assembly of polymorphic amyloid fibrils reveals stable
aggregates.
Biophys. J., 104:683-693, 2013.
[ bib ]
L. Miao, H. Qin, P. Koehl, and J. Song.
Selective and specific ion binding on proteins at
physiologically-relevant concentrations.
FEBS Lett., 585:3126-3132, 2011.
[ bib ]
P. Koehl, H. Orland, and M. Delarue.
Adapting Poisson-Boltzmann to the self-consistent mean field
theory: Application to protein side-chain modeling.
J. Chem. Phys., 135:055104, 2011.
[ bib ]
F. Poitevin, H. Orland, S. Doniach, P. Koehl, and M. Delarue.
AquaSAXS: A web server for computation and fitting of SAXS
profiles with a non-uniform hydration layer.
Nucl. Acids. Res., 39:W184-W189, 2011.
[ bib ]
P. Koehl, H. Orland, and M. Delarue.
Computing ion solvation free energies using the dipolar Poisson
model.
J. Phys. Chem. B., 113:5694-5697, 2009.
[ bib ]
P. Koehl, H. Orland, and M. Delarue.
Beyond Poisson-Boltzmann: Modeling biomolecule-water and
water-water interactions.
Phys. Rev. Let., 102:087801, 2009.
[ bib ]
P. Koehl, H. Orland, and M. Delarue.
Solvation of ion pairs: The Poisson-Langevin model.
In Proc. International Conf. Applied Phys. Math., pages
917-923, 2009.
[ bib ]
A. Azuara, H. Orland, M. Bon, P. Koehl, and M. Delarue.
Incorporating dipolar solvents with variable density in
Poisson-Boltzmann electrostatics.
Biophys. J., 95:5587-5605, 2008.
[ bib ]
C. Azuara, E. Lindahl, P. Koehl, H. Orland, and M. Delarue.
PDB_Hydro. incorporating dipolar solvents with variable density
in the Poisson-Boltzmann treatment of macromolecule electrostatics.
Nucl. Acids. Res., 34:W38-W42, 2006.
[ bib ]
P. Koehl.
Electrostatics calculations: latest methodological advances.
Curr. Opin. Struct. Biol., 16:142-151, 2006.
[ bib ]
M. Delarue and P. Koehl.
Atomic environment energies in proteins defined from statistics of
accessible and contact surface areas.
J. Mol. Biol., 249:675-690, 1995.
[ bib ]
P. Koehl and M. Delarue.
Polar and non-polar atomic environments in the protein core:
implications for folding and binding.
Proteins: Struct. Func. Genet., 20:264-278, 1994.
[ bib ]
-
Dynamics
V. Weinreb, L. Li, S.N. Chandrasekaran, P. Koehl, M. Delarue, and C.W. Carter.
Domain motion sensed by the d1 switch, a remote dynamic packing
motif.
J. Biol. Chem., 289:4367-4376, 2014.
[ bib ]
D. R. Weiss and P. Koehl.
Morphing methods to visualize coarse-grained protein dynamics.
Methods Mol. Biol., 1084, 2014.
[ bib ]
F. Xei, D. Tong, W. Lifeng, H. Dayong, C.H. Steven, P. Koehl, and L. Lu.
Identifying essential pairwise interactions in elastic network model
using the alpha shape theory.
J. Comp. Chem., (in press, 2014).
[ bib ]
P. Laowanapiban, M. Kapustina, C. Vonrhein, M. Delarue, P. Koehl, and
C. W. Carter Jr.
Independent saturation of three TrpRS subsites generates a
partially assembled state similar to those observed in molecular simulations.
Proc. Natl. Acad. Sci. (USA), 106:1790-1795, 2009.
[ bib ]
P. Koehl.
Molecular force fields.
In S. Park and J. Cochran, editors, Protein engineering and
design, pages 255-277. CRC Press, Boca Raton, Fl, 2009.
[ bib ]
J. Franklin, P. Koehl, S. Doniach, and M. Delarue.
Minactionpath: maximum likelihood trajectory for large-scale
structural transitions in a coarse grained locally harmonic energy landscape.
Nucl. Acids. Res., 35:V477-W482, 2007.
[ bib ]
E. Lindahl, C. Azuara, P. Koehl, and M. Delarue.
NORMAnDRef: visualization, deformation, and refinement of
macromolecular structures based on all-atom normal mode analysis.
Nucl. Acids. Res., 34:W52-W56, 2006.
[ bib ]
P. Agarwal, L. Guibas, H. Edelsbrunner, J. Erickson, M. Isard, S. Har-Paled,
J. Hershberger, C. Jensen, L. Kavraki, P. Koehl, M. Lin, D. Manocha,
D. Metaxas, B. Mirtich, D. Mount, S. Muthukrishnan, D. Pai, E. Sacks,
J. Snoeyink, S. Suri, and O. Wolfson.
Algorithmic issues in modeling motion.
ACM Computing surveys, 34:550-572, 2002.
[ bib ]
P. Rabier, B. Kieffer, P. Koehl, and J. F. Lefèvre.
Fast measurements of heteronuclear relaxation: frequency domain
analysis of NMR accordion spectroscopy.
Mag. Res. Chem., 39:447-456, 2001.
[ bib ]
S. Sunada, N. Go, and P. Koehl.
Calculation of NMR order parameters in proteins by normal mode
analysis.
J. Chem. Phys., 104:4768-4775, 1996.
[ bib ]
B. Kieffer, P. Koehl, and J. F. Lefèvre.
Modeling the dynamic of an antigenic peptide using NMR data.
Biochimie, 74:815-824, 1992.
[ bib ]
-
Protein structure prediction
P. Francis-Lyon and P. Koehl.
Protein side-chain modeling with a protein-dependent optimized
rotamer library.
Proteins: Struct. Func. Bioinfo., (in press, 2014).
[ bib ]
E. DiLuccio and P. Koehl.
The H-factor as a novel quality metric for homology modeling.
J. Clin. Bioinfo, 2:18-26, 2012.
[ bib ]
C. Hu, P. Koehl, and N. Max.
PackHelix: A tool for helix-sheet packing during protein structure
prediction.
Proteins: Struct. Func. Bioinfo., 78:2828-2843, 2011.
[ bib ]
E. DiLuccio and P. Koehl.
A quality metric for homology modeling: the H-factor.
BMC Bioinformatics, 12:48, 2011.
[ bib ]
P. Koehl.
Protein structure prediction.
In T. Jue, editor, Biomolecular applications of Biophysics,
pages 1-34. Humana press, New York, NY, 2010.
[ bib ]
R. Kolodny, L. Guibas, M. Levitt, and P. Koehl.
Inverse kinematics in biology: the protein loop closure problem.
Int. J. Robot. Res., 24:151-163, 2005.
[ bib ]
R. Samudrala, E. S. Huang, P. Koehl, and M. Levitt.
Constructing side-chains on near native main chains for ab initio
protein structure prediction.
Prot. Eng., 13:453-457, 2000.
[ bib ]
P. Koehl and M. Levitt.
A brighter future for protein structure prediction.
Nature Struct. Biol., 6:108-111, 1999.
[ bib ]
P. Koehl and M. Levitt.
Theory and simulation: Can theory challenge experiment?
Curr. Opin. Struct. Biol., 9:155-156, 1999.
[ bib ]
E. S. Huang, P. Koehl, M. Levitt, R. V. Pappu, and J. W. Ponder.
Accuracy of side-chain prediction upon near-native protein backbones
generated by ab-initio folding methods.
Proteins: Struct. Func. Genet., 33:204-217, 1998.
[ bib ]
P. Koehl and M. Delarue.
Building protein lattice models using self consistent mean field
theory.
J. Chem. Phys., 108:9540-9549, 1998.
[ bib ]
P. Koehl and M. Delarue.
Mean field minimization methods for biological macromolecules.
Curr. Opin. Struct. Biol., 2:222-226, 1996.
[ bib ]
P. Koehl and M. Delarue.
A self consistent mean field approach to simultaneous gap closure and
side-chain positioning in homology modeling.
Nature Struct. Biol., 2:163-170, 1995.
[ bib ]
P. Koehl and M. Delarue.
Modeling side-chain conformation in proteins: a self consistent mean
field approach.
In M. Geisow and R. Epton, editors, Protein Engineering and
Complementary Technologies, pages 31-34. Mayflower Worldwide Ltd,
Birmingham, England, 1995.
[ bib ]
P. Koehl and M. Delarue.
Application of a self-consistent mean field theory to predict protein
side-chains conformation and estimate their conformational entropy.
J. Mol. Biol., 239:249-275, 1994.
[ bib ]
-
Protein Sequence Design
P. Mach and P. Koehl.
Capturing protein sequence-structure specificity using computational
sequence design.
Proteins: Struct. Func. Bioinfo., 81, 1556-1570, 2013.
[ bib ]
P. Koehl and M. Levitt.
Sequence variations within protein families are linearly related to
structural variations.
J. Mol. Biol., 323:551-562, 2002.
[ bib ]
P. Koehl and M. Levitt.
Protein topology and stability define the space of allowed sequences.
Proc. Natl. Acad. Sci. (USA), 99:1280-1285, 2002.
[ bib ]
P. Koehl and M. Levitt.
Improved recognition of native-like protein structures using a family
of designed sequences.
Proc. Natl. Acad. Sci. (USA), 99:691-696, 2002.
[ bib ]
P. Koehl.
Recent progress in computational protein design.
In M. Gromiha and S. Selvaraj, editors, Protein folding,
stability, and design, pages 307-324. Research Signpost, Trivvendrum,
India, 2002.
[ bib ]
P. Koehl and M. Levitt.
De novo protein design.
In O. Jardetzky and M. D. Finucane, editors, NATO ASI Series
vol. 315, pages 57-75. Plenum press, New York, NY, 2001.
[ bib ]
P. Koehl and M. Levitt.
De novo protein design. I. in search of stability and specificity.
J. Mol. Biol., 293:1161-1181, 1999.
[ bib ]
P. Koehl and M. Levitt.
De novo protein design. II. plasticity of protein sequences.
J. Mol. Biol., 293:1182-1193, 1999.
[ bib ]
P. Koehl and M. Levitt.
Structure-based conformational preferences of amino acids.
Proc. Natl. Acad. Sci. (USA), 96:12524-12529, 1999.
[ bib ]
P. Koehl and M. Delarue.
The native sequence determines sidechain packing in a protein, but
does optimal sidechain packing determine the native sequence?
In Proc. Pacific Symp. Biocomputing, pages 198-209, 1997.
[ bib ]
M. Delarue and P. Koehl.
The inverse protein folding problem: self consistent mean field
optimization of a structure specific mutation matrix.
In Proc. Pacific Symp. Biocomputing, pages 109-121, 1997.
[ bib ]
High-resolution protein structures: X-ray crystallography and NMR spectroscopy
B. Babakasal, D. D. Gae, J. Li, J. C. Lagarias, P. Koeh
l and A. J. Fisher.
His74 conservation in the bilin reductase PcyA family reflects an
important role in protein-substrate structure and dynamics.
Biochim. Biophys. Acta, 537: 233-242, 2013.
[ bib ]
F. Chalmel, T. Leveillard, C. Jaillard, A. Lardenois, N. Berdugo, E. Morel,
P. Koehl, G. Lambrou, A. Holmgren, J. A. Sahel, and O. Poch.
Rod-derived cone viability factor-2 is a novel bifunctional
thioredoxin like protein with therapeutic potential.
BMC Molec. Biol., 8:74-85, 2007.
[ bib ]
L. McHale, X. Tan, P. Koehl, and R. Michelmore.
Plant NBS-LRR proteins: adaptable guards.
Genome Biology, 7:212, 2006.
[ bib ]
P. Koehl.
Relaxed specificity in aromatic prenyltransferases.
Nature Chem. Biol., 1:71-72, 2005.
[ bib ]
C. Birck, L. Damian, C. Marty-Detraves, A. Lougarre, C. Shulze Briese,
P. Koehl, A. Fournie, L. Paquereau, and J. P. Samama.
A new lectin family with structure similarity to actinoporins
revealed by the crystal structure of Xerocomus chrysenteron lectin
XCL.
J. Mol. Biol., 344:1409-1420, 2004.
[ bib ]
J. E. Wedeking, C. B. Trame, M. Dorywalska, P. Koehl, T. M. Rasche, M. McKee,
D. Fitzgerald, R. J. Collier, and D. B. McKay.
Refined crystallographic structure of pseudomonas aeruginosa exotoxin
a and its implications for the molecular mechanism of toxicity.
J. Mol. Biol., 314:823-837, 2001.
[ bib ]
G. Mer, C. Kellenberger, P. Koehl, R. Stote, O. Sorokine, A. Van Dorsselaer,
B. Luu, H. Hietter, and J. F. Lefèvre.
Disulphide bridge pairing and solution structure by 1H NMR of
PMPD2, a 35 residue peptide isolated from Locusta migratoria.
Biochemistry, 33:15397-15409, 1994.
[ bib ]
G. Mohn, P. Koehl, H. Budzikiewicz, and J. F. Lefèvre.
Solution structure of pyoverdin GM-II.
Biochemistry, 33:2843-2851, 1994.
[ bib ]
B. Bersch, P. Koehl, Y. Nakatani, G. Ourisson, and A. Milon.
1H nuclear magnetic resonance determination of the membrane-bound
conformation of senktide, a highly selective neurokinin B agonist.
J. Biol. NMR, 3:91-112, 1993.
[ bib ]
B. Kieffer, P. Koehl, S. Plaue, and J. F. Lefèvre.
Structural and dynamic studies of two antigenic loops from
haemagglutinin: a relaxation matrix approach.
J. Biol. NMR, 3:91-112, 1993.
[ bib ]
P. Koehl, B. Kieffer, and J. F. Lefèvre.
The dynamics of oligonucleotides and peptides determined by proton
NMR.
In O. Jardetzky, editor, NATO ASI Series vol. 183, pages
139-154. Plenum press, New York, NY, 1990.
[ bib ]
Others
-
Mutagenesis studies
P. Koehl, D. Burnouf, and R. P. P. Fuchs.
Mutagenesis induced by a single acetylaminofluorene adduct within the
nari site is position dependent.
In P. C. Howard, S. S. Hecht, and F. A. Beland, editors,
Nitroarenes: Occurrence, Metabolism and Biological Impact, pages 105-112.
Plenum Press, New York, NY, 1991.
[ bib ]
D. Burnouf, P. Koehl, and R. P. P. Fuchs.
Position of a single acetylaminofluorene adduct within a mutational
hot spot is critical for the related mutagenic event.
In Y. Kuroda, D. M. Shankel, and M. D. Waters, editors,
Antimutagenesis and Anticarcinogenesis Mechanisms II, pages 277-288.
Plenum Press, New York, NY, 1990.
[ bib ]
P. Koehl, P. Valladier, J. F. Lefèvre, and R. P. P. Fuchs.
Strong structural effect of the position of a single acetylaminofluorene
adduct within a mutation hot spot.
Nucl. Acids. Res., 17:9531-9541, 1989.
[ bib ]
D. Burnouf, P. Koehl, and R. P. P. Fuchs.
Single adduct mutagenesis : Strong effect of the position of a single
acetylaminofluorene adduct within a mutation hot spot.
Proc. Natl. Acad. Sci. (USA), 86:4147-4151, 1989.
[ bib ]
P. Koehl, D. Burnouf, and R. P. P. Fuchs.
Construction of plasmids containing a unique acetylaminofluorene
adduct located within a mutation hot spot: A new probe for frameshift
mutagenesis.
J. Mol. Biol., 207:355-364, 1989.
[ bib ]
-
Effects of radiation on DNA
A. Chatterjee, P. Koehl, and J. L. Magee.
Theoretical consideration of the chemical pathways for
radiation-induced strand breaks.
Adv. Space Res., 6:97-105, 1986.
[ bib ]
|